

MAVOLOG PRO Power Quality Analyzer

3-349-790-01 2/8.18

Sicherheitshinweise und Warnungen

Lesen Sie diese Anleitung bitte aufmerksam durch und untersuchen Sie das Gerät sorgfältig auf mögliche Beschädigungen, die beim Transport entstanden sein können. Dieses Kapitel wird Ihnen dabei helfen, sich mit dem PQ-Analysator **MAVOLOG PRO** vertraut zu machen, bevor Sie diesen installieren, an die Versorgungsspannung anschließen und in Betrieb nehmen.

Dieses Kapitel enthält wichtige Informationen und Warnungen, die zwecks sicherer Installation und Handhabung des Gerätes berücksichtigt werden müssen, um den korrekten Gebrauch und kontinuierlichen Betrieb zu gewährleisten.

Jeder, der dieses Produkt verwendet, sollte sich mit dem Inhalt des Kapitels "Sicherheitshinweise und Warnungen" vertraut machen.

Wird das Gerät in einer nicht vorgesehenen Weise verwendet, kann dies den vom Gerät gewährleisteten Schutz beeinträchtigen.

BITTE BEACHTEN

Diese Bedienungsanleitung enthält Anleitungen für die Installation und Verwendung des PQ-Analysators **MAVOLOG PRO**. Zur Installation und Verwendung dieses Gerätes gehört auch der Umgang mit gefährlichen Strömen und Spannungen. Aus diesem Grund sollte dieses Gerät nur von qualifiziertem Personal installiert, betrieben, gewartet und Instand gehalten werden. GOSSEN METRAWATT übernimmt keine Verantwortung in Bezug auf die Installation und Verwendung des Produkts. Wenn es bezüglich der Installation und Verwendung des Systems, in dem das Gerät zur Messung und Überwachung verwendet wird, irgendwelche Zweifel gibt, wenden Sie sich bitte an eine Person, die für die Installation eines solchen Systems verantwortlich ist.

Vor dem Einschalten des Gerätes

Überprüfen Sie Folgendes, bevor Sie das Gerät einschalten:

- die Nennspannung,
- die Versorgungsspannung,
- die Nennfrequenz,
- das Spannungsverhältnis und die Phasenfolge,
- das Stromwandlerverhältnis und die Integrität der Anschlüsse,
- die Schutzsicherung (der empfohlene Wert der externen Sicherung beträgt maximal 6 A),
- die Unversehrtheit der Erdungsklemme
- den korrekten Anschluss und das Spannungsniveau der E/A-Module

MC	
	•
	1
	•
	\sim
••0	B

WARNUNG!

Nur bei Merkmal A01 (nicht mehr lieferbar):

Die Hilfsspannungsversorgung kann im Bereich der Niederspannungen liegen (19 ... 70 V_{DC}, 48 ... 77 V_{AC}). Der Anschluss eines Gerätes mit Niederspannungsversorgung an eine höhere Spannung führt zur Fehlfunktion des Gerätes. Überprüfen Sie die Spezifikation des Gerätes, bevor Sie es einschalten!

Symbole am Gehäuse und auf den Aufklebern am Gerät

Übereinstimmung des Produkts mit den europäischen CE-Richtlinien.

Rücknahme und umweltverträgliche Entsorgung

Bei dem Gerät handelt es sich um ein Produkt der Kategorie 9 nach ElektroG (Überwachungs- und Kontrollinstrumente). Dieses Gerät fällt unter die RoHS-Richtlinie. Im Übrigen weisen wir darauf hin, dass der aktuelle Stand hierzu im Internet bei www.gossenmetrawatt.com unter dem Suchbegriff WEEE zu finden ist.

Nach WEEE 2012/19/EU und ElektroG kennzeichnen wir unsere Elektround Elektronikgeräte mit dem nebenstehenden Symbol nach DIN EN 50419.

Diese Geräte dürfen nicht mit dem Hausmüll entsorgt werden. Bezüglich der Altgeräte-Rücknahme wenden Sie sich bitte an unseren Service, Anschrift siehe Seite 186.

Inhalt

Grundlegende Beschreibung und Betrieb	7
Einführung	8
Beschreibung des Gerätes	10
Zweckbestimmung und Verwendung des Gerätes	12
Hauptfunktionen, unterstützte Optionen und Funktionalität	13
ANSCHLUSS	17
Einführung	18
Montage	20
Elektrischer Anschluss	21
Anschluss von Ein-/Ausgangsmodulen	23
Speicherkarte	
Schnittstellenanschluss	
Anschluss des Echtzeit-Synchronisierungsmoduls C	31
Anschluss der Hilfsstromversorgung	34
ERSTE SCHRITTE	35
Grundlegende Konzepte	
Installationsassistent	
Anzeige der Geräteinformationen	
EINSTELLUNGEN	40
Einführung	41
MAVO-View-Software	41
Allgemeine Einstellungen	49
Anschluss	
Serielle Kommunikation	60
Datenübertragung über USB	62
Ethernet-Kommunikation	63
Anzeige	67
Sicherheit	69
Energie	71
E/A-Module	
Alarme	87
Interner Speicher	92
Die Konformität der Spannung mit der Norm EN 50160	97
Zurücksetzungs-Vorgänge	103
Einstellungen und Speicherkarte	105

MESSUNGEN	110
Einführung	111
Auswahl der verfügbaren Größen	113
Erklärung der grundlegenden Konzepte	117
Berechnung und Anzeige der Messungen	119
Vorhandene Werte	
Min/MaxWerte	
Alarme	
Oberschwingungsanalyse	
PQ-Analyse	134
KOMMUNIKATIONSMODI	143
POLL-Kommunikationsmodus	144
PUSH-Kommunikationsmodus	145
TECHNISCHE DATEN	148
Genauigkeit	149
Eingänge	151
Anschluss	
Schnittstellen-Kommunikation	
E/A-Module	
Sicherheit	155
Betriebsbedingungen	156
Abmessungen	
ANLAGE A: MODBUS-Kommunikationsprotokoll	159
ANLAGE B: DNP3-Kommunikationsprotokoll	
ANLAGE C: GLEICHUNGEN	
ANLAGE D: XML-DATENFORMAT	

Grundlegende Beschreibung und Betrieb

Das folgende Kapitel enthält grundlegende Informationen über den PQ-Analysator **MAVOLOG PRO**, die zum Verständnis seiner Zweckbestimmung, seiner Anwendbarkeit und seiner betriebsbezogenen Grundfunktionen notwendig sind.

Darüber hinaus enthält das Kapitel Navigationstipps, eine Beschreibung verwendeter Symbole und andere nützliche Informationen zur verständlichen Navigation durch diese Anleitung.

In diesem Kapitel finden Sie:

EINFÜHRUNG	
BESCHREIBUNG DES GERÄTES	10
ZWECKBESTIMMUNG UND VERWENDUNG DES GERÄTES	12
HAUPTFUNKTIONEN, UNTERSTÜTZTE OPTIONEN UND FUNKTIONALITÄT	13

Einführung

In Hinblick auf die Optionen eines PQ-Analysators sollten verschiedene Kapitel beachtet werden, da es bei der Funktionalität und Konstruktion Abweichungen geben kann. Eine ausführlichere Beschreibung der Gerätefunktionen finden Sie im Kapitel *Hauptfunktionen, unterstützte Optionen und Funktionalität* auf der Seite 13.

Der PQ-Analysator **MAVOLOG PRO** verfügt über ein Gehäuse zum Schalttafeleinbau. Spezifikationen des Gehäuses und des Schalttafelausschnitts für das Gehäuse finden Sie im Kapitel *Abmessungen* auf der Seite 157.

Beschreibung der Symbole

In den Kapiteln und Tabellen der Bedienungsanleitung finden Sie unterschiedliche Symbole. Je nach Position der Symbole haben diese unterschiedliche Bedeutungen.

Unterkapitel

Durch die Symbole, die Sie neben den Unterkapiteln finden, wird die Verfügbarkeit von Funktionen beschrieben. Die Verfügbarkeit von Funktionen wird mithilfe folgender Symbole angezeigt:

- E Funktion über Kommunikation verfügbar (MAVO-View-Software)
- Sunktion über Navigationsschlüssel am vorderen Teil des Gerätes verfügbar

Tabellen

Unterstützte Funktionen und Messungen sind in Tabellen aufgelistet. Symbole in Tabellen zeigen die Unterstützung aktivierter Funktionen für verschiedene Anschlussschemen an. Darüber hinaus befindet sich unter der Tabelle mit den verwendeten Symbolen eine Legende. Diese Symbole haben folgende Bedeutungen:

- Funktion wird unterstützt
- × Funktion wird nicht unterstützt
- Symbolbedeutung variiert und wird in der Legende unter der Tabelle beschrieben

Abkürzungen

Abkürzungen werden im Text erklärt, und zwar dort, wo sie zum ersten Mal auftauchen. Die häufigsten Abkürzungen und Ausdrücke werden in folgender Tabelle erklärt:

|--|

Begriff	Erklärung	
RMS	Effektivwert	
Flash	Typ eines Speichermoduls, der seinen Inhalt bei einer Unterbrechung der Stromversorgung beibehält	
Ethernet	IEEE 802.3-Data Layer Protocol	
MODBUS / DNP3	Industrielles Protokoll zur Datenübertragung	
Speicherkarte	Multimedia-Speicherkarte. MMC- und SD-Typen werden unterstützt.	
MAVO-View	Einstellungs-Software für GOSSEN METRAWATT-Messgeräte	
PA gesamt	Aus gesamter Wirk- und Scheinleistung berechneter Leistungswinkel	
PA _{phase}	Winkel zwischen grundlegender Phasenspannung und Phasenstrom	
PF _{phase}	Leistungsfaktor, berechnet aus Schein- und Wirkleistung (beeinflusst durch Oberschwingungen)	
THD (U, I)	Klirrfaktor	
MB	Leistungsmaxima; Messung durchschnittlicher Werte in Zeitabschnitt	
FFT-Graphen	Grafische Darstellung der Präsenz von Oberschwingungen	
Oberschwingungsspannung – Oberschwingungen	Sinusspannung mit Frequenz gleich dem ganzzahligen Vielfachen der Hauptfrequenz	
Zwischenharmonische Oberschwingungsspannung – zwischenharmonisch	Sinusspannung mit Frequenz NICHT gleich dem ganzzahligen Vielfachen der Hauptfrequenz	
Flicker	Spannungsschwankungen verursachen Änderungen der Lichtstärke von Lampen, die das sogenannte Flicker verursachen	
RTC	Real Time Clock	
Abtastfaktor	Bezeichnet eine Anzahl von Perioden zur Messwertberechnung auf der Grundlage der gemessenen Frequenz	
M _p - Durchschnittsintervall	Bezeichnet die Aktualisierungsfrequenz angezeigter Messungen	
Hysterese [%]	Der Anteil bezeichnet die Steigerung oder Reduktion einer Messung ab einer bestimmten Grenze, nachdem diese überschritten wurde.	
IRIG-B	Serieller bereichsübergreifender Instrumentierungsgruppen-Zeitcode	
GPS	Satellitennavigation und Zeitsynchronisierungssystem	
PO	Impulsausgangsmodul	
ТІ	Tarifeingangsmodul	
RO	Relaisausgangsmodul	
во	Bistabiles Relaisausgangsmodul	
AO	Analogausgangsmodul	
DI	Digitales Ausgangsmodul	
PI	Pulsausgangsmodul	
AI	Analogeingangsmodul	
WO	Statusmodul (Wächter) – zur Überwachung der korrekten Funktion	

Beschreibung des Gerätes

Der PQ-Analysator **MAVOLOG PRO** ist ein umfassendes Gerät zur permanenten Überwachung der Stromqualität, der Stromproduktion (dies gilt vor allem für erneuerbaren Strom) und Übertragung bis zur Verteilung an Endverbrauchern, die von mangelhafter Spannungsqualität betroffen sind. Am meisten anwendbar ist es auf der Mittel- und Niederspannungsebene.

Mangelnde Informationen über die Qualität der gelieferten Spannung können zu ungeklärten Produktionsproblemen, Fehlfunktionen und sogar zu Beschädigungen von am Produktionsprozess beteiligten Geräten führen. Daher kann das Gerät zu versorgungsbezogenen Zwecken (Abgleich mit Normen) sowie zu industriellen Zwecken (z. B. zur Überwachung der Qualität des gelieferten Stroms) verwendet werden.

Bedienansicht

- 1- Grafisches LCD-Display
- 2- Navigationstasten
- Steckplatz f
 ür Abdeckung f
 ür Speicherkarten
- 4- LED-Betriebsanzeigen (Speicherkarte/Kommunikation/Alarm)
- 5- LED-E/A-Statusanzeigen

Grafisches LCD-Display

Das grafische LCD-Display mit beleuchtetem Hintergrund dient zur Anzeige der Messwerte mit hoher Auflösung und zur Anzeige der einzelnen Funktionen bei der Einstellung des Gerätes.

Navigationstasten

Die Taste OK dient zur Bestätigung der Einstellungen, zum Auswählen und zum Verlassen des Displays. Die Richtungstasten dienen zur Navigation durch die Anzeigen und Menüs.

Steckplatz mit Abdeckung für Speicherkarten

Der PQ-Analysator ist mit einem Steckplatz für eine MMC- oder SD-Speicherkarte für die Übertragung von Daten aus dem internen Speicher, zur Einstellung des Gerätes und zur Aktualisierung der Software ausgerüstet. Die Schutzabdeckung des Steckplatzes schützt das Gerät vor Feuchtigkeit und Staub.

LED-Anzeige

An der vorderen Seite des Gerätes befinden sich zwei Arten von LED-Anzeigen. Betriebsanzeigen und eine E/A-Statusanzeigen.

Betriebsanzeigen warnen, wenn das Gerät einen bestimmten Zustand erreicht hat. Die linke (rote) Anzeige zeigt die Kartenaktivität an. Solange die rote Anzeige leuchtet, darf die Speicherkarte nicht entfernt werden. Die mittlere (grüne) Anzeige blinkt bei der Übertragung von MC-Daten über die Kommunikationsschnittstelle. Die rechte (rote) blinkt, wenn die Voraussetzung für einen Alarm erfüllt ist.

LED-E/A-Statusanzeigen sind im Betrieb, wenn zusätzliche Module A und/oder B eingebaut sind und diese die Funktionalität eines Digitalausgangs oder eines Relaisausgangs haben. Sie zeigen den Zustand eines einzelnen E/A an. Eine rote LED-Anzeige leuchtet, wenn:

- der Relaisausgang aktiviert ist
- am Digitalausgang ein Signal vorhanden ist

Zweckbestimmung und Verwendung des Gerätes

Der PQ-Analysator **MAVOLOG PRO** ermöglicht eine Durchführung von Messungen entsprechend der Gesetzesnorm EN 61000-4-30 und eine Bewertung aufgezeichneter Parameter zwecks einer Analyse entsprechend den in der Europäischen Versorgungsqualitäts-Norm EN 50160:2011 definierten Parametern.

Darüber hinaus werden im internen Speicher des Gerätes Messergebnisse und Qualitätsberichte zur weiteren Analyse aufgezeichneter Messergebnisse gespeichert. Aus mehreren, an verschiedenen Orten angebrachten Geräten kann der Benutzer einen Gesamtüberblick über das Systemverhalten gewinnen. Dies ist möglich in Hinblick auf die genaue interne Echtzeit-Uhr und eine breite Unterstützung von Synchronisierungsquellen, die genaue, zeitgestempelte Messungen aus diversen Einheiten ermöglichen.

Alle erforderlichen Messungen, wöchentliche PQ-Berichte und Alarme können ebenfalls lokal auf einem internen Speicher abgelegt werden. Gespeicherte Daten können anschließend auf eine Speicherkarte übertragen werden oder über die Kommunikationsschnittstelle zwecks einer nachträglichen Analyse in die Software Mavo-View exportiert werden.

Die interne Speicherkapazität ermöglicht eine Speicherung von über 170.000 Abweichungen der Messungen von den Standardwerten, wodurch es möglich wird, die eigentlichen Ursachen für Netzwerkprobleme zu ermitteln. Die Grenzen und die erforderliche Qualität während einer Überwachungsperiode kann für jede überwachte Charakteristik definiert werden. Die folgenden Charakteristika werden gemessen und aufgezeichnet:

Erscheinung	PQ-Parameter
Frequenzabweichungen	Frequenzverzerrung
Spannungsabweich-	Spannungsschwankungen
ungen	Spannungsunsymmetrie
Spannungsänderungen	Schnelle Spannungsänderungen
	Flicker
Spannungsereignisse	Spannungseinbrüche
	Spannungsunterbrechungen
	Spannungserhöhungen
Oberschwingungen &	THD-Oberschwingungen
עחו	Zwischenharmonische Oberschwingungen
	Signalspannung

 Tabelle 2: Stromqualitäts-Indizes gem. Definition in EN 50160

Hauptfunktionen, unterstützte Optionen und Funktionalität

Der PQ-Analysator **MAVOLOG PRO** ist eine perfekte Vorrichtung zur Überwachung und Analyse von Mittel- und Niederspannungssystemen von Stromverteilungs- und Industriesegmenten. Er kann als unabhängige PQ-Überwachungseinheit zur Erfassung lokaler PQ-Abweichungen verwendet werden. Zu diesem Zweck wird er normalerweise am Verknüpfungspunkt (Engl.: PCC) kleiner und mittelgroßer industrieller und gewerblicher Anlagen angeschlossen, um die Qualität der gelieferten Spannung zu überwachen.

Der Anwender kann verschiedene Hardware-Module auswählen, die im Gerät implementiert werden können. Das breite Spektrum an Varianten kann die Anforderungen so gut wie aller Anwender erfüllen.

Der PQ-Analysator **MAVOLOG PRO** ist ein kompaktes, benutzerfreundliches Gerät, das diverse Funktionen bietet, die die Anforderungen an die internationalen Normen erfüllen:

- PQ-Analyse entsprechend EN 50160 mit automatischer Berichterzeugung
- Hohe Genauigkeit entsprechend A-Klasse (0,1%) EN 61000-4-30
- Automatische Messbereichs-Auswahl von 4 Strom- und

4 Spannungskanälen (max. 12.5 A und 1000 V RMS)

mit einer Abtastrate von 32 kHz

- Aufzeichnung von bis zu 128 Messgrößen, 32 einstellbare Alarme, Anomalien und Qualitätsberichte im internen Speicher
- MODBUS- und DNP3-Kommunikationsprotokolle
- Unterstützung von Anwendungen zur effektiven Unterzählerauslesung (umfassende Zählereinstellungen, Tarifund Kostenverwaltung)
- Unterstützung von GPS, IRIG-B (moduliert und digital) und NTP-Echtzeit-Synchronisierung
- Bis zu 20 Ein- und Ausgänge
- Unterstützung verschiedener Sprachen
- Benutzerfreundliche Einstellungs- und Bewertungs-Software, MAVO-View
- CE-Zertifikat
- PSL-Klasse A Zertifikat

Allgemeine Hardware-Funktionen

Allgemein

Messgenauigkeit der A-Klasse gem. EN 61000-4-30	•
Spannungs-Autobereich bis zu 1000 Vp-p _{RMS}	•
Strom-Autobereich bis zu 12,5 A	•
4 Spannungs- und 4 Stromkanäle mit einer Abtastzeit von 32 μs	•
Universal-Stromversorgung Hoch- oder Niederspannung	• / 0
Zwei unabhängige Kommunikationsports (siehe Daten unten)	0
Unterstützung von GPS-, IRIG-B- und NTP-Echtzeitsynchronisierung	● / ● / ○
Bis zu 20 zusätzliche Ein- und Ausgänge (siehe Daten unten)	0
Interner Flash-Speicher (8 MB)	•
Echtzeit-Uhr (RTC)	•
Standard quadratische DIN-Montageplatte, 144 mm	•
Vordere Seite	
Grafisches LCD-Display mit Rücklicht	•
LED-Anzeige (Speicherkarte/Kommunikation/Alarm)	•
LED-E/A-Statusanzeige	•
Steckplatz für SD-Speicherkarten zur Datenübertragung	•
Steuertasten an der vorderen Seite (5 Tasten)	•
Kommunikation	
COM1: Ethernet +USB / USB / seriell (RS232/485)	0/0/●
COM2: Seriell (RS232/ RS485 am Steckplatz C, wenn andere Synchronisierungsmodi gerade verwendet werden)	•

• – Funktion wird unterstützt (Standard)

• – Optional (muss bei der Bestellung angegeben werden)

Standard / Optional

Ein- und Ausgangsmodule Ein-/Ausgangsmodul 1 2×AO / 2×AI / 2×RO / 2×PO / 2×PI / 2×TI / 1×BO / 2×DI / WO+RO 0/0/0/0/0/0/0/0 Ein-/Ausgangsmodul 2 2×AO / 2×AI / 2×RO / 2×PO / 2×PI / 2×TI / 1×BO / 2×DI / WO+RO 0/0/0/0/0/0/0/0 Neben-Ein-/Ausgangsmodul A E/A A (1-8) DI / RO 0/0 Neben-Ein-/Ausgangsmodul B (1-8) DI / RO E/A B 0/0 Synchronisierungsmodul C E/B C GPS + 1pps / IRIG-B / COM2 • / • / •

• Funktion wird unterstützt (Standard)

Allgemeine Hardware-Funktionen

• Optional (muss bei der Bestellung angegeben werden)

- PO Impulsausgangsmodul
- TI Tarifeingangsmodul
- RO Relaisausgangsmodul
- BO Bistabiles Relaisausgangsmodul
- AO Analogausgangsmodul
- DI Digitales Eingangsmodul
- PI Pulseingangsmodul
- AI Analogeingangsmodul U, I oder R (PT100/1000)
- WO Statusmodul (Wächter) zur Überwachung der korrekten Funktion

Standard / Optional

Allgemeine Software-Funktionen	Standard / -
Setup-Assistent	•
Warnung bei falschem Anschluss	•
Standard-Bildschirmeinstellungen (3 benutzerdef. Oberflächen auf LCD)	•
Vorführbildschirm-Durchlauf	•
Programmierbare Aktualisierungszeit	•
MODBUS- und DNP3-Kommunikationsprotokolle	•
Tarif-Uhr	•
MB-Berechnung (TF, FW, SW)	•
Breiter Frequenzmessbereich 16 … 400 Hz	•
Programmierbare Alarme (32 Alarme)	•
Alarmaufzeichnung	•
Messaufzeichnung (128 Größen)	•
Messgraphen (Zeit / FFT)	•
Bewertung der Spannungsqualität entsprechend EN 50160	•
Echtzeit-Uhr-Synchronisierung (GPS/IRIG-B/NTP)	•

•

Funktion wird unterstützt (Standard) Optional (muss bei der Bestellung angegeben werden) 0

ANSCHLUSS

In diesem Kapitel werden die Anleitungen zum Anschluss des PQ-Analysators erläutert. Sowohl bei der Verwendung als auch beim Anschluss des Gerätes muss mit gefährlichen Strömen und Spannungen gearbeitet werden. Der Anschluss darf daher AUSSCHLIESSLICH von einer qualifizierten Person und mithilfe geeigneter Geräte durchgeführt werden. GOSSEN METRAWATT übernimmt keine Haftung für die Verwendung und für den Anschluss. Sollte es Zweifel in Hinblick auf den Anschluss und die Verwendung des Systems geben, für das dieses Gerät vorgesehen ist, kontaktieren Sie bitte jemanden, der für solche Installationen zuständig ist.

In diesem Kapitel finden Sie:

EINFÜHRUNG	18
MONTAGE	20
ELEKTRISCHER ANSCHLUSS	21
ANSCHLUSS VON EIN-/AUSGANGSMODULEN	23
SCHNITTSTELLEN-ANSCHLUSS	28
ANSCHLUSS DES ECHTZEIT-SYNCHRONISIERUNGSMODULS C	31
ANSCHLUSS DER HILFSSTROMVERSORGUNG	34

Einführung

Eine Person, die qualifiziert ist, ein Gerät zu installieren und anzuschließen, sollte vor dem Anschließen mit allen erforderlichen, in diesem Dokument beschriebenen Vorsichtsmaßnahmen vertraut sein.

Inhalt

Der Inhalt und die Größe einer Verpackung können je nach Typ der Lieferung leicht variieren.

Nur ein Gerät oder eine sehr kleine Anzahl von Geräten werden in einer großen Kartonverpackung verschickt, da diese besseren physischen Schutz beim Transport bietet. Dieser Typ von Inhalt umfasst:

- PQ-Analysator MAVOLOG PRO
- Befestigungsschrauben
- Steckbare Anschlussklemmen zum Anschluss von Eingängen, Hilfsstromversorgung und E/O-Module
- CD mit der Vollversion dieses Dokuments, der Installation der MAVO-View-Einstellungssoftware, den erforderlichen USB-Treibern (falls das Gerät über eine USB-Verbindung verfügt)
- Kurzinstallationsanleitung

Beim Versenden einer größeren Anzahl von Geräten werden diese in einer kleineren Kartonverpackung verschickt, um Platz und somit auch die Versandkosten zu sparen. Dieser Typ von Inhalt umfasst:

- PQ-Analysator MAVOLOG PRO
- Befestigungsschrauben
- Steckbare Anschlussklemmen zum Anschluss von Eingängen, Hilfsstromversorgung und E/O-Modulen
- Kurzinstallationsanleitung

Dieses Dokument und die MAVO-View-Einstellungssoftware finden Sie auch auf unserer Webseite: <u>www.gossenmetrawatt.com.</u>

ACHTUNG

Untersuchen Sie das Gerät bitte aufmerksam auf mögliche Beschädigungen, die beim Transport entstanden sein können!

Vor der Verwendung

Vor der Verwendung des Gerätes überprüfen Sie bitte Folgendes:

- die Nennspannung (U_{P-Pmax} = 1000 V_{ACrms}; U_{P-Nmax} = 600 V_{ACrms}),
- die Versorgungsspannung (Hoch- oder Niederspannung),
- die Nennfrequenz,
- das Spannungsverhältnis und die Phasenfolge,
- das Stromwandlerverhältnis und die Integrität der Anschlüsse,
- die Schutzsicherung (der empfohlene Wert der externen Sicherung beträgt maximal 6 A),
- die Unversehrtheit der Erdungsklemme,
- korrekter Anschluss und Spannungsniveau der E/A-Module.

WARNUNG

Falscher oder unvollständiger Anschluss von Spannungsanschlüssen oder anderen Anschlüssen kann zu Fehlfunktion oder Schaden am Gerät führen.

WARNUNG

Die vierte Spannungsanschlussklemme (Anschlussklemme 12), die als Anschluss der vierten Messspannung dient, darf ausschließlich an die Erdung angeschlossen werden. Diese Anschlussklemme muss immer an die Erdung angeschlossen bleiben! Dieser Eingang wird ausschließlich zur Spannungsmessung zwischen dem Neutralpunkt und der Erde verwendet.

ACHTUNG

Der Einschaltstrom der externen Versorgung kann für kurze Zeit (< 1 ms) sogar bis zu 20 A betragen. Bitte verwenden Sie einen entsprechenden Leitungsschutzschalter (MCB) für den Anschluss der Hilfsstromversorgung.

MC	
000	

BITTE BEACHTEN

Nach dem Anschluss muss das Gerät mithilfe der Navigationstasten an der vorderen Geräteseite gemäß der Art des Netzanschlusses (Anschluss-Modus, Strom- und Spannungswandler-Verhältnis usw.) eingestellt werden. Die Einstellungen können auch über die Kommunikationsschnittstelle oder die Speicherkarte durchgeführt werden.

Montage

Der PQ-Analysator **MAVOLOG PRO** ist nur für den Einbau vorgesehen. Steckbare Anschlussklemmen ermöglichen eine einfachere Installation und ggf. auch einen schnellen Austausch.

Dieses Gerät ist nicht für den mobilen Einsatz vorgesehen und sollte fest in eine Schalttafel eingebaut werden.

Der empfohlene Ausschnitt für den Einbau des Gerätes beträgt:

138 x 138 mm + 0,8

Bitte entfernen Sie die Schutzfolie vom Display.

Elektrischer Anschluss

Die Spannungseingänge des Gerätes können direkt an das Niederspannungsnetz oder über entsprechende Spannungswandler an das Mittel- oder Hochspannungsnetz angeschlossen werden.

Die Stromeingänge des Gerätes verlaufen durch die Stromwandleröffnungen, um einen ununterbrochenen Stromanschluss zu gewährleisten. Der Anschluss zum Netzwerk verläuft über einen entsprechenden Stromwandler.

Wählen Sie den entsprechenden Anschluss aus den nachstehenden Zeichnungen aus und schließen Sie danach die entsprechenden Spannungen und Ströme an. Informationen zum elektrischen Verbrauch der Spannungs- und Stromeingänge finden Sie in der Bedienungsanleitung im Kapitel *E/A-Module* auf der Seite 76.

ACHTUNG

Um die korrekte Funktion des Gerätes zu gewährleisten und um Signalinterferenzstörungen zu vermeiden, ist es wichtig, dass die Leitungen der Messsteuerkreise nicht in der Nähe der Messwandler verlegt werden.

Anschluss 1b (1W): Einphasen-Anschluss

Anschluss 3b (1W3): Dreiphasen-Dreidraht-Anschluss mit symmetrischer Last Anschluss 3u (2W3): Dreiphasen-Dreidraht-Anschluss mit unsymmetrischer Last

Anschluss 4b (1W4): Dreiphasen-Vierdraht-Anschluss mit symmetrischer Last

Anschluss 4u (3W4): Dreiphasen-Vierdraht-Anschluss mit unsymmetrischer Last

BITTE BEACHTEN

Die Anschlussbeispiele beziehen sich auf ein Gerät mit zwei eingebauten E/A-Modulen und RS232/RS485-Kommunikation. Der Anschluss ist nicht von der Anzahl der eingebauten E/A-Module und der Kommunikation abhängig und wird auf dem Typschild des Gerätes angegeben.

Anschluss von Ein-/Ausgangsmodulen

WARNUNG

Überprüfen Sie die Modul-Funktionen, die auf dem Typschild angegeben sind, bevor Sie die Anschlüsse des Moduls verbinden. Falscher Anschluss kann zur Beschädigung oder Zerstörung des Moduls und/oder des Gerätes führen.

BITTE BEACHTEN

Die Anschlussbeispiele beziehen sich auf ein Gerät mit zwei eingebauten E/A-Modulen und RS232/RS485-Kommunikation. Der Anschluss ist nicht von der Anzahl der eingebauten E/A-Module und der Kommunikation abhängig und wird auf dem Typschild des Gerätes angegeben.

Schließen Sie die Anschlüsse des Moduls so an, wie es auf dem jeweiligen Anschlussbild angegeben ist. Nachfolgend stehen Beispiele für die eingebauten Module mit der jeweiligen Beschreibung. Informationen über die elektrischen Eigenschaften der Module finden Sie in der Bedienungsanleitung im Kapitel *E/A-Module* auf der Seite 76.

E/A-Modul 1 und 2 (Anschlussklemmen 15-20) – Ausgangsmöglichkeiten

1/0 1	1/2
2 x Relay out	out
230 V DC/AC 1000 mA	+/~ 5 15 1
1/0.3	8/4
1 x Bistable a	l. output
230 V DC/AC 1000 mA	+/~ 18 -/~ م 19 +/~ 20
1/0 1	1/2
2 x Pulse outp	out
40 V DC/AC 30 mA	+/~ 5 1 - 2 - 15 -/~ 2 - 16 2 - 2 - 17 +/~ 17
1/0 1	1/2
Watchdog / R 230 V DC/AC 1000 mA	elay output $\frac{1}{2} - \frac{15}{1} = \frac{15}{16}$ $\frac{1}{2} - \frac{15}{16} = \frac{16}{17}$
	45111
1/0 1	/2
2 x Analogue	output
020 mA Rmax=150 Ω	$\frac{1}{2} + \frac{15}{16}$

Alarmausgangsmodul (Relaisausgang) mit zwei Ausgängen.

Bistabiles Alarmausgangsmodul; behält den Status bei, auch im Falle des Verlustes der Versorgungsspannung.

Impulsausgangsmodul (Solid-State) mit zwei Impulsausgängen für Energiezähler.

Statusausgangsmodul (Wächter) ermöglicht die Überwachung der korrekten Funktion des Gerätes über den ersten Ausgang (WD) und eine Alarmfunktion am zweiten Ausgang.

Analogausgangsmodul mit zwei Analogausgängen (0...20 mA), proportional zu den Messgrößen.

E/A-Modul 1 und 2 (Anschlussklemmen 15-20) – *Eingangsmöglichkeiten*

2 x Tariff input	1000
	1~ 15
230 V AC	
1 20%	2~ 17

Tarifeingangsmodul mit zwei Tarifeingängen zur Umschaltung von bis zu vier Tarifen.

I/O 1 2 x Digital inp	/2 ut	
	1+/~	15
230 V DC/AC		16
± 2076	2+/~	17

Digitaleingangsmodul mit zwei Digitaleingängen ermöglicht den Empfang von Impulssignalen.

I/O 1	/2	
z x r uise inpu	4+1	5
548 V DC	-1	6
	² + 1	7

Impulseingangsmodul ermöglicht den Empfang von Impulssignalen aus diversen Zählern (Wasser-, Gas-, Wärme-, Durchflusszähler).

I/O 1/2 2 x Analogue input	
1+	15
-20020 mA	16
2+	17

Analogeingangsmodul ermöglicht Gleichspannungs-, Gleichstrom-, Widerstandsund Temperaturmessungen (PT100, PT1000) von externen Messquellen. Die Module verfügen über unterschiedliche Hardware, wodurch eine unterschiedliche Programmierung in einem Gerät möglich ist.

WARNUNG

Falls nur ein analoger Widerstandstemperatur-Eingang verwendet wird, müssen die anderen kurzgeschlossen werden.

Zusätzliches E/A-Modul A und B – Ausgangsmöglichkeiten

I/O B	8 x Relay output
230 V DC/AC	100 mA
C 1-+ 2-+	3-2 4-2 5-2 6-2 7-2 8-2
40 41 42	43 44 45 46 47 48

Digitalausgangsmodul mit acht Digitalausgängen ermöglicht Alarmfunktionen.

Zusätzliches E/A-Modul A und B – Eingangsmöglichkeiten

I/O A			8 x Digital input					
230	V DC	AC	± 20%	%				
C-	1	2	3	4	5	6 +/~	7	8
30	31	32	33	34	35	36	37	38

Digitaleingangsmodul mit acht Digitaleingängen ermöglicht den Empfang von Digitalsignalen.

Synchronisierungsmodul C

1/0	С	
IRIG-B		\odot
1PPS	- 1	53
DC 405	Α	54
K3403	в	55
	Rx	56
MODEM	1	57
WODEW	Тх	58
	+5V	59

Das Synchronisierungsmodul ermöglicht die Unterstützung von zwei verschiedenen Synchronisierungsmethoden mit IRIG-B- und GPS-Modem.

Bei der Verwendung des modulierten IRIG-B-Signals sollte dieses über den BNC-Anschluss angeschlossen werden. Bei der Verwendung des IRIG-B-Signals mit der Pegelverschiebung sollte dieses über den 1PPS-Anschluss angeschlossen werden.

Im Falle eines GPS-Modems sollte das 1PPS-Signal über den 1PPS-Anschluss und das RS232 über die RS232-Anschlüsse angeschlossen werden.

Wenn das IRIG-B-Signal (moduliert oder mit Pegelverschiebung) oder das 1PPS-Signal für die Zeitsynchronisierung verwendet wird, kann die serielle Schnittstelle (RS232 oder RS485) als der sekundäre Kommunikationsport (COM 2) verwendet werden.

BITTE BEACHTEN

Der Kommunikationsport am Modul C soll primär serielle codierte Datenund Zeittelegramme von einem GPS-Receiver empfangen, um die interne Echtzeit-Uhr (RTC) zu synchronisieren. Wenn andere Methoden zur Synchronisierung der RTC verwendet werden, kann dieser Kommunikationsport als sekundärer Universal-Kommunikationsport verwendet werden.

Beim Anschluss der seriellen Kommunikation darf entweder RS232 oder RS485 verwendet werden und nicht beide gleichzeitig. Die Anschlüsse des Konnektors sollten nicht unangeschlossen bleiben, sonst könnte die Kommunikation nicht korrekt funktionieren.

ACHTUNG

Die RTC-Synchronisierung ist ein wesentlicher Teil eines Gerätes der A-Klasse. Bei Fehlen der richtigen RTC-Synchronisierung funktioniert das Gerät als ein Instrument der S-Klasse.

ACHTUNG

Der maximale Verbrauch der +5 V-Versorgung beträgt 100 mA. Bei der Verwendung eines GPS mit höherem Verbrauch als 100 mA ist es ratsam, eine externe Versorgung zu verwenden.

Speicherkarte

Der Netzstör-Analysator **MAVOLOG PRO** ist an der Vorderseite mit einem Steckplatz für eine SD-Speicherkarte mit einer Speicherkapazität von bis zu 2 GB ausgestattet.

ACHTUNG

Wenn der Steckplatz für die SD-Speicherkarte nicht verwendet wird, sollte er mit der mitgelieferten Schutzabdeckung abgedeckt werden, um das Eindringen von Staub und kleineren Gegenständen zu verhindern.

Eine Speicherkarte kann für die Speicherung von Daten und die Durchführung von Systemoperationen (Herunterladen von Einstellungen, Firmware-Aktualisierung) verwendet werden, wenn das Gerät nicht an eine Kommunikationsschnittstelle angeschlossen ist.

Eine Speicherkarte ermöglicht verschiedene Operationen. Sofort nach dem Einstecken einer Speicherkarte werden im Gerätemenü Speicherkartenoptionen angezeigt.

SD-Karte	C
SD Information	
Daten speicher	m
Einstell.speid	thern
Einstell. lade	en
Software Updat	,e
P Hauptmenu	

Übertragung von Daten aus dem internen Speicher

Alle Daten (Messwerte, Alarme, PQ-Berichte und Details), die in dem internen Speicher abgelegt sind, können auf eine Speicherkarte übertragen werden.

BITTE BEACHTEN

Messungen können nicht direkt auf einer Speicherkarte abgelegt werden. Nur bereits im internen Speicher abgelegte Daten können auf eine Speicherkarte übertragen werden.

Hoch- und Herunterladen von Einstellungen

Dies ist eine bequeme Art, um Geräte zu programmieren. Die Einstellungen können zunächst manuell programmiert werden und anschließend mit dem Befehl *Upload* auf einer Speicherkarte gesichert werden. Durch die Verwendung dieser Speicherkarte können Geräte zu einem späteren Zeitpunkt sehr schnell mit den identischen Einstellungen programmiert werden.

Firmware-Aktualisierung

Sollen neue Funktionen hinzugefügt oder bestimmte Korrekturen durchgeführt werden, ist eine Firmwareaktualisierung erforderlich. Dies kann mithilfe einer Speicherkarte am schnellsten durchgeführt werden. Hierbei muss die neue Firmware nur einmal von einem PC auf die Speicherkarte übertragen werden. Danach können mehrere Geräte mithilfe dieser Speicherkarte aktualisiert werden.

ACHTUNG

Während der Firmware-Aktualisierung darf die Hilfsstromversorgung **nicht** unterbrochen **werden**.

Schnittstellenanschluss

Das Gerät ist bei der Bestellung einer Standardausführung mit der primären Schnittstelle COM1 ausgestattet. Das Gerät unterstützt verschiedene Kommunikationsarten:

- serielle Schnittstelle RS232/485 über einen steckbaren 5-poligen Konnektor mit Schraubklemmen,
- Ethernet- Schnittstelle über einen standardmäßigen RJ-45-Anschluss und USB-Kommunikation über einen standardmäßigen USB-B-Anschluss
- einfache USB- Schnittstelle über einen standardmäßigen USB-B-Anschluss

BITTE BEACHTEN

Beim Anschluss der seriellen Kommunikationsschnittstelle darf entweder der Typ RS232 oder RS485 verwendet werden und nicht beide gleichzeitig. Die Anschlüsse des Schraubklemmenblocks sollten nicht unangeschlossen bleiben, ansonsten kann dies die Kommunikation beeinträchtigen.

Abgesehen vom primären Kommunikationsport ist im Gerät ein sekundärer Kommunikationsport (COM2) als Teil eines Echtzeit-Synchronisierungsmoduls C integriert. Seine Funktion wird im Kapitel zur Echtzeit-Synchronisierung beschrieben: *Serielle Kommunikation über das Synchronisierungsmodul C (COM2)* auf der Seite 86

Schließen Sie die Kommunikationsleitung an den entsprechenden Anschluss an. Die Kommunikationsparameter gemäß dem gewählten Kommunikationstyp befinden sich auf dem Typenschild des Gerätes. Die Anschlussbelegung des Steckverbinders finden Sie auf dem Typenschild auf der Rückseite des Gerätes. Nähere Informationen über die Kommunikation finden Sie in der Bedienungsanleitung in dem Kapitel *Kommunikation* auf der Seite 60.

CC	DMM	UNI	CATIO	NC
1	TE	RMIN	JAL	-
RS	485	1	RS23	2
A	В	Rx	1	Tx
21	22	23	24	25
USB 2.0 Type B				
COMMUNICATION				
	00.0			
U	5B 2	.0	Type	в

Beispiel für das Typenschild für die serielle Kommunikation RS232 und RS485 über einen steckbaren Schraubklemmenblock

Beispiel für das Typenschild für die Ethernet/USB-Kommunikation über einen RJ-45- und USB-B-Anschluss

Beispiel für das Typenschild für die USB-Kommunikation über einen USB-B- Anschluss

RS232

Die RS232-Kommunikationsschnittstell ist für den direkten Anschluss des Gerätes an den PC vorgesehen. Zum korrekten Betrieb muss der entsprechende Anschluss einzelner Anschlussklemmen (siehe untenstehende Tabelle) gewährleistet werden.

RS485

Die RS485-Kommunikationsschnittstelle ist für den Anschluss mehrerer Geräte an ein Netzwerk vorgesehen, wo Geräte mit RS485-Kommunikationsschnittstelle an eine gemeinsame Kommunikationsschnittstelle angeschlossen werden. Wir schlagen vor, eine Kommunikationsschnittstelle von GOSSEN METRAWATT zu verwenden!

Zum korrekten Betrieb muss die entsprechende Verbindung einzelner Anschlussklemmen (siehe untenstehende Tabelle) gewährleistet werden.

Ethernet

Die Ethernet-Kommunikationsschnittstelle wird zum Anschließen des Gerätes an das Ethernet-Netzwerk zum Fernbetrieb verwendet. Jedes Gerät hat seine eigene MAC-Adresse, die in manchen Fällen erforderlich und auf dem Typenschild des Gerätes angegeben ist.

USB

Die USB-Kommunikationsschnittstelle dient als eine schnelle Peer-to-Terminal-Datenverbindung. Das Gerät wird vom Host als ein USB 2.0kompatibles Gerät erkannt. Der USB-Anschluss wird über einen USB-Standard-Type B-Konnektor gewährleistet.

BITTE BEACHTEN

Wenn das Gerät zum ersten Mal an einen PC über die USB-Kommunikationsschnittstelle angeschlossen wird, wird der Benutzer aufgefordert einen Treiber zu installieren. Der Treiber befindet sich auf der mitgelieferten CD, eingeschlossen in der Originalverpackung, er kann aber auch von der Internetseite von GOSSEN METRAWATT www.gossenmetrawatt.com heruntergeladen werden. Nachdem der Treiber installiert ist, wird die USB-Kommunikationsschnittstelle an einen seriellen Port umgeleitet, der bei der Verwendung der MAVO-View-Software ausgewählt werden muss.

Schnitt- stellentyp	Anschluss- typ	Bauform	Position	Datenrichtung	Beschreibung
			21	zu/von	A
DS185	Schroub		22	zu/von	В
R3400 DS222	Scritaud-	 23 24 25 	23	zu	Datenempfang (Rx)
N3232	KIEITIITIE		24	-	Erdung (ot)
			25	von	Datenübertragung (Tx)
Ethernet	RJ-45		100 BASE-T CAT5-Kabel wird empfohlen		
USB	USB-B		Standardmäßiges USB 2.0-kompatibles Kabel (B-Typ-Stecker) wird empfohlen		SB 2.0-kompatibles Kabel er) wird empfohlen

Tabelle 2: Überblick üb	er die Kommunikation:	sschnittstellenanschlüsse
--------------------------------	-----------------------	---------------------------

Anschluss des Echtzeit-Synchronisierungsmoduls C

Die synchronisierte Echtzeit-Uhr (RTC) ist ein wesentlicher Teil aller A-Klasse-Analysatoren zur korrekten chronologischen Bestimmung diverser Ereignisse. Um die Ursache von der Wirkung zu unterscheiden, um ein bestimmtes Ereignis von seinem Ursprung bis zu seiner Manifestation in anderen Parametern nachzuverfolgen, ist es sehr wichtig, dass jedes Ereignis und jede aufgezeichnete Messung auf einem Instrument mit den Ereignissen und Messungen auf anderen Geräten verglichen werden kann. Selbst wenn Instrumente disloziert sind, was normalerweise in elektrischen Verteilungsnetzwerken der Fall ist, muss die Ereigniszeit vergleichbar sein, wobei die Genauigkeit höher als eine einzige Periode sein muss.

Das Synchronisierungsmodul dient zur Synchronisierung der RTC des Gerätes und zur Aufrechterhaltung der Genauigkeit bei der Anpassung von Intervallen und Zeitstempeln der Ereignisse im überwachten Netzwerk.

Es gibt verschiedene Arten der Synchronisierung von RTC:

- IRIG-B moduliert; 1 kHz-Modulation mit < 1 ms Auflösung.
- IRIG-B unmoduliert (Pegelverschiebung)
- 1PPS + RS232 Daten und Zeittelegramm (vom GPS)

BITTE BEACHTEN

Die NTP-Synchronisierung ist auch über die Ethernet-Kommunikation möglich, wenn das Ethernet-Kommunikationsmodul verwendet wird. Anleitungen zur Auswahl der NTP-RTC-Synchronisierung finden Sie im Kapitel *Echtzeit-Synchronisierungsquelle* auf der Seite 51.

GPS-Zeitsynchronisierung:

1PPS und die serielle RS232-Kommunikation mit NMEA 0183-Satzunterstützung. Die GPS-Schnittstelle hat die Konstruktion einer steckbaren 5-poligen Schraubklemme (+5 V für Receiver-Versorgung, ein 1PPS-Eingang und eine Standard-RS232-Kommunikationsschnittstelle). Wir empfehlen den GPS-Receiver GARMIN GPS18x.

IRIG-Zeitcode B (IRIG-B):

Unmoduliertes (DC 5 V-Pegelverschiebung) und moduliertes (1 kHz) serielles codiertes Format mit Unterstützung für 1PPS, Tag des Jahres, aktuelles Jahr und unmittelbare Sekunden des Tages, wie in der Norm IRIG-200-04 beschrieben. Unterstützte serielle Zeitcode-Formate sind IRIG-B007 und IRIG-B127.

Die Schnittstelle für die modulierte IRIG-B hat die Konstruktion einer BNC-F-Anschlussklemme mit einer 600 Ohm-Eingangsimpedanz. Die Schnittstelle für die unmodulierte IRIG-B hat die Konstruktion einer steckbaren Anschlussklemme (siehe *Tabelle 3*).

Netzwerk-Zeit-Protokoll (NTP):

Eine Synchronisierung über das Ethernet erfordert einen Zugang zu einem NTP-Server.

BITTE BEACHTEN

Normalerweise kann das NTP die Zeit bis auf ein Zehntel der Millisekunde über das öffentliche Internet einhalten, aber die Genauigkeit hängt von den Infrastruktureigenschaften ab – die Asymmetrie in ab- und eingehender Kommunikationsverzögerung beeinflusst die systematische Verzerrung. Es wird empfohlen, ein spezielles Netzwerk anstatt eines öffentlichen für Synchronisierungszwecke zu verwenden.

ACHTUNG

Die RTC-Synchronisierung ist ein wesentlicher Teil eines Gerätes der A-Klasse. Bei Nichtvorhandensein richtiger RTC-Synchronisierung funktioniert das Gerät als ein Gerät der S-Klasse.

Tabelle 3: Überblick über die	e Kommunikationssch	nittstellenanschlüsse
-------------------------------	---------------------	-----------------------

Anschlussklemmen	Konnektor-Typ	
53 54 55 56 57 58 59	BNC für moduliertes IRIG-B und steckbare Schraubklemmen für IRIG-B mit der Pegelverschiebung, GPS- Modem oder serielle Kommuni- kationsschnittstellen RS232 oder RS485	

Konnektor	Position	Datenrichtung	Beschreibung		
BNC- Konnektor	600 Ohm-Eingangsimpedanz: standardmäßiges Koaxialkabel (55 Ohm) wird empfohlen				
Schraub- klemmen	53	1PPS (GPS) oder IRIG-B (Pegel- verschiebung)	Synchronisierungsimpuls		
	54	Zu/von (A)	RS485		
	55	Zu/von (B)	RS485		
	56	Zu	Datenempfang (Rx)		
	57	GND	Erdung		
	58	Von	Datenübertragung (Tx)		
	59	+5V	externe Spannung +5V (Versorgung für GPS-Modem)		

Wenn das IRIG-B-Signal oder das 1PPS-Signal für die Zeitsynchronisierung verwendet wird, kann die serielle Schnittstelle (RS232 oder RS485) als der sekundäre Schnittstellenport (COM 2) verwendet werden. Mehr Informationen über das Synchronisierungsmodul C finden Sie in der Bedienungsanleitung in den Kapiteln *Synchronisierungsmodul C* auf der Seite 85 und *Serielle Kommunikation über das Synchronisierungsmodul C (COM2)* auf der Seite 86.

Anschluss der Hilfsstromversorgung

Das Gerät kann mit zwei Arten des universellen (AC/DC) Schaltnetzteils ausgestattet werden.

Merkmal A00 (Standard):

70...300 V DC

80...276 V AC; 40...65 Hz

Merkmal A01 (nicht mehr lieferbar): 19...70 V DC

48...77 V AC; 40...65 Hz

Die Versorgungsspannung ist von der bei der Bestellung des Gerätes angegebenen Spannung abhängig. Informationen zum elektrischen Verbrauch finden Sie in der Bedienungsanleitung im Kapitel *Technische Daten* auf der Seite 148.

Überprüfen Sie die Angaben bezüglich der Versorgungsspannung auf dem Typenschild des Gerätes und schließen Sie danach dementsprechend die Versorgungsspannung an:

SUPP	LY	1.17
70300 V DC	Ŧ	12
80276 V AC	+/~L	13
< 8 VA	-/~N	14

Merkmal A00: Anschluss des universellen Hochspannungs-Schaltnetzteils an den Anschlussklemmen 13 und 14.

Merkmal A01: Anschluss des universellen Niederspannungs-Schaltnetzteils an den Anschlussklemmen 13 und 14.

WARNUNG

Nur bei Merkmal A01 (nicht mehr lieferbar):

Die Hilfsspannungsversorgung kann im Bereich der Niederspannungen liegen (19 ... 70 V_{DC}, 48 ... 77 V_{AC}). Der Anschluss eines Gerätes mit Niederspannungsversorgung an eine höhere Spannung führt zur Fehlfunktion des Gerätes. Überprüfen Sie die Spezifikation des Gerätes, bevor Sie es einschalten!

ACHTUNG

Der Einschaltstrom der externen Versorgung kann für kurze Zeit (< 1 ms) sogar bis zu 20 A betragen. Bitte verwenden Sie einen entsprechenden Leitungsschutzschalter (MCB) für den Anschluss der Hilfsstromversorgung.

ERSTE SCHRITTE

Die Programmierung des PQ-Analysators **MAVOLOG PRO** ist sehr transparent und benutzerfreundlich. Zahlreiche Einstellungen sind in Gruppen zusammengefasst und nach Funktionalität geordnet.

Die Programmierung des PQ-Analysators **MAVOLOG PRO** kann mithilfe der Tasten und des Displays auf der Front durchgeführt werden. Aufgrund der Darstellung bestimmter Einstellungen können nicht alle Einstellungen auf diese Weise programmiert werden. Sämtliche Einstellungen können jedoch mithilfe der MAVO-View-Software programmiert werden.

Informationen darüber, welche Einstellungen über Tasten und welche über die Kommunikation und MAVO-View-Software verfügbar sind, befinden sich neben dem Namen jeder Einstellung in grafischer Form:

Funktion über die Kommunikation (MAVO-View-Software) verfügbar
 Funktion über Tasten und Display verfügbar

In diesem Kapitel finden Sie die grundlegenden Programmierschritte, die über Tasten und Display zur Verfügung stehen:

GRUNDLEGENDE KONZEPTE	<u>36</u>
INSTALLATIONSASSISTENT	36
ANZEIGE DER GERÄTEINFORMATIONEN	<u>39</u>

Grundlegende Konzepte

Über die Navigationstasten und das LCD-Display werden die grundlegenden Geräteeinstellungen aktiviert. Während des Betriebs können einige Symbole im oberen Teil des LCD-Displays angezeigt werden. Die Bedeutung der Symbole (von rechts nach links) wird in der untenstehenden Tabelle erklärt.

Tabelle 4: Überblick über die Benachrichtigungssymbole

Symbol	Bedeutung	
8	Das Gerät ist mit einem Passwort der zweiten Stufe (L2) geschützt. Die erste Stufe (L1) kann freigeschaltet werden.	
¥	Das Gerät wurde an dem Spannungsmesseingang/Stromeingang falsch angeschlossen. Die Stromflussrichtung ist je nach Phase unterschiedlich.	
Ð	Die Hilfsstromversorgung der Geräteversorgung ist zu gering.	
G	Uhr ist nicht eingestellt (wenn von der Hilfsstromversorgung für mehr als 2 Tage getrennt).	

Die Bedeutung der Symbole wird auch auf einer LCD-Anzeige im Informationsmenü erklärt. Siehe das Kapitel *Anzeige der Geräteinformationen* auf der Seite 39.

Installationsassistent

Nach der Installation und dem elektrischen Anschluss müssen die grundlegenden Parameter zur Gewährleistung des korrekten Betriebs eingestellt werden. Das erreicht man am einfachsten, wenn man den Installationsassistenten verwendet.

Hauptmenü	
Messungen Einstellungen Zurücksetzungen SD-Karten-Info	
Installation	
14.11.2012	16:53:36

Beim Öffnen des Installationsmenüs (wählen Sie hierzu mit den Navigationstasten das Untermenü "Installation" an wie im oben stehenden Bild und bestätigen Sie mit *OK*) folgt die nächste Einstellung, wenn die jeweils vorherige bestätigt wird. Alle erforderlichen Parameter müssen eingegeben und bestätigt werden. Sie können das Menü nur dann verlassen, wenn alle erforderlichen Einstellungen bestätigt wurden oder mit Abbruch (Taste \leftarrow mehrmals) ohne Änderungen abgeschlossen wurden.

Das Menü des Installationsassistenten kann je nach eingebautem
Kommunikationsmodul variieren. In der untenstehenden Beschreibung ist angegeben, welches Menü für konkrete Optionen angezeigt wird.

BITTE BEACHTEN

Alle Einstellungen, die über den Installationsassistenten vorgenommen werden, können nachträglich über das Einstellmenü oder über MAVO-View mithilfe der Kommunikationsschnittstellen oder einer Speicherkarte geändert werden.

Beim Öffnen des Installationsassistenten sehen Sie folgende Anzeige:

Installation
Willkommen beim Installationsassistenten. Bestätigen Sie mit OK, um fortzufahren.
🗢 Hauptmenü

Sprache

Gerätesprache einstellen.

Datum

Gerätedatum einstellen.

Zeit

Gerätezeit einstellen. Falls das Gerät an eine unterstützte Zeitsynchronisierungsquelle angeschlossen ist, werden Datum und Zeit automatisch eingestellt.

Anschluss-Modus

Wählen Sie einen Anschluss aus einer Liste unterstützter Anschluss-Modi.

Primäre Spannung

Stellen Sie die primäre Spannung des überwachten Systems ein, falls das Gerät indirekt mittels eines Spannungswandlers angeschlossen wird. Falls das Gerät direkt an eine Niederspannung angeschlossen wird, geben Sie diesen Wert ein.

Sekundäre Spannung

Stellen Sie die sekundäre Spannung ein, wenn ein Spannungswandler verwendet wird. Stellen Sie bei direktem Anschluss die Spannung des Niederspannungsnetzwerks ein.

Primärer Strom

Stellen Sie den primären Strom des überwachten Systems ein, falls das Gerät indirekt mittels eines Stromwandlers angeschlossen wird. Andernfalls sollten der primäre und der sekundäre Strom dieselben bleiben.

Sekundärer Strom

Stellen Sie bei direktem Anschluss den sekundären Strom des Stromwandlers oder den Wert des Nennstroms ein.

Gemeinsame Energiezähler-Auflösung

Definieren Sie die gemeinsame Energiezählerauflösung, wie in der untenstehenden Tabelle empfohlen, wo die einzelne Zählerauflösung den Standardwert 10 hat. Werte der primären Spannung und des primären Stroms bestimmen die korrekte gemeinsame Energiezählerauflösung. Ausführliche Informationen zur Einstellung der Energieparameter finden Sie im Kapitel *Energie* auf der Seite 71.

Strom Spannung	1 A	5 A	50 A	100 A	1000 A
110 V	100 mWh	1 Wh	10 Wh	10 Wh	100 Wh
230 V	1 Wh	1 Wh	10 Wh	100 Wh	1 kWh
1000 V	1 Wh	10 Wh	100 Wh	1 kWh	10 kWh
30 kV	100 Wh	100 Wh	1 kWh	10 kWh	10 kWh *

Tabelle 5: Empfohlene gemeinsame Energiezähler-Auflösung

* – Einzelne Zählerauflösungen sollten mindestens 100 betragen

Geräteadresse

Stellen Sie für das Gerät die MODBUS-Adresse ein. Die Standardadresse ist 33.

Baudrate

Stellen Sie die Baudrate ein. Die Standardrate beträgt 115200 Bit/s. Diese Einstellung ist nur bei eingebauter RS232 / RS485-Schnittstelle verfügbar.

Parität

Stellen Sie die Parität ein. Der Standardwert ist "Keine". Diese Einstellung ist nur bei eingebauter RS232 / RS485- Schnittstelle verfügbar.

Stop Bit

Stellen Sie die Stopp-Bits ein. Der Standardwert ist 2. Diese Einstellung ist nur bei eingebauter RS232 / RS485- Schnittstelle verfügbar.

IP-Adresse

Stellen Sie die korrekte IP-Adresse des Gerätes ein. Die Standardeinstellung ist 0.0.0.0 und steht für die DHCP-Adressierung. Diese Einstellung ist nur bei eingebauter Ethernet- Schnittstelle verfügbar.

TCP-Port

Stellen Sie den TCP-Kommunikationsport ein. Der Standardwert ist 10001. Diese Einstellung ist nur bei eingebauter Ethernet-Schnittstelle verfügbar.

Subnetzmaske

Stellen Sie die Subnetzmaske ein. Der Standardwert ist 255.255.255.0. Diese Einstellung ist nur bei eingebauter Ethernet- Schnittstelle verfügbar.

Anzeige der Geräteinformationen

Ein Menü ist in mehrere Untermenüs mit Daten und Informationen über das Gerät unterteilt:

Begrüßungsfenster

Informationen

Seriennummer, Hardware- und Firmware-Version, Kalibrierdatum und Betriebszeit

Speicher

Verfügbarkeit des internen Speicherplatzes. Die Speicherinformationen zeigen den verfügbaren Speicher seit der letzten offiziellen Datenübertragung an. Falls eine offizielle Datenübertragung durchgeführt wird, wird der gesamte Speicher des Gerätes praktisch gelöscht. Die Speicherzähler werden auf null gesetzt, die vorhandenen Daten werden jedoch nicht überschrieben. Diese Daten sind immer noch verfügbar, solange der Speicherplatz nicht überfüllt ist und die älteren Daten nicht überschrieben werden.

Zeit, Datum, interne Temperatur und Tarif-Status Bedeutung der Parameter

EINSTELLUNGEN

Eine Einstellungsstruktur, ähnlich wie eine Dateistruktur in einem Explorer, wird links im MAVO-View-Einstellungsfenster angezeigt. Sie können die verfügbaren Einstellungen dieses Segments rechts anzeigen, indem Sie auf einen der aufgeführten Parameter klicken.

In diesem Kapitel finden Sie eine ausführliche Beschreibung aller Funktionen und Einstellungen von **MAVOLOG PRO**. Die Einstellungen werden in diesem Kapitel in der gleichen Reihenfolge aufgeführt wie in der MAVO-View-Einstellungssoftware.

EINFÜHRUNG	<u>41</u>
MAVO-VIEW-SOFTWARE	<u>41</u>
GERÄTEVERWALTUNG	42
GERÄTEEINSTELLUNGEN	44
ECHTZEIT-MESSUNGEN	46
DATENANALYSE	47
SOFTWARE-AKTUALISIERUNG	48
ALLGEMEINE EINSTELLUNGEN	<u>49</u>
ANSCHLUSS	<u>58</u>
SERIELLE KOMMUNIKATION	<u>60</u>
USB- KOMMUNIKATION	<u>62</u>
ETHERNET-KOMMUNIKATION	<u>63</u>
ANZEIGE	<u>67</u>
SICHERHEIT	<u>69</u>
ENERGIE	<u>71</u>
E/A-MODULE	<u>76</u>
HAUPT E/A-MODULE 1 & 2	76
HILFS-E/A-MODULE A & B	84
RTC-SYNCHRONISIERUNGSMODUL C	85
ALARME	<u>87</u>
DIE PUSH-FUNKTIONALITÄT VON ALARMEN	87
INTERNER SPEICHER	<u>92</u>
DIE KONFORMITÄT DER SPANNUNG MIT DER NORM EN 50160	<u>97</u>
ALLGEMEINE PQ-EINSTELLUNGEN	98
EN 50160-PARAMETEREINSTELLUNGEN	101
ZURÜCKSETZUNGS-VORGÄNGE	103
EINSTELLUNGEN UND SPEICHERKARTE	105

Einführung

Die Einstellungen des PQ-Analysators **MAVOLOG PRO** können über die vorderen Tasten und das Display vorgenommen werden, oder auch extern, mithilfe der Kommunikation und der MAVO-View-Software-Version 2.0 oder höher. MAVO-View erlaubt eine schnellere und leichtere Einstellung. Grundlegende und einfachere Einstellungen sind über die Navigationstasten verfügbar. Für neu zu aktivierende Einstellungen sollte die Einstellungsdatei an das Gerät über die Kommunikationschnittstelle (MAVO-View) oder eine Speicherkarte übertragen werden. Über die Navigationstasten vorgenommene Einstellungen werden nach der Bestätigung (OK-Taste) und anschließender akustischer Signalisierung (Piepton) wirksam.

MAVO-View-Software

Die MAVO-View-Software ist ein Programm zum kompletten Programmieren und Überwachen des Netzstöranalysators MAVOLOG-PRO. Ein Fernbetrieb ist möglich, und zwar über die serielle Kommunikationschnittstelle (RS485/RS232), USB- oder TCP/IP-Kommunikation beim Anschluss an einen PC. Die benutzerfreundliche Bedienoberfläche besteht aus fünf Hauptmenüs: Geräteverwaltung, Geräteeinstellungen, Echtzeit-Messungen, Datenanalyse und Software-Aktualisierung. Auf diese Hauptmenüs können Sie direkt über die fünf Symbole auf der linken Seite (siehe Bild 2) zugreifen.

Bild 2: MAVO-View-Programmier- und Überwachungssoftware

Zum Programmieren und Überwachen des PQ-Analysators **MAVOLOG PRO** ist die MAVO-View-Version 2.0 oder höher erforderlich. Das Software-Setup befindet sich auf der mitgelieferten CD oder kann unter www.gossenmetrawatt.com heruntergeladen werden.

BITTE BEACHTEN

MAVO-View hat ein sehr intuitives Hilfssystem. Alle Funktionen und Einstellungen sind im Fenster *Hilfe* unten im MAVO-View-Fenster beschrieben.

Geräteverwaltung

Bild 3: MAVO-View-Geräteverwaltungs-Fenster

Eine Geräteverwaltung mit MAVO-View ist sehr einfach. Beim Arbeiten mit einem Gerät, auf das bereits zugegriffen wurde, kann dieses leicht aus einer Favoritenliste ausgewählt werden.

Auf diese Weise wird der *Kommunikationsport* automatisch so eingestellt, wie es beim letzten Zugriff der Fall war.

Um mit dem neuen Gerät zu kommunizieren, sollten folgende Schritte ausgeführt werden:

Schließen Sie ein Gerät an die Kommunikationsschnittstelle an

Schließen Sie das Gerät an, je nach Typ der Kommunikationsschnittstelle:

- Direkt an einen PC mithilfe eines RS232-Kabels
- An den Kommunikationsadapter RS485 / RS232
- Direkt an einen PC mithilfe eines USB-Kabels
- Netzwerkanschluss mithilfe eines Ethernet-Kabels

Stellen Sie die Kommunikationsport-Parameter ein

Seriell Ethernet	USB IR
Kommunikatio	ons-Schnittstelle: COM7 🗸
	USB suchen

Wählen Sie die korrekte Kommunikationsschnittstelle (Modbus, Ethernet oder USB) und stellen Sie die korrekten Kommunikationsparameter ein.

BITTE BEACHTEN

Wird das Gerät zum ersten Mal an einen PC über eine USB-Schnittstelle angeschlossen, wird der Benutzer aufgefordert, einen Treiber zu installieren.

> Ausführlichere Informationen über die Parameter für die serielle, USB- und Ethernet-Kommunikation finden Sie in den Kapiteln *Serielle Kommunikation* auf der Seite 60, *USB-Kommunikation* auf der Seite 63 und *Ethernet-Kommunikation* auf der Seite 63.

Stellen Sie die Modbus-Adressennummer des Gerätes ein

Jedes an ein Netzwerk angeschlossene Gerät hat seine eigene Modbus-Adresse. Um mit diesem Gerät zu kommunizieren, muss eine korrekte Adresse eingestellt werden.

Die auf allen Geräten voreingestellte Modbus-Adresse ist 33. Daher müssen Sie die Modbus-Adresse der Geräte ändern, wenn sie über ein Netzwerk verbunden werden sollen, damit jedes Gerät seine eigene Adressnummer hat.

Starten Sie die Kommunikation mit einem Gerät

Klicken Sie auf AKTUALISIEREN – es werden Geräteinformationen angezeigt

Allgemein	
Тур	MV-LOG
SerNr.	MC018923
SoftVer.	1.01
Kommunikatio	n
Adresse	33
Bits/s	115200
Parität	Ohne
Stopbits	1
	Allgemein Typ SerNr. SoftVer. Kommunikatie Adresse Bits/s Parität Stopbits

Sofern Geräte an ein Netzwerk angeschlossen sind und ein bestimmtes Gerät benötigt wird, kann ein Netzwerk nach Geräten durchsucht werden. Wählen Sie hierzu

Netzwerk scannen, wenn das Gerät an einen RS485-Bus angeschlossen ist

Ethernet-Geräte durchsuchen, wenn das Gerät an das Ethernet angeschlossen ist

Geräteeinstellungen

Das Programmieren von Geräten kann ONLINE durchgeführt werden, wenn das Gerät an die Hilfsstromversorgung angeschlossen ist und mit MAVO-View kommuniziert. Wenn das Gerät nicht angeschlossen ist, können die Einstellungen OFFLINE angepasst werden.

ONLINE-Programmierung

Nachdem die Verbindung mit einem Gerät hergestellt wurde, wählen Sie

das *Einstellungen*-Symbol aus einer Liste von MAVO-View-Funktionen auf der linken Seite.

Bild 4: MAVO-View-Geräte-Einstellungsfenster

nncfcnfcg

Wählen Sie die Schaltfläche *Einstellungen lesen*, um alle Geräteeinstellungen anzuzeigen, und passen Sie diese den Projekterfordernissen entsprechend an.

BITTE BEACHTEN

Wenn das Programmieren beendet ist, bestätigen Sie die Änderungen, indem Sie die Schaltfläche *Einstellungen senden* in der MAVO-View-Menüleiste (¹) auswählen, oder rufen Sie dafür ein Menü mit einem Rechtsklick der Maus auf.

BITTE BEACHTEN

Wenn das Programmieren beendet ist, können alle Einstellungen in einer Einstellungsdatei (*.msf-Datei) gespeichert werden. Auf diese Weise können Einstellungen zusammen mit dem Datum archiviert werden. Gespeicherte Einstellungen können auch zum Offline-Programmieren oder zum Programmieren anderer Geräte mit denselben Einstellungen verwendet werden. Mehr Informationen finden Sie unter OFFLINE-Programmierung.

OFFLINE-Programmierung

Wenn das Gerät nicht physikalisch vorhanden ist oder nicht kommunizieren kann, bleibt immer noch die Option des OFFLINE-Programmierens. Im MAVO-View-Geräteeinstellungsfenster (Bild 4) wählen Sie die Schaltfläche *Einstellungsdatei öffnen*.

Aus einer Liste von *.msf-Dateien wählen Sie entweder eine bereits gespeicherte Datei (eine Einstellungsdatei, die für einen anderen **MAVOLOG PRO** verwendet und gespeichert wurde) oder eine MAVOLOGPRO.msf-Datei, die Standardeinstellungen für dieses Gerät enthält.

Nach der Bestätigung werden alle Geräteeinstellungen ähnlich wie bei der ONLINE-Programmierung angezeigt.

ACHTUNG

Die MAVOLOGPRO.msf-Datei oder eine andere Datei mit Original-Geräteeinstellungen sollte nicht geändert werden, da sie die Standardeinstellungen des Gerätes enthält. Vor der Anpassung der Einstellungen den Projekterfordernissen entsprechend speichern Sie die Einstellungsdatei unter einem anderen Namen.

Nach dem Ende der Programmierung können alle Einstellungen in einer Einstellungsdatei mit einem aussagekräftigen Namen (z. B. *MAVOLOG PRO_location_date.*msf) gespeichert werden. Diese Datei kann anschließend auf eine Speicherkarte übertragen und auf den aufgelisteten Geräten zum Programmieren verwendet werden, auf die über die Kommunikation nicht zugegriffen werden kann.

Echtzeit-Messungen

Messungen können ONLINE angesehen werden, wenn das Gerät an die Hilfsstromversorgung angeschlossen ist und mit MAVO-View kommuniziert. Wenn das Gerät nicht angeschlossen ist, kann man eine OFFLINE-Messsimulation sehen. Die Letztere kann für Präsentationen und Trainings genutzt werden, ohne dass ein Gerät zur Verfügung steht.

Im ONLINE-Modus können alle unterstützten Modi und Alarme in Echtzeit in tabellarischer oder grafischer Form angesehen werden.

Aktualisieren	Gerätendresse: 33	Geh	e 242 •			
	Messungen					MV-LOG - Simul
	Phase N-Messungen	67	12	U	Gesant	Andere
Verbindung	Spanning	229.87 V	229.24 V	228.16 V	-	UT = 229.09 V
	Strom	161.D1 A	267.44 A	256.60 A	685.05 A	I** + 228.34 A
	Winkleidung	W 65.30	61,12 W	56.53 W	154.55 W	
600	Bindeistung	0.71 var	3.80 var	15,13 aar	15,73 var	
Enttellungen	Schenleistung	37.00 VA	61.30 VA	58.54 VA	156.85 VA	
	Leatungsfaktor	0.9970 ind	0.9970 Ind	0.9657 ind	0.9853 Ind	
	Leatungswerkel	0.46 *	1.30 *	14.67 *	7.27 *	
	THD-Up	2.47%	2.57 %	2.42 %		
Harrison	THD4	8.02 %	6.59 %	5,10 %		
menugen	TDD-I	4,41 %	3.62%	2.80 %		
	Kitaktor	0.00	0.00	0.00		
2.2	Creat Stronfaktor	0.0%	0.0 %	0.0%	-	
100	Gleichspannung	0.00 V	0.00 V	0.00 V		
Analyse	Phase-Phase-Messungen	L1-L2	L2-L3	13-13	Gesant	Andent
	Phase-Phase-Spannung	398.49 V	395.78 V	396.13 V		Upp~ = 396.80 V
	Phaserswinkel	120.43 *	119.80 *	119,72 *		
	THD-Upp	2.55 %	2.42%	2.41%		
Upgrades	Gleichspannung	0.00 V	0.00 V	0.00 V		
	Neutralister	Messweit	Winkel	Berechnet	Fehler	DC
	Strom	2.83 A	-80.23 *	2.85 A	\$8.99 A	
	Spannung	0.54 V	102.39 *			0.00 V
	Energezähler	Energiezabler E1 (Exp)	Energiezähler E2 (Exp)	Energiezähler E3 (Imp)	Energiezähler E4 (imp)	Aktiver Tart
	Gesant	23.346.96 kWh	1.441,18 kvah	995.33 kWh	28.480.97 kvarh	1
	Tart 1	23.345.96 kWh	1.441,18 kvah	995.33 kWh	28.480.97 kvah	
	Tarf 2	0.00 kWh	0.00 kvath	0.00 kWh	0.00 kvath	
	Tard 3.	0.00 k/mb	0.00 kwath	0.00 kW/h	D-DD kvonth	

Bild 5: Online-Messungen in tabellarischer Form

Bild 6: Online-Messungen in grafischer Form – Zeigerdiagramm und Histogramm des gesamten täglichen aktiven Energieverbrauchs

Verschiedene Messdaten können mithilfe von Tabs (Messungen, Min./Max.) unten im MAVO-View-Fenster angezeigt werden.

Zum weiteren Bearbeiten der Messergebnisse kann am aktiven Gerät ein Recorder (Schaltfläche) eingeschaltet werden, der ausgewählte Messungen aufzeichnet und als .csv-Datei (MS Excel) speichert.

Rekorder Filter		
Dateiname:	Rekorder.csv	
Pfad:	D:\MAVO-View 2.1\Data	
Dateityp:	Excel (".csv)	
Datenformat:	Werte und Einheiten	-
C Aufnahme st	arten	
M Aufmahnme an	dialam .	Schließen

Bild 7: Fenster zum Einstellen lokaler Datenbank-Aufzeichnungsparameter

Datenanalyse

Um eine Analyse vornehmen zu können, muss zuerst die Datenquelle definiert werden. Mögliche Datenquellen sind unten aufgelistet:

Speicher lesen

Daten werden direkt vom internen Speicher eines Gerätes gelesen

Datei öffnen

Daten werden von einer lokalen Datenbank gelesen

SD-Daten importieren

Daten werden von einer SD-Speicherkarte gelesen

ipeicher lesen	Formatieren Speicher-Information	
Leseoptionen		
Vorlage:	Benutzerdefiniertes Datum 💌 06.05.201	4 +
Dateiname:	Daten 1.dd2	-
Pfad:	D:\MAVO-View 2.1\Data	-
	Offizielles Finlesen	
Rekorder Rekorder Rekorder Rekorder Aame Qualitätst Qualitätst	B C D perichte sevenchungen	n

Bild 8: Fenster zur Auswahl zu analysierender Speicherdaten

Nach dem Lesen oder Importieren von Daten können aufgezeichnete Größen in tabellarischer oder grafischer Form überwacht werden. Die Ereignisse, die Alarme ausgelöst haben, können analysiert oder ein Bericht über die Qualität der Versorgungsspannung kann erstellt werden. Alle Daten können in eine Access-Datenbank, Excel-Tabellen oder als Textdatei exportiert werden.

Auslesen und Löschen von Speicherdaten (Parameter Offizielles Lesen): Durch Auswahl dieser Funktion wird der Marker bis zum ausgewählten Zeitraum bewegt. Die Messwerte werden aus dem internen Gerätespeicher ausgelesen und anschließend bis zum Marker aus dem Speicher gelöscht. Beispiel:

Es sind Messdaten von zwölf Wochen im Speicher. Es sollen alle Daten eingelesen werden. Der Marker wird auf den aktuellen Datensatz bewegt (z.B. heute 12.30). Die Messwerte werden vom internen Speicher in die Software geladen und gleichzeitig aus dem internen Speicher gelöscht.

Software-Aktualisierung

Verwenden Sie immer aktuelle Software-Versionen – dies gilt sowohl für MAVO-View als auch für die Software (Firmware) des Gerätes. Das Programm informiert Sie automatisch über verfügbare Updates (Updates der Firmware des Gerätes und MAVO-View-Software-Updates), die von der Webseite heruntergeladen und zur Aktualisierung verwendet werden können.

BITTE BEACHTEN

MAVO-View kann nicht zur Durchführung von Firmware-Updates von Geräten verwendet werden. Das Programm informiert Sie lediglich darüber, dass eine neue Version verfügbar ist, und bietet Ihnen einen Link an, den Sie anklicken können, um diese vom Server herunterzuladen. Die Software zur Durchführung von Firmware-Updates befindet sich in der heruntergeladenen Zip-Datei zusammen mit der Update-Datei, der Beschreibung des Update-Vorgangs und der Versionschronik.

Hauptmenü

Allgemeine Einstellungen

Hauptmenü			Einstellungen
Messungen			
Zurücksetzungen SD-Karten-Info Installation		\rightarrow	Datum und Zeit Anschluss Kommunikation LCD Sicherheit
14.11.2012	16:53:36		Energie
			Eingänge/Ausgänge

Die allgemeinen Einstellungen sind äußerst wichtig für die Arbeit des PQ-Analysators. Sie werden in vier weitere Unterkategorien (Anschluss, Kommunikation, Display und Sicherheit) unterteilt.

Beschreibung und Ort PC

Diese zwei Parameter dienen zum leichteren Erkennen einer bestimmten Einheit. Sie werden vor allem zur Identifizierung des Gerätes oder des Ortes verwendet, an denen Messungen vorgenommen werden.

Durchschnittsintervall 🖭 👁

Das Durchschnittsintervall bezeichnet die Aktualisierungsrate von Messungen auf dem Display, Kommunikation und Analogeingängen. Es bezeichnet darüber hinaus die Reaktionszeit von Alarmen, deren Reaktion auf "Normal" gesetzt ist (siehe das Kapitel Alarme auf der Seite 87). Das Intervall kann auf 0,1 bis 5 Sek. gesetzt werden. Der Standardwert ist 1 Sek.

• Hauptmenü \rightarrow Einstellungen \rightarrow Allgemein \rightarrow Durchschnittsintervall

Durchschnittsintervall für Min./Max. Werte 🖭

Das Durchschnittsintervall für Min./Max. Werte bezeichnet ein Intervall, bei dem Werte gemittelt werden, um min. und max. Werte nachzuverfolgen. Wird ein kürzeres Intervall ausgewählt, können auch sehr schnelle Änderungen im Netzwerk erfasst werden. Ein Intervall kann 1 bis 256 Perioden betragen.

BITTE BEACHTEN

Diese Einstellung gilt nur für min. und max. Werte, die auf dem LCD-Display angezeigt und über die Kommunikation verfügbar sind. Diese Werte werden nicht zum Speichern im internen Recorder verwendet. Ausführliche Informationen zur Speicherung von Min.- und Max.-Werten finden Sie unter Min.- und Max.-Werte auf der Seite 126.

Sprache 🖭 👁

Stellen Sie die Anzeigesprache an. Wenn die Sprache von oder zu Russisch geändert wird, werden auch die Zeichen im Passwort geändert. Die Übersicht der Zeichenübersetzungen finden Sie im Kapitel *Passwort und Sprache* auf der Seite 70.

$\textcircled{\label{eq:alpha} \textbf{B}} \textbf{Hauptmen} \ddot{\textbf{U}} \rightarrow \textbf{Einstellungen} \rightarrow \textbf{Allgemein} \rightarrow \textbf{Sprache}$

Währung 🖭 👁

Wählen Sie die Währung zur Einschätzung der Energiekosten (siehe das Kapitel *Energie* auf der Seite 71). Eine Währungsbezeichnung besteht aus bis zu vier Buchstaben aus dem englischen oder russischen Alphabet, den Zahlen und Symbolen, die in der untenstehenden Tabelle aufgeführt sind.

Englisch	A	В	С	D	Е	F	G	Н	I	J	K	L	Μ	Ν	0	Ρ	Q	R	S	Т	U	V	W	Х	Y	Z
LIIGIISCII	а	b	с	d	е	f	g	h	i	j	k	Ι	m	n	0	р	q	r	s	t	u	٧	w	х	у	z
Symbole		!	"	#	\$	%	&	'	()	*	+	,	-		/	0	to 9	9	:	;	<	=	^	?	@
Russisch	А	Б	В	Г	Д	Е	ж	3	И	Й	К	Л	Μ	Н	0	П	Ρ	С	Т	У	Φ	Х	Ц	Ч	Ш	Щ
140505011	а	б	в	г	д	Е	ж	3	и	Й	К	Л	м	н	0	п	р	С	т	у	ф	х	ц	ч	ш	щ

$\textcircled{\label{eq:hamiltonian} \textbf{ B} Hauptmen \ddot{\textbf{ W} } \rightarrow \textbf{ Einstellungen} \rightarrow \textbf{ Allgemein} \rightarrow \textbf{ W} \ddot{\textbf{ a} hrung}$

Temperatureinheit 🖭 👁

Wählen Sie eine Einheit für die Temperaturanzeige. Sie können zwischen Grad Celsius oder Grad Fahrenheit wählen.

O Hauptmenü \rightarrow Einstellungen \rightarrow Allgemein \rightarrow Temperatureinheit

Datumsformat 🖭 👁

Stellen Sie ein Datumsformat für Werte mit Zeitstempel ein.

 Hauptmenü \rightarrow Einstellungen \rightarrow Datum und Zeit \rightarrow Datumsformat

Datum und Zeit 🖭 👁

Stellen Sie das Datum und die Zeit des Gerätes ein. Diese Einstellung dient zum ordnungsgemäßen Funktionieren des Speichers, der maximalen Werte (MB) usw. Ist das Gerät an eine der unterstützten Zeitsynchronisierungsquellen angeschlossen, werden das Datum und die Zeit automatisch eingestellt.

 $\textcircled{\label{eq:Hauptmenu}}$ Hauptmenu \rightarrow Einstellungen \rightarrow Datum und Zeit

Echtzeit-Synchronisierungsquelle PC

Die synchronisierte Echtzeit-Uhr (RTC) ist ein wesentlicher Teil eines Analysators der Klasse A zur korrekten chronologischen Bestimmung diverser Ereignisse. Um die Ursache von der Wirkung zu unterscheiden, um ein bestimmtes Ereignis von seinem Ursprung bis zur Manifestation in anderen Parametern nachzuverfolgen, ist es sehr wichtig, dass jedes Ereignis und jede aufgezeichnete Messung am Gerät mit Ereignissen und Messungen an anderen Geräten verglichen werden kann. Selbst wenn Geräte disloziert sind, was normalerweise in elektrischen Verteilungsnetzwerken der Fall ist, müssen Ereignisse mit ihrer Zeit mit einer höheren Genauigkeit als nur einer Periode vergleichbar sein.

Zu diesem Zweck unterstützen Geräte normalerweise höchst genaue interne RTC. Das ist allerdings immer noch nicht genug, da Temperaturen ortsabhängig sind und die Genauigkeit durch die Temperatur beeinflusst wird. Aus diesem Grund ist es erforderlich, die periodische RTC-Synchronisierung zu implementieren.

ACHTUNG

Die RTC-Synchronisierung ist ein wesentlicher Teil eines Instruments der A-Klasse. Bei Nichtvorhandensein richtiger RTC-Synchronisierung funktioniert das Gerät als ein Instrument der S-Klasse.

Diese Einstellung wird verwendet, um die primäre Synchronisierungsquelle auszuwählen.

- KEINE Synchronisierung (nicht empfehlenswert, siehe ACHTUNG oben)
- NTP-Synchronisierung
- MODUL C-Synchronisierung

Der Synchronisierungsstatus kann auf dem Display überprüft werden, wenn die Anzeige auf INFO eingestellt ist (siehe das Kapitel *Anzeige der Geräteinformationen* auf der Seite 39).

Das Symbol G zeigt die erfolgr. GPS-Synchronisierung an. Falls nur 1 pps-Signal vorhanden ist (ohne Datum- und Zeit-Übertrag.), wird das g -Symbol angezeigt

Das Symbol I zeigt die erfolgreiche IRIG-Synchronisierung an

Zeitzone 🖭

Stellen Sie die Zeitzone ein, in der sich das Gerät befindet. Die Zeitzone beeinflusst die interne Zeit und die Zeitstempel. Wenn die UTC-Zeit erforderlich ist, sollte die Zeitzone 0 (GMT) ausgewählt werden.

Automatische Sommer- und Winterzeit 🖭 👁

Falls *Ja* ausgewählt ist, wird die Zeit automatisch auf die Winter- oder auf die Sommerzeit gestellt, je nach momentan eingestellter Zeit.

Berechnung des Maximalleistungs-Bedarfs (MB-Modus) 🖭 👁

Das Gerät bietet Maximalleistungswerte aus einer Vielzahl durchschnittlicher Leistungswerte:

Temperaturfunktion Fixiertes Fenster Wechselfenster (bis zu 15)

Temperaturfunktion

Die Temperaturfunktion gewährleistet eine Simulation von Bimetallmessgeräten auf der Grundlage der exponentiellen Temperaturcharakteristika.

Maximale Werte und der Zeitpunkt ihres Vorkommens werden im Gerät gespeichert. Eine Zeitkonstante kann auf 1 bis 255 Minuten eingestellt werden und beträgt das 6-fache der Temperatur-Zeit-Konstante (Z.K. = 6 × Temperatur-Zeit-Konstante).

Beispiel:

Modus:TemperaturfunktionZeitkonstante:8 Min.Fortlaufende MB und max. MB:Bei 0 Min. zurücksetzen

Bild 9: Betrieb der Temperatur-MD-Funktion

Fixiertes Fenster

Ein fixiertes Fenster ist ein Modus, in dem der Durchschnittswert über eine fixierte Zeitperiode berechnet wird. Die Zeitkonstante kann auf 1 bis 255 Min. gesetzt werden.

Die "Zeit innerhalb der Periode", wie in MAVO-View dargestellt, zeigt aktiv die verbleibende Zeit bis zum Ende der Periode, in der die aktuelle MB und die max. MB seit der letzten Zurücksetzung berechnet werden.

Wenn die Anzeigen für Pt(+/-), Qt(L/C), St, I1, I2 und I3 aktualisiert werden, beginnen eine neue Periode und Messung der neuen Durchschnittswerte. Unter "ZEIT INNERHALB DER PERIODE" wird 0 von X Min. angezeigt, wobei X die Zeitkonstante ist.

Eine neue Periode beginnt auch nach einer längeren Unterbrechung der Stromversorgung (mehr als 1 Sek.). Ist die Zeitkonstante auf 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 oder 60 Minuten eingestellt, wird die "ZEIT INNERHALB DER PERIODE" auf solch einen Wert eingestellt, dass manche Intervalle nach dem Verstreichen einer Stunde gestoppt werden. Bei anderen Zeitkonstanten ist die "ZEIT INNERHALB DER PERIODE" auf 0 gesetzt.

MD values	
11- 0 00m	
MD at 16.12. 10:35	
11= 5.579 8 a	

Im obenstehenden Bild wird die MB-Messung für das momentane I1 dargestellt. Die fortlaufende MB wird angezeigt (0 mA), ebenso wie der max. MB-Wert seit der letzten Zurücksetzung und die Zeit seines Vorkommens.

<u>Beispiel</u>:

Wechselfenster

Der Wechselfenster-Modus erlaubt verschiedene Durchschnittsberechnungen in einer Periode und damit eine häufigere Aktualisierung von Messergebnissen. Der Durchschnittswert während einer kompletten Zeitperiode wird angezeigt. Eine fortlaufende MB wird in jeder Teilperiode um den Durchschnittswert der vorherigen Teilperioden aktualisiert.

Die Anzahl der Teilperioden kann auf 2 bis 15 gesetzt werden. Eine Zeitkonstante kann auf 1 bis 255 Minuten gesetzt werden.

Eine neue Periode beginnt ebenfalls nach einer längeren Unterbrechung der Stromversorgung (länger als 1 Sek.).

Eine neue Periode beginnt auch nach einer längeren Unterbrechung der Stromversorgung (mehr als 1 Sek.). Ist die Zeitkonstante auf 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 oder 60 Minuten eingestellt, wird die "ZEIT INNERHALB DER PERIODE" auf solch einen Wert eingestellt, dass eines der folgenden Intervalle nach dem Verstreichen einer Stunde gestoppt wird. Bei anderen Zeitkonstanten ist die "ZEIT INNERHALB DER PERIODE" auf 0 gesetzt.

Beispiel:

Modus:	Wechselfenster
Zeitkonstante:	2 Min.
Anzahl von Teilperioden:	4
Fortlaufende MB und max. MB:	Zurücksetzung bei 0 Min

Eine komplette Periode dauert 8 Minuten und besteht aus 4 Teilperioden je 2 Min. Eine fortlaufende MB und eine max. MB werden bei 0 Min. zurückgesetzt. Unter "Zeit innerhalb der Periode" werden die Daten für eine Teilperiode dargestellt, so dass die Werte für eine fortlaufende MB und eine max. MB alle zwei Minuten aktualisiert werden. Nach 4 Teilperioden (1 komplette Periode) wird die älteste Teilperiode eliminiert, wenn eine neue hinzugefügt wird, so dass der Durchschnittswert (ein Fenster) immer die letzten 4 Teilperioden umfasst.

Bild 11: Betrieb der MB-Funktion des Wechselfensters

■ Hauptmenü →Einstellungen →Allgemein →MB-Modus / MB-Zeitkonstante

Min./Max.-Zurücksetzungsmodus 🖭 👁

Diese Einstellung definiert den Modus zum Zurücksetzen gespeicherter Mix./Max. Werte. Folgende Einstellungen können ausgewählt werden:

manuell (siehe das Kapitel *Zurücksetzungs-Vorgänge* auf der Seite 103) oder

automatisch (tägliche, wöchentliche, monatliche oder jährliche Zurücksetzungen).

Automatische Zurücksetzungen werden jedes Mal am Anfang der definierten Periode um Mitternacht ausgeführt.

Täglich	jeden Tag um 00:00,
Wöchentlich	montags um 00:00,
Monatlich	am ersten Tag des Monats um 00:00,
Jährlich	am ersten Tag, 1.1., um 00:00

 $\textcircled{$ Hauptmenü \rightarrow Einstellungen \rightarrow Allgemein \rightarrow Min./Max.-Zurücksetzungsmodus

Einschaltstrom für Leistungsfaktor und Leistungswinkel (mA) 🖭

Alle Messeingänge werden durch die Störsignale diverser Frequenzen beeinflusst. Diese sind mehr oder weniger konstant, und ihr Einfluss auf die Genauigkeit erhöht sich mit der Abschwächung der Messsignale. Diese sind ebenfalls vorhanden, wenn Messsignale nicht vorhanden oder sehr schwach sind. Sie führen zu sehr sporadischen Messungen.

Diese Einstellung definiert den geringsten Stromwert, der eine regelmäßige Berechnung des Leistungsfaktors (PF) und des Leistungswinkels (PA) erlaubt.

Der Wert für den Einschaltstrom sollte entsprechend den Bedingungen in einem System (Störpegel, zufällige Stromschwankungen...) eingestellt werden.

Einschaltstrom für alle Leistungen (mA) 🖭

Das Geräusch ist durch den Einschaltstrom auch bei Messungen und Leistungsberechnungen eingeschränkt.

Der Wert für den Einschaltstrom sollte entsprechend den Bedingungen in einem System (Störpegel, zufällige Stromschwankungen...) gesetzt werden.

Einschaltstrom für SYNC (V) IPC

Das Gerät muss seine Abtastung mit der Messsignalperiode synchronisieren, um seine Frequenz genau bestimmen zu können. Zu diesem Zweck muss das Eingangssignal stark genug sein, um von Geräuschen unterschieden werden zu können. Wenn alle Phasenspannungen geringer als diese Einstellung sind (Störpegelgrenze), verwendet das Gerät zur Synchronisierung Stromeingänge. Wenn auch alle Phasenströme geringer als die Einstellung *Einschaltstrom für Leistungsfaktor und Leistungswinkel* sind, ist keine Synchronisierung möglich und die angezeigte Frequenz ist 0.

Der Wert für den Einschaltstrom sollte entsprechend den Bedingungen in einem System (Störpegel, zufällige Stromschwankungen...) gesetzt werden.

Oberschwingungs-Berechnung PC

Relative Oberschwingungswerte können je nach verwendeter Basiseinheit variieren. Entsprechend den Anforderungen können relative Oberschwingungen berechnet werden als:

> Prozentwert des RMS-Signalwerts (Strom, Spannung) oder Prozentwert der Grundschwingung (erste Oberwelle)

Blindleistung und Energieberechnung PC

Die Oberschwingungsverzerrung kann einen wesentlichen Einfluss auf die Blindleistung und die Energieberechnung haben. Bei fehlender Oberschwingungsverzerrung bieten beide beschriebene Methoden das gleiche Ergebnis. In Wirklichkeit sind Oberschwingungen immer vorhanden. Daher hängt es von den Projektanforderungen ab, welche Methoden angewandt werden.

Der Benutzer kann zwischen zwei verschiedenen Prinzipien der Blindleistung und Energieberechnung auswählen:

Standardmethode:

Bei dieser Methode werden die Blindleistung und -energie mit der Annahme berechnet, dass jede Leistung (Energie), die keine Wirkleistung darstellt, eine Blindleistung ist.

Q2 = S2 - P2

Dies bedeutet ebenfalls, dass alle höheren Oberschwingungen (phasenverschoben mit Grundschwingungen) als Blindleistung (-energie) gemessen werden.

Methode des verzögerten Stroms:

Bei dieser Methode wird die Blindleistung (-energie) durch eine Multiplizierung der Spannungsabtastungen und Abtastungen des verzögerten Stroms berechnet (siehe das Kapitel *Gleichungen* auf der Seite 180):

 $Q = U \times I|+90^{\circ}$

Bei dieser Methode stellt die Blindleistung (-energie) die einzige wirkliche Blindkomponente der Scheinleistung (-energie) dar.

Anschluss

ACHTUNG

Anschlusseinstellungen müssen den eigentlichen Zustand widerspiegeln, da Messungen ansonsten ungültig wären.

Anschluss-Modus 🖭 👁

Bei der Auswahl eines Anschlusses werden der Verbraucheranschluss und die unterstützten Messungen definiert (siehe das Kapitel *Auswahl verfügbarer Größen* auf der Seite 113).

 $\textcircled{\label{eq:alpha} \textbf{ blue}} Hauptmen \ddot{\textbf{u}} \rightarrow \textbf{Einstellungen} \rightarrow \textbf{Anschluss} \rightarrow \textbf{Anschluss-Modus}$

Einstellung der Strom- und Spannungsverhältnisse 🖭 👁

Vor der Einstellung der Strom- und Spannungsverhältnisse ist es notwendig, sich mit den Bedingungen vertraut zu machen, in denen das Gerät verwendet werden soll. Alle anderen Messungen und Berechnungen hängen von diesen Einstellungen ab. Es können bis zu fünf Dezimalstellen festgelegt werden. Zum Setzen der Dezimalstelle und der Präfix-Position setzen Sie den Cursor auf die letzte (leere) Stelle oder auf die Dezimalstelle.

Die Hilfs-Stromwandler(CT)-Verhältnisse können individuell auf der Grundlage von Phasen-Stromwandler-Verhältnissen eingestellt werden, da sich Hilfs-CTs von Phasen-CTs unterscheiden können.

Einstellungs- Bereich	VT VT primär sekund 1638,3 kV 13383		CT, Hilfs-CT primär	CT, Hilfs-CT sekundär			
Max. Wert	1638,3 kV	13383 V	1638,3 kA	13383 A			
Min. Wert	0,1 V	1 mV	0,1 A	1 mA			

Tabelle 6: Bereich der CT- und VT-Verhältnisse

 $\textcircled{\label{eq:hamiltonian} \textbf{ B} Hauptmen \ddot{\textbf{u}} \rightarrow \textbf{ Einstellungen} \rightarrow \textbf{ Anschluss} \rightarrow \textbf{ VT/CT/Hilfs-CT}$

Verwendeter Spannungs- und Strombereich PC

Die Einstellung des verwendeten Spannungs- und Strombereichs ist mit allen Einstellungen von Alarmen, Analogausgängen und Messungsaufzeichnungen verbunden.

ACHTUNG

Bei nachträglicher Änderung dieser Bereiche wird der Alarm aktiviert und die Analogausgangs-Einstellungen werden entsprechend mitgeändert.

Bereits aufgezeichnete Werte werden nach der Änderung der verwendeten Spannung und des Strombereichs ungültig!

Nennfrequenz 🖻

Der Nennfrequenzbereich kann aus einer Reihe voreingestellter Werte ausgewählt werden. Eine gültige Frequenzmessung befindet sich im Bereich der Nennfrequenz ±30 Hz.

Diese Einstellung wird nur für Alarme und Recorder verwendet.

Warnung bei falschem Anschluss 🖭

Falls nicht alle Phasenströme (Wirkleistungen) das gleiche Vorzeichen haben (manche sind positiv und manche negativ) und/oder falls die Phasenspannungen und Phasenströme gemischt sind, wird die Warnung aktiviert, wenn bei dieser Einstellung JA ausgewählt wurde.

Siehe den Überblick über die Benachrichtigungssymbole auf der Seite 36.

Energieflussrichtung PC

Diese Einstellung erlaubt einen manuellen Wechsel der Energieflussrichtung (IMPORT zu EXPORT und umgekehrt) im Messwerte-Tab.

Dies hat keinen Einfluss auf die Messwerte, die über die Kommunikation gesendet oder im Speicher abgelegt werden!

CT-Anschluss PC

Ist bei dieser Einstellung Gegenrichtung gewählt, hat dies den gleichen Einfluss als wären die CTs verpolt angeschlossen.

Die Vorzeichen bei allen Strommesswerten werden ebenfalls geändert.

Diese Einstellung eignet sich zum Korrigieren falscher CT-Anschlüsse.

Serielle Kommunikation

Hauptmenü			
Messungen			
Zurücksetzungen SD-Karten-Info Installation		\rightarrow	
14.11.2012	16:53:36		

Einste	llungen
Allgem Datum Anschl	ein und Zeit uss
LCD Sicherl	neit
Energi	e
Eingän	ge/Ausgänge
⇔ Hau	ptmenü

Serielle Kommunikation 🖭 👁

Kommunikationsparameter (nur für den Hauptkommunikationsport COM1), die für den Betrieb im RS485-Netzwerk oder für Anschlüsse an PCs mithilfe der RS232-Kommunikation wichtig sind.

Die Werkeinstellungen für die serielle Kommunikation sind:

#33
115200
keine
8
2

Adressenbereich: 1 bis 247 Geschwind.bereich: 2400 bis 115200

BITTE BEACHTEN

Informationen über die zusätzlichen Einstellungen in Hinblick auf den sekundären Kommunikationsport COM2 mithilfe des Synchronisierungsmoduls C (in der MAVO-View-Software) finden sich im Kapitel *RTC-Synchronisierungsmodul C, COM2,* auf der Seite 85.

Push-Datenformat **PC**

Über diese Einstellung wird ein erforderliches Datenformat zum Senden von Daten an den Empfänger mittels des PUSH-Kommunikationsmodus gesetzt. Das momentan unterstützte Format ist das XML-Format. Ausführliche Informationen über den PUSH-Kommunikationsmodus und dass XML-Datenformat finden sich im Kapitel *Kommunikationsmodi* auf der Seite 143 und in der *Anlage D* auf der Seite 184.

Push-Reaktionszeit PC

Diese Einstellung dient zum Definieren der maximalen Wartezeit auf eine Bestätigung des Erhalts gesendeter Daten im PUSH-Kommunikationsmodus. Sendet der Client keine Bestätigung innerhalb dieser Zeit, werden die zu übertragenen Daten während der nächsten Push-Periode gesendet.

Push-Zeitsynchronisierung PC

Falls keine andere Synchronisierungsquelle (GPS, IRIG-B, NTP) verfügbar ist, kann die RTC über einen Push-Daten-Client synchronisiert werden. Dieser Synchronisierungstyp hängt in hohem Maße von der Kommunikationsinfrastruktur ab, und er ist nicht so genau, wie es in IEC 61000-4-30 vorgeschrieben ist. Er hat die niedrigste Priorität und kann die RTC-Synchronisierung durch keine andere Quelle überschreiben.

Datenübertragung über USB

USB-Kommunikation PC

Es gibt keine Extra-Einstellung für die USB-Kommunikation. Ausführliche Informationen über die Handhabung von Geräten über die USB-Kommunikation finden sich im Hilfebereich der MAVO-View-Software.

BITTE BEACHTEN

Das Gerät unterstützt nur einen einzigen Kommunikationseingang (USB oder Ethernet) auf einmal, wenn der primäre Kommunikationsport COM1 verwendet wird. Die USB-Kommunikation hat Priorität. Falls gerade eine Kommunikation über das Ethernet stattfindet, stellen Sie keinen USB-Anschluss her, da dieser die Ethernet-Verbindung beenden wird. Wenn das USB-Kabel vom Gerät entfernt wird, ist der Ethernet-Anschluss wieder verfügbar.

BITTE BEACHTEN

Wird das Gerät zum ersten Mal an einen PC über die USB-Schnittstelle angeschlossen, wird der Benutzer aufgefordert, einen Treiber zu installieren. Der Treiber kann aber auch von der Internetseite von GOSSEN METRAWATT www.gossenmetrawatt.com heruntergeladen werden. Nachdem der Treiber installiert ist, wird die USB-Kommunikation auf einen seriellen Port umgeleitet, der bei Anwendung der MAVO-View-Software ausgewählt werden muss.

Ethernet-Kommunikation

■ Hauptmenü \rightarrow Einstellungen \rightarrow Kommunikation \rightarrow (nicht alle Einstellungen können über Tasten erreicht werden)

Geräteadresse 🖭 👁

Die Modbus-Adresse des Gerätes ist wichtig, wenn der Benutzer versucht, das Gerät über die MAVO-View-Software anzusprechen. Der nutzbare Adressenbereich ist 1 bis 247. Die Standardadresse ist 33.

IP-Adresse 🖭 👁

Die Kommunikationsschnittstelle sollte eine eigene IP-Adresse im Ethernet-Netzwerk haben. Zwei Modi sind für eine IP-Zuordnung möglich:

Permanente IP-Adresse:

Bei den meisten Installationen ist eine permanente IP-Adresse erforderlich. IP-Adressen werden normalerweise vom Systemanbieter definiert. Eine IP-Adresse sollte innerhalb eines gültigen IP-Bereichs liegen, in Ihrem Netzwerk nur einmal vorkommen und im gleichen Unternetzwerk wie Ihr PC sein.

DHCP:

In den meisten Netzwerken wird die automatische (dynamische) Methode der Zuordnung von IP-Adressen (DHCP) verwendet. Falls Sie nicht sicher sind, ob DHPC in Ihrem Netzwerk verwendet wird, fragen Sie Ihren Systemadministrator.

IP-Hostname 🖻

Hierbei handelt es sich um den Kurznamen, der einem Gerät zugeordnet wurde. Die Einstellung wird nur im automatischen Modus (DHCP) verwendet.

Lokaler Port 🖭 👁

Wird die Ethernet-Kommunikation verwendet, sind bei einem Gerät zwei lokale Ports geöffnet.

- Die permanente Portnummer 502 stellt einen Standard-MODBUS-Port dar. Das Gerät lässt mehrere Anschlüsse an diesem Port zu.
- Benutzerdefinierter Port. Jede Portnummer ist erlaubt, abgesehen von den vergebenen Ports (Tabelle 7). An diesem Port ist nur ein einziger Anschluss erlaubt. Wenn dieser Port verwendet wird, sind alle anderen Anschlüsse (einschließlich Anschlüsse am Port 502) deaktiviert. Hierbei handelt es sich um einen Klemmenanschluss.

Klemmenanschlüsse werden verwendet, wenn andere Anschlüsse aufgrund der zu erfüllenden Funktion nicht erlaubt sind. Dies ist der Fall, wenn Firmware-Updates ausgeführt werden. In anderen Fällen wird empfohlen, den Port 502 zu verwenden. Wenn der Port 502 verwendet wird, können externe Anwendungen auf das Gerät zugreifen, unabhängig von der Einstellung für den *Lokalen Port* am Gerät. Diese Einstellung ist nur anwendbar, wenn ein Anschlusszugang erforderlich ist.

Tabelle 7: Vergebene TCP-Port-Nummern

Wichtige Port-Nummern	Funktion
1 – 1024, 9999, 30718, 33333	Vergebene Nummern!!!
502	Standard-MODBUS-Port – fest eingestellt
33333	UDP-Port, der zum Erkennen von Geräten (Device Discovery Service) verwendet wird

Bild 12: Mehrfachverbindungen an einem Gerät sind möglich, wenn der Port 502 (spezieller MODBUS-Port) verwendet wird

Bild 13: Werden andere zulässige Ports verwendet, so ist nur ein einziger Anschluss möglich

Port 502

Es handelt sich um einen standardisierten Port zum Kommunizieren mit dem Gerät über das MODBUS/TCP-Kommunikationsprotokoll. Er ist fest eingestellt. Die Kommunikation über diesen Port erlaubt mehrfache Anschlüsse an einem Gerät. Der übrige Datenverkehr wird durch die Kommunikation über diesen Port nicht blockiert.

Port 33333

Dieser UDP-Port ist dem Discovery Service vorbehalten – dies ist ein von der MAVO-View-Software angebotener Dienst zum Erkennen von Geräten, die an das lokale Ethernet-Kommunikationsnetzwerk angeschlossen sind.

Andere verfügbare Ports

Andere zulässige TCP-Ports funktionieren als Anschlussports und beim Anschluss hieran werden andere Anschlüsse blockiert, bis dieser gelöst ist. Bei einem Anschluss an diesen Port hat die PUSH-Funktionalität des Gerätes Priorität.

Subnetzmaske 🖭 👁

Wird verwendet, um zu bestimmen, zu welchem Subnetz die IP-Adresse gehört.

Gateway-Adresse PC

Es handelt sich um ein Gateway, das einzelne Netzwerksegmente verbindet (LAN, WAN oder Internet).

NTP-Server 🖻

Die IP-Adresse eines NTP-Servers, der für die Zeitsynchronisierung des Gerätes verwendet wird.

Normalerweise kann der NTP die Zeit bis auf ein Zehntel der Millisekunde über das öffentliche Internet einhalten, aber die Genauigkeit hängt von den Infrastruktureigenschaften ab – die Asymmetrie in ab- und eingehender Kommunikationsverzögerung beeinflusst die systematische Verzerrung.

BITTE BEACHTEN

Es wird empfohlen, für Synchronisierungszwecke ein spezielles Netzwerk anstatt eines öffentlichen zu verwenden.

Die Werkeinstellungen für die Ethernet-Kommunikation sind:

IP-Adresse	DHCP (automatisch)
TCP-Port (Anschlussport)	10001
Subnetzmaske	255.255.255.0

PUSH-Kommunikationseinstellungen PC

Beim PUSH-Kommunikationsmodus können Daten an zwei verschiedene Server gesendet (gepuscht) werden. Bei dieser Einstellung sollten alle für die verwendeten Server relevanten Parameter gesetzt werden, ebenso wie der Datentyp der gesendeten Dateien, die Zeitsynchronisierungsquelle und die Reaktionszeit des Servers.

Weitere Informationen über den PUSH-Kommunikationsmodus und das XML-Datenformat finden Sie im Kapitel *Kommunikationsmodi* auf der Seite 143 und in der *Anlage D* auf der Seite 184.

TCP-Link 1 und TCP-Link 2 PC

IP-Adresse

Die IP-Adresse des Servers, der Daten von Geräten sammelt.

IP-Port

Der IP-Port des Servers, der Daten von Geräten sammelt.

Datenformat

Diese Einstellung dient zum Festlegen des erforderlichen Datenformats zum Senden von Daten an den Receiver mithilfe des PUSH-Kommunikationsmodus. Das momentan unterstützte Format ist XML-smart. Weitere Informationen über den PUSH-Kommunikationsmodus und das XML-Datenformat finden Sie im Kapitel *Kommunikationsmodi* auf der Seite 143 und in der *Anlage D* auf der Seite 184.

Reaktionszeit (Sek.)

Diese Einstellung dient zum Definieren der maximalen Wartezeit auf eine Bestätigung des Erhalts gesendeter Daten im PUSH-Kommunikationsmodus. Sendet der Client keine Bestätigung innerhalb dieser Zeit, werden die zu übertragenden Daten während der nächsten Push-Periode gesendet.

Bei Geräten, die an ein Netzwerk mit niedriger Übertragungsgeschwindigkeit angeschlossenen sind, müssen Werte über 10 Sekunden ausgewählt werden.

Wird ein Wert von weniger als 10 Sekunden ausgewählt, werden zurückliegende Daten aus Recordern sofort nacheinander veröffentlicht. Ist der Wert größer als 10 Sekunden, wird die automatische Zeitverzögerungslänge von 10% des eingestellten Werts zwischen den gesendeten Datenpaketen integriert.

Anzeige

Anzeigeeinstellungen 🖭 👁

Über eine Kombination aus der Kontrasteinstellung und der Hintergrundbeleuchtung werden die Sichtbarkeit und die Lesbarkeit eines Displays definiert. Die Anzeigeeinstellungen müssen entsprechend den Bedingungen definiert werden, unter welchen das Display verwendet werden soll. Die Hintergrundbeleuchtung wird im Sparmodus nach dem Verstreichen der eingestellten Inaktivitätszeit abgeschaltet.

➡ Hauptmenü → Einstellungen → LCD → Kontrast / Hintergrundbeleuchtung / Hintergrundbeleuchtung-Abschaltzeit

Demo-Zyklusperiode 🖭 👁

Zu Demonstrationszwecken ist es für das Gerät nützlich, automatisch zwischen verschiedenen Messanzeigen umschalten zu können.

Diese Einstellung definiert die Zeit in Sekunden für jede Anzeige von Messungen.

Einstellungen benutzerdefinierter Anzeigen 🖻

Zum leichteren und schnelleren Überblick über die für den Benutzer wichtigen Messungen stehen drei verschiedene Einstellungen benutzerdefinierter Anzeigen zur Verfügung. Auf jeder benutzerdefinierten Anzeige werden drei Messungen angezeigt. Beim Einstellen benutzerdefinierter Messungen werden die Kennzeichnungen mit bis zu 4 Zeichen in abgekürzter Form angezeigt. Beispiel:

Gewünschtes Ergebnis:

Benutzerdef. Anzeige 1	Benutzerdef. Anzeige 2	Benutzerdef. Anzeige 3	Kombinierte be- nutzerdef. Anzeige 4
U1	I _{TOT}	∮1-3_RMS	U1
U _{P-P_avg}	I _{NM}	F	U _{P-P_avg}
U _{UNBALANCE}	I _{AVG}	THD-I1	U _{UNBALANCE}
-	-	-	I _{TOT}
-	-	-	I _{NM}

BITTE BEACHTEN

Hier definierte benutzerdefinierte Anzeigen werden im Menü ausgewählt

Search and Search

\rightarrow Benutzerdefiniert

Eine Einstellung kann nur für 3 benutzerdefinierte Anzeigen vorgenommen werden. Auf der 4. benutzerdefinierten Anzeige werden 5 Parameter angezeigt, drei aus der benutzerdefinierten Anzeige 1 und die ersten zwei aus der benutzerdefinierten Anzeige 2. Siehe obenstehendes Beispiel.

Einstellung:

Benutzerdef. Anzeige 1

Benutzerdef. Anzeige 2

Benutzerdef. Anzeige 3

Custom	screen	1
<u>U</u> 1	11	P1
OK Sele	ect.	

Q	ustom	screen	2
	<u>U</u> 2	12	P2
	-		
Ē)K Sele	ect.	

O Hauptmenü \rightarrow Messungen \rightarrow Vorhandene Werte \rightarrow Benutzerdefiniert

Sicherheit

Hauptmenü		Einstellungen
Messungen		Allgemein Datum und Zeit
Zurücksetzungen SD-Karten-Info Installation	\rightarrow	Anschluss Kommunikation LCD
14.11.2012 16:53:36		Energie Eingänge/Ausgänge
		← Hauptmenü

Einstellungsparameter werden in vier Gruppen in Hinblick auf die Sicherheitsstufe unterteilt:

PL0 (Passwort-Stufe 0)

- Passwort nicht erforderlich
- Verfügbare Einstellungen:
 - o Sprache
 - o Kontrast und
 - o Beleuchteter LCD-Hintergrund

PL1 (Passwort-Stufe 1)

- Passwort für die erste Stufe erforderlich
- Verfügbare Einstellungen:
 - o RTC-Einstellungen
 - o Energiezähler-Zurücksetzung
 - o Zurücksetzung der max. Leistung

PL2 (Passwort-Stufe 2)

- Passwort f
 ür die erste Stufe erforderlich
- Verfügbare Einstellungen:
 - o Alle Einstellungen verfügbar

Ein Backup-Passwort (BP) wird verwendet, wenn Passwörter der Stufe 1 (PL1) und Stufe 2 (PL2) vergessen wurden. Es ist bei jedem Gerät unterschiedlich (je nach Seriennummer des Gerätes). Das BP-Passwort erhalten Sie vom Produktsupport von GOSSEN METRAWATT; dieses kann anstatt der Passwörter PL1 oder/und PL2 eingegeben werden. Notieren Sie die Seriennummer des Gerätes, bevor Sie den Produktsupport kontaktieren.

BITTE BEACHTEN

Die Seriennummer des Gerätes ist auf dem Typenschild und der LCD (siehe untenstehendes Beispiel) angegeben und kann auch über die MAVO-View-Software ausgelesen werden. Der Zugang zur Seriennummer des Geräts erfolgt über die Tastatur

Beispiel:

```
Search Hauptmenü → Info
```


Passwort-Einstellung 🖭 👁

Ein Passwort besteht aus vier Buchstaben des englischen Alphabets von A bis Z. Bei der Einstellung des Passworts ist nur der Buchstabe, der gerade eingegeben wird sichtbar, während die anderen verborgen bleiben.

Ein Passwort der Stufe 1 (PL1) und Stufe 2 (PL2) kann eingegeben, und die Zeit der automatischen Aktivierung eingestellt werden.

➡ Hauptmenü → Einstellungen → Sicherheit → Passwort-Stufe 1 / Passwort-Stufe 2 / Passwort-Sperrzeit

Passwortänderung 🖻 👁

Ein Passwort kann wahlweise geändert werden; jedoch kann nur das Passwort geändert werden, zu dem der Zugang gerade freigegeben ist.

Passwortdeaktivierung 🖭 👁

Durch die Eingabe des Passworts "AAAA" wird ein Passwort deaktiviert.

BITTE BEACHTEN

Das voreingestellte Passwort ist "AAAA" in beiden Zugangsstufen (L1 und L2). Dieses Passwort schränkt den Zugang nicht ein.

Passwort und Sprache

Die Sprache kann ohne Passworteingabe geändert werden. Wenn die Sprache von oder zu Russisch geändert wird, muss die Zeichenumwandlung berücksichtigt werden. Die Zeichenumwandlungstabelle (englisches und russisches Alphabet) ist unten aufgeführt.

Englisch	A	В	С	D	Е	F	G	Н	I	J	K	L	Μ	Ν	0	Ρ	Q	R	S	Т	U	V	W	Х	Y	Z
Russisch	A	Б	В	Г	Д	Е	ж	3	И	Й	К	Л	М	Н	0	П	Ρ	С	Т	У	Φ	х	Ц	Ч	Ш	Щ

Energie

Hauptmenü			Einstellunger
Messungen			Allgemein Datum und Ze
Zurücksetzungen SD-Karten-Info Installation		\rightarrow	Anschluss Kommunikatio LCD Sicherheit
14.11.2012	16:53:36		
		-	Eingänge/Aus
			🗢 Hauptmenü

ngen d Zeit kation /Ausgänge

WARNUNG

Vor einer Änderung sollten alle Energiezähler gelesen, oder falls die Energiewerte in Aufzeichnungsgeräten gespeichert werden, sollte der Inhalt mithilfe der MAVO-View-Software gelesen oder auf einer Speicherkarte gespeichert werden, um die Konsistenz der vorhandenen Daten zu gewährleisten.

Nach der Änderung der Energieparameter sollten die Energiezähler zurückgesetzt werden. Alle aufgezeichneten Messungen können von diesem Punkt an falsche Werte haben, daher sollten sie auf kein System zur Datenerfassung und Analyse übertragen werden. Zu diesem Zweck sollten die vor der Änderung gespeicherten Daten verwendet werden.

Aktiver Tarif 🖭 🐵

Beim Einstellen des aktiven Tarifs wird einer der Tarife als aktiv definiert; zur Umschaltung zwischen Tarifen wird entweder eine Tarif-Uhr oder ein Tarif-Eingang verwendet. Zum Betrieb der Tarif-Uhr müssen andere Parameter der Tarif-Uhr, auf die nur über die Kommunikation oder die Speicherkarte zugegriffen werden kann, korrekt eingestellt werden.

Standard-Energiezähler-Auflösung 🖭 👁

Die Standard-Energiezähler-Auflösung bezeichnet die minimale Energie, die auf dem Energiezähler dargestellt werden kann. Auf dieser Grundlage und auf der Grundlage der individuellen Zähler-Auflösung wird ein Standard-Berechnungspräfix für Energie verwendet $(-3 \text{ ist } 10^{-3} \text{Wh} = \text{mWh}, 4 \text{ ist } 10^{4} \text{Wh} = 10 \text{ kWh})$. Eine Standard-Energiezähler-Auflösung beeinflusst darüber hinaus die Anzahl von Impulsen für Impulsausgangs- oder Alarmausgangsenergie. Sie funktioniert dabei als Energiezähler.

Definieren Sie die Standard-Energiezähler-Auflösung wie in der untenstehenden Tabelle, wo die individuelle Zähler-Auflösung den Standardwert 10 hat. Die primären Spannungs- und Stromwerte bestimmen die korrekte Standard-Energiezähler-Auflösung.

Strom Spannung	1 A	5 A	50 A	100 A	1000 A
110 V	100 mWh	1 Wh	10 Wh	10 Wh	100 Wh
230 V	1 Wh	1 Wh	10 Wh	100 Wh	1 kWh
1000 V	1 Wh	10 Wh	100 Wh	1 kWh	10 kWh
30 kV	100 Wh	100 Wh	1 kWh	10 kWh	10 kWh *

Tabelle 8: Empfohlene Standard-Energiezähler-Auflösungen

* – Individuelle Zähler-Auflösungen sollten mindestens 100 betragen

Individuelle Zähler-Auflösung 🖭

Die individuelle Zähler-Auflösung definiert zusätzlich die Genauigkeit eines bestimmten Zählers entsprechend den Einstellungen der gemeinsamen Energiezähler-Auflösung.

Kostenexponent gemeinsamer Energie PC

Diese Einstellung erlaubt die Auflösung der Kostenanzeige. Auf dieser Grundlage und auf der Grundlage der Zählerteilerkonstante wird ein allgemeines Berechnungspräfix für Energiekosten definiert.

Exponent des gesamten Tarifpreises und Energiepreis in Tarifen

Der Exponent und der Preis stellen den Energiepreis (Wirk-, Blind-, gemeinsame Energie) in einem Tarif dar. Der Tarifpreis-Exponent wird zum Aufzeichnen des Preises ohne Dezimalstellen verwendet. Um zum Beispiel einen Preis für den Tarif 1 zu 0,1567 \in /kWh zu setzen, sollte die Zahl im Feld "Energiepreis in Tarif 1" 1567 und der gemeinsame Tarifpreis-Exponent sollte -4 (1567 x 1E-4 = 0,1567) sein.

Gemeinsame Energiezähler- Auflösung	1 Wh	100 Wh	100 Wh
Individuelle Energiezähler-Auflösung	1	1	100
Gemeinsamer Energiekosten- Exponent	-3	-2	0
Gemeinsamer Tarifpreis-Exponent	-4	-4	-4
Energiepreis in Tarif 1	1567	1567	1567
Einheit	EUR	EUR	EUR
Ergebnisbeispiel, angezeigt	12,345 kWh 1,934 EUR	12,3 kWh 1,93 EUR	0,01 MWh 1 EUR

Tabelle 9: Ein Beispiel für 12,345 kWh der verbrauchten Wirkenergie im erstenTarif (Preis 0,1567 €/kWh)
Tarif-Uhr 🖭

Grundlegende Charakteristika einer Tarif-Uhr:

- 4 Tarife (T1 bis T4)
- Individuelle Einstellungen für 4 Jahreszeiten in einem Jahr
- Bis zu 4 Zeitteilungen pro Jahreszeit in jedem Tagesprogramm zur Tarifänderung
- Kombination aus Tagesgruppen
- Bis zu 20 einstellbare Daten für Feiertage

Betrieb der internen Tarif-Uhr

Der Tarifstatus wird im Informationsmenü angezeigt.

Anzeigebeispiel für den ausgewählten aktiven Tarif:

$\textcircled{\label{eq:Hauptmenu}}$ Hauptmenü \rightarrow Info

Das Tagesprogramm umfasst bis zu 4 Zeitteilungen (Regeln) für jede Tagesgruppe in einer Saison zur Tarifänderung.

Ein Datum der Echtzeit-Uhr bezeichnet eine aktive Periode. Eine einzelne Periode ist aktiv vom Anfangsdatum der Periode bis zum nächsten ersten Datum des Anfangs anderer Perioden.

Die Reihenfolge der Jahreszeiten und Anfangsdaten ist unerheblich, abgesehen von den Fällen, wenn zwei Daten gleich sind. In diesem Fall hat die Jahreszeit mit der höheren fortlaufenden Nummer Priorität, und die Jahreszeit mit der niedrigeren Nummer wird niemals aktiv sein.

Falls kein Jahreszeit-Startdatum aktiv ist, ist die aktive Periode 1.

Falls das aktuelle Datum vor dem ersten Startdatum einer Periode liegt, ist die Periode mit dem letzten Startdatum aktiv.

Jahreszeit	Jahreszeit-Startdatum
Jahreszeit 1:	15.02
Jahreszeit 2:	30.10
Jahreszeit 3:	_
Jahreszeit 4:	01.06
Datum	Aktive Jahreszeit
01.01 14.02.	2 (letzte im Jahr)
15.02 31.05.	1
01.06. – 29.10.	4
30.10 31.12.	2

Beispiel der Jahreszeit-Einstellungen:

Tage in einer Woche und ausgewählte Daten für Feiertage definieren die Zeitteilungen für jede Tagesgruppe in einer Periode zur Tarifänderung. Feiertagsdaten haben Priorität vor Tagen in einer Woche.

Wenn das Datum an der Echtzeit-Uhr mit einem der Feiertagsdaten identisch ist, wird der Tarif zu einem Feiertag geändert, innerhalb einer Periode der aktiven Tagesgruppe mit einem ausgewählten Feiertag.

Sollte es kein Feiertags-Datum geben, das mit dem Echtzeit-Uhr-Datum identisch ist, sind alle Tagesgruppen mit dem ausgewählten aktuellen Tag in einer Woche aktiv.

Mehrere Tagesgruppen können zugleich aktiv sein, was mehr als 4 Zeitteilungen pro Tag erlaubt (Kombination aus Tagesprogrammen). Falls die Zeitteilung noch nicht auf einen bestimmten Tag angesetzt ist, wird der Tarif T1 ausgewählt.

Die Zeit einer Echtzeit-Uhr definiert einen aktiven Tarif in Hinblick auf das derzeit aktive Tagesprogramm. Der ausgewählte T1- bis T4-Tarif der individuellen Zeitteilung ist von der Zeit des Zeitpunkts bis zur ersten nächsten Zeit der verbleibenden Zeitteilungen aktiv.

Die Reihenfolge der Zeitteilungen ist unerheblich, abgesehen von den Fällen, wenn zwei Zeitteilungen gleich sind. In diesem Fall hat die Zeit mit der höheren fortlaufenden Nummer Priorität (sind mehrere Zeitteilungen aktiv, haben die Zeiten höherer Zeitteilungen höhere fortlaufende Nummern), während die Zeitteilung mit der niedrigeren Nummer niemals aktiv ist.

Falls die aktuelle Zeit vor der ersten Zeit einer Zeitteilung aktiver Teilungen liegt, wird die Zeitteilung mit der letzten Zeit ausgewählt.

Falls keine Zeitteilung der aktiven Programme gültig ist, wird der T1-Tarif ausgewählt.

Der ausgewählte T1- bis T4-Tarif oder der permanent ausgewählte Tarif (über die Kommunikation) definiert die Aktivität eines Energiezählers.

Zähler-gemessene Größe 🖭

Für alle vier (4) Zähler können verschiedene gemessene Größen ausgewählt werden. Der Benutzer kann aus einer Reihe vorgegebener Optionen in Hinblick auf die gemessene Gesamtenergie oder Energie einer einzigen Phase auswählen. Er kann sogar seine eigene Option auswählen, indem er die erforderliche Größe, den Quadranten, die direkte oder die inverse Funktion wählt.

An den Energiezähler kann auch ein Impuls- / Digitaleingang angeschlossen werden. In diesem Fall zählt der Energiezähler Impulse aus einer externen Quelle (Wasser-, Gas-, Energiezähler).

E/A-Module

Die E/A-Funktionalität ist ein wirkungsvolles Instrument des PQ-Analysators **MAVOLOG PRO**. Mithilfe diverser E/A-Module kann das Gerät nicht nur zur Überwachung der wesentlichen Elektrizitätsgrößen verwendet werden, sondern auch zur Beobachtung von Porzessgrößen (Temperatur, Druck, Windgeschwindigkeit...) und zu diversen Kontrollzwecken.

Das Gerät kann mit diversen E/A-Modulen mit unterschiedlicher Funktionalität ausgestattet werden. Seine technischen Spezifikationen finden Sie im Kapitel *Technische Daten* auf der Seite 148.

Haupt-E/A-Module 1 & 2

Der PQ-Analysator **MAVOLOG PRO** ist mit zwei Haupt-E/A-Steckplätzen ausgestattet. Folgende E/A-Module stehen zur Verfügung:

Modultyp	Modulanzahl pro Steckplatz
Analogausgang (AO)	2
Analogeingang (Al)	2
Digitalausgang (DO)	2
Digitaleingang (DI)	2
Bistabiler Digitalausgang (BO)	1
Statusausgang (WO)	1 + 1xDO

Tabelle 10: Liste der verfügbaren E/A-Module

BITTE BEACHTEN

Alle Module haben eine doppelte Eingangs- oder Ausgangsfunktionalität, abgesehen vom bistabilen Alarmausgang und vom Wächter-Ausgangsmodul. Alle Module mit einem doppelten Eingang oder Ausgang werden in MAVO-View als zwei separate Module dargestellt. Ein Alarmausgang und ein Impulsausgang können auch mithilfe der Tasten und des Displays ausgewählt werden. Bei der Auswahl der Energie- und Quadranteneinstellungen für einen bestimmten Zähler ist nur eine voreingestellte Auswahl möglich; kompliziertere Einstellungen sind über die Schnittstelle verfügbar. Bei anderen Modulen sind Informationen über das jeweils eingebaute Modul über das LCD-Display verfügbar.

Analogeingangsmodul 🖭 👁

Drei Typen von Analogeingängen eignen sich zur Aufzeichnung von Niederspannungs-DC-Signalen von verschiedenen Sensoren. Entsprechend den Anwendungsanforderungen kann ein Strom-, Spannungs- oder Widerstands-(Temperatur-)Analogeingang bestellt werden. Sie verwenden alle die gleichen Ausgangsquellen.

Die MAVO-View-Software erlaubt es, die erforderlichen Berechnungsfaktoren, Exponenten und benötigten Einheiten zur Darstellung primär gemessener Werte (Temperatur, Druck, Fluss...) einzustellen.

Signale des Analogeingangs können ebenfalls im eingebauten Speicher eines Geräts aufgezeichnet werden. Sie können auch in der Alarmfunktion enthalten sein (siehe das Kapitel *Alarme* auf der Seite 87).

DC-Strombereich:

Die Bereichseinstellung erlaubt einen bipolaren Eingangswert von max. ±20 mA

DC-Spannungsbereich:

Die Bereichseinstellung erlaubt einen bipolaren Eingangswert von max. ±10 mA

Widerstands-/Temperaturbereich:

Die Bereichseinstellung erlaubt einen Eingangswert von max. 2000 Ω oder 200 Ω

Es ist ebenfalls möglich, einen Temperatursensor (PT100 oder PT1000) mit einer direkten Umwandlung in Temperatur (-200 °C bis +850 °C) auszuwählen. Da nur ein Zwei-Draht-Anschluss möglich ist, empfiehlt es sich, bei großen Leitungslängen auch den Drahtwiderstand einzustellen.

Impulseingangsmodul PC

Das Modul hat keine Einstellungen. Es stellt einen Universal-Impulszähler von externen Messgeräten dar (Wasser, Gas, Wärme…). Sein Wert kann jedem der vier Energiezähler zugeordnet werden. Siehe das Kapitel *Energie* auf der Seite 71.

Es kann ebenfalls als Digitaleingang verwendet werden und ist in der Alarm-Funktion zur Überwachung von Signalen verschiedener Sensoren enthalten (siehe das Kapitel *Alarme* auf der Seite 87).

Das Pulseingangsmodul hat nur eine Hardware-Konfiguration (5...48 V DC).

Digitaleingangsmodul PC

Dies Modul hat keine Einstellungen. Es dient allgemein dazu, digitale Signale aus diversen Geräten zu sammeln, wie z. B. Einbruchmelderelais, verschiedene digitale Signale in einer Transformatorstation, Industrie etc. Es ist in drei verschiedenen Hardware-Versionen verfügbar.

Es kann auch in der Alarmfunktion enthalten sein (siehe das Kapitel *Alarme* auf der Seite 87).

Tarifeingangsmodul PC

Das Modul hat keine Einstellung. Es funktioniert, indem es einen aktiven Tarif am Tarifeingang einstellt (siehe das Kapitel *Tarif-Uhr* auf der Seite 73). Das Gerät kann maximal ein Modul mit nur 2 Tarifeingängen haben. Mit einer Kombination aus 2 Tarifeingängen können maximal 4 Tarife ausgewählt werden.

Aktiver	Signal am Ta	rifeingang
Tarif	Eing. T1/T2	Eing. T3/T4
Tarif 1	0	0
Tarif 2	1	0
Tarif 3	0	1
Tarif 4	1	1

Tabelle 11: Tabelle zur Auswahl des aktiven Tarifs

Analogausgangsmodul PC

Das Analogausgangsmodul kann zur Kontrolle- und Messvisualisierung verwendet werden. Es kann an Analogzähler, SPS-Controller usw. angeschlossen werden. Es hat einen definierten Ausgangsbereich von 20 mA DC. Die Größe und die Form (bis zu 6 Unterbrechungspunkte) eines Analogausgangs können mithilfe der MAVO-View-Software zugeordnet werden.

Ausgangsparameter

Ein Ausgangsparameter kann jeder beliebige gemessene Wert sein, der zur Überwachung, Aufzeichnung, Visualisierung oder Kontrolle erforderlich ist. Der Wert wird aus einem Dropdown-Menü ausgewählt.

Ausgangssignal

Das Ausgangssignal kann zur Erfüllung aller erforderlichen Zwecke angepasst werden.

- die Form des Ausgangssignals (linear, quadratisch)
- die Anzahl der Unterbrechungspunkte für die Zoom-Funktion (bis zu 6)
- Ausgangsstart- und -endwert

Zur besseren Visualisierung der eingestellten Signalparameter wird eine grafische Präsentation der Übertragungsfunktion angezeigt.

arameter.		Total Active Pow	er P		
ignal form:		Linear		-	
F.W.	mÅ	Quadratic			-
0.000	0.000	1			1
3,750	20,000	15	-	1	4
		10		-/-	
				1	
		5	1	1	
Edit	Remove	0	1 875 0	1.975	3.75
Predefine	d profiles	-5,15	1.015 0	1,075	k\4/

Ausführliche Informationen finden Sie im Hilfebereich der MAVO-View-Software.

Impulsausgangsmodul 🖭 👁

Der Impulsausgang ist ein fester, geöffneter Optokoppler-Kollektorschalter. Sein Hauptzweck besteht darin, als Impulsausgang für ausgewählte Energiezähler zu dienen, er kann jedoch auch zu Alarmzwecken oder als Universal-Digitalausgang verwendet werden.

Eine Beschreibung der Ausgangsfunktionalität finden Sie im untenstehenden Kapitel *Funktionen von Digitalausgangsmodulen*.

Relaisausgangsmodul 🖭 👁

Das Relaisausgangsmodul ist ein Relaisschalter. Sein Hauptzweck besteht darin, als Alarmausgang zu dienen, es kann jedoch auch als Impuls- oder Universal-Digitalausgang verwendet werden.

BITTE BEACHTEN

Ein paralleler RC-Filter mit einer Zeitkonstante von mindestens 250 μ s (R·C \geq 250 μ s) sollte bei einem empfindlichen Pulszähler verwendet werden. Der RC-Filter dämpft transiente Relais-Signale.

Eine Beschreibung der Ausgangsfunktionalität finden Sie im untenstehenden Kapitel *Funktionen von Digitalausgangsmodulen*.

Status- (Wächter) und Relaisausgangsmodul 📧

Der Wächter und das Relaismodul sind eine Kombination aus zwei Funktionalitäten. Ein Ausgang wird zur Wächter-Funktionalität verwendet, und der andere fungiert als Relaisausgangsmodul.

Der Zweck eines Wächter-Relais besteht darin, potentielle Fehlfunktionen des Geräts oder der Hilfsstromversorgung zu erfassen. Dieses Modul kann auf normalen Betrieb (Relais in geschlossener Position) eingestellt werden, oder – zu Testzwecken – in die geöffnete Position (manuelle Aktivierung). Danach sollte das Testmodul zurück auf normalen Betrieb eingestellt werden.

Eine Beschreibung der Ausgangsfunktionalität finden Sie im untenstehenden Kapitel *Funktionen von Digitalausgangsmodulen*.

Bistabiles Alarmausgangsmodul PC

Ein bistabiles Alarmmodul ist ein Relaistyp. Der einzige Unterschied zwischen Relaisalarmausgängen und bistabilen Relaisalarmausgängen ist, dass dieser den Zustand am Eingang für den Fall einer Stromfehlfunktion des Gerätes beibehält.

Funktionen von Digitalausgangsmodulen 🖭 👁

In Puls- und Relaisdigitalausgänge können verschiedene Funktionen integriert werden. Sie alle können mithilfe der MAVO-View-Software eingestellt werden.

MAVO-View 2.1	- Setting Studio	The second second		a E X
Datei Extras	Ansicht Hilfe			
🖬 🕹 🧉 - 🛍				
Ne Aktualisieren	Gerateadresse: 55	🖙 Gehe zu: •		
	Ci Einstellungen		E\MAVO-View 2.1\D	ata\MV-LOG-k.msf
No.	E MV-LOG	* Ensteilung	Wet	
Verbindung	E- 🔭 Algemein	Zugendester Auspilieg	Aamacagang	
in the second second	Anschlum	Impulsanzahi	1.P./ T.Wh. (var) VAn)	
	E- Kommunikation	Impulsiange (ms)	100	
Eng	Citeriary	Tarfumschatung	Tert 1./Tert 2. Tert 2. Tert 4	
Finstellungen	- G Scherheit	Aktiviete Alamgruppe	Gruppe 1. Gruppe 2. Gruppe 3. Gruppe 4	
Province (Arr.	8- 11 Energie	Ausgangssignal	Normal	
Messungen Analyse Upgrødes	Constant of the second se			

Bild 15: MAVO-View-Fenster zur Definition des Digitalausgangs

Impulsausgang des Energiezählers

Einem Digitalausgang kann ein entsprechender Energiezähler (bis zu 4 Stück) zugeordnet werden. Die Anzahl von Impulsen pro Energieeinheit, die Impulslänge und eine Reihe von Tarifen, in deren Rahmen der Ausgang aktiv ist, werden eingestellt.

BITTE BEACHTEN

Die Impulsparameter sind in der Norm EN 62053-31 definiert. Im untenstehenden Kapitel *Berechnung empfohlener Impulsparameter* finden Sie eine vereinfachte Regel, die Ihnen bei der Einstellung der Impulsausgangsparameter helfen wird.

The Hauptmenü \rightarrow Einstellungen \rightarrow Eingänge/Ausgänge \rightarrow E/A 1 / 2 / 3 / 4 \rightarrow (Einstellungen des Impulsausgangs)

Berechnung empfohlener Impulsparameter

Die Anzahl der Impulse pro Energieeinheit sollte je nach erwarteter Leistung begrenzt sein. Andernfalls können Messungen aus dem Impulsausgang inkorrekt sein. Die Einstellungen der Strom- und Spannungstransformator-Verhältnisse können bei der Einschätzung der zu erwartenden Leistung behilflich sein.

Das unten beschriebene Prinzip der Impulseinstellung entspricht den Impulsbestimmungen der Normen EN 62053-31: 2001:

- $1,5 \dots 15 \text{ eW} \rightarrow 100 \text{ p/l eWh}$
- e ... Exponent (k, M, G)

p... Impulse

Beispiele:

Erwartete Leistung	\rightarrow	Impulsausgangseinstellungen
150 – 1500 kW	\rightarrow	1 p / 1kWh
1,5 – 15 MW	\rightarrow	100 p / 1MWh
15 – 150 MW	\rightarrow	10 p / 1MWh
150 – 1500 MW	\rightarrow	1 p / 1MWh

Alarmausgang

Falls der Digitalausgang als Alarmausgang definiert ist, hängt seine Aktivität (Auslöser) mit Alarmgruppen zusammen. Es können mehrere Alarmgruppen daran angeschlossen werden, und es können verschiedene Signalformen definiert werden. Weitere Informationen zur Definition von Alarmgruppen finden Sie im Kapitel *Alarme* auf der Seite 87.

→(Einstellungen des Alarmausgangs)

Für jeden Alarmausgang sollten zwei Parameter definiert werden:

- Die Quelle für den zugeordneten Alarm (Alarmgruppe 1, 2 oder beide)
- Der Typ des Ausgangssignals beim Auslösen des Alarms.

Typen von Ausgangssignalen

Normal – Das Relais bleibt geschlossen, solange die Alarmbedingung erfüllt ist.

Normal umgekehrt – Ein Relais bleibt geöffnet, solange die Alarmbedingung erfüllt ist. Danach geht das Relais in den geschlossenen Zustand über.

Permanent – Ein Relais wird geschlossen, wenn die Bedingung für den Alarm erfüllt ist, und bleibt geschlossen, bis es manuell zurückgesetzt wird.

Permanent umgekehrt – Ein Relais wird geöffnet, wenn die Bedingung für den Alarm erfüllt ist, und bleibt geöffnet, bis es manuell zurückgesetzt wird.

Gepulst – ein Impuls der benutzerdefinierten Länge wird immer dann aktiviert, wenn die Bedingung für den Alarm erfüllt ist.

Immer eingeschaltet / ausgeschaltet (permanent) – Ein Relais wird permanent ein- oder ausgeschaltet, unabhängig von der Bedingung des Alarms (Universal-Digitalausgang-Funktionalität).

Start – Wenn das Gerät an die Hilfsstromversorgung angeschlossen ist, braucht es etwas Zeit zum Initialisieren, Aufwärmen und Selbstanpassen. Während dieser Zeit ist der Betrieb unregelmäßig. Wenn der Alarmausgang auf *Start* gesetzt ist, wartet er auf einen ordnungsgemäßen Betrieb des Gerätes, und erst dann beginnt der *Normal*-Betrieb.

Eine grafische Demonstration der Alarm-Funktionalität finden Sie im Beispiel im Kapitel *Alarme* auf der Seite 87.

Universal-Digitalausgang

Diese Funktionalität erlaubt es dem Benutzer, den Digitalausgang mithilfe von Software-Einstellungen zu aktivieren und zu deaktivieren -z. B. vom SCADA-System aus.

Für diese Art Betrieb muss auf die MODBUS-Register mithilfe der Software zugegriffen werden. Durch die Änderung entsprechender MODBUS-Register (vom SCADA aus) kann der Digitalausgang eingestellt oder zurückgesetzt werden.

Entsprechende MODBUS-Register und ihre Werte finden Sie in der untenstehenden Tabelle.

Tabelle 12: MODBUS-Register und ihre Werte für externeDigitalausgänge

MODULNUMMER MO	DBUS-REGISTER	REGISTER	R-WERT
Modul 1 (falls installiert) Modul 2 (falls installiert)	40722 40725	3 - AN 3 - AN	4 - AUS 4 - AUS
Modul 3 (falls installiert)	40728	3 - AN	4 - AUS
Modul 4 (falls installiert)	40731	3 - AN	4 - AUS

Tarif-Ausgang

Das Digitalausgangsmodul kann auch als Tarif-Uhr-Ausgang fungieren. Es können verschiedene Tarife zum Auslösen von Verzögerungen definiert werden. Informationen über die Tarif-Uhr-Einstellungen finden Sie im Kapitel *Tarif-Uhr* auf der Seite 73.

Hilfs-E/A-Module A & B

Der PQ-Analysator **MAVOLOG PRO** ist mit zwei Hilfs-E/A-Steckplätzen ausgestattet. Der größte Unterschied in der Funktionalität des Haupt- und des Hilfs-E/A-Moduls ist die Reaktionszeit. Die Reaktion von Digitaleingängen und -ausgängen ist nicht so schnell wie bei Haupt-E/A-Modulen.

Es stehen folgende E/A-Module zur Verfügung:

Modul-Typ	Anzahl der Module pro Steckplatz
Digitalausgang (DO)	8
Digitaleingang (DI)	8

Tabelle 13: Liste der verfügbaren Hilfs-E/A-Module

Der Zustand des eingebauten Eingangs- und/oder Ausgangsmoduls kann auch auf LEDs auf der vorderen Seite des Gerätes überwacht werden.

Digitaleingangsmodul PC

Dies Modul hat keine Einstellmöglichkeiten. Es dient dazu, digitale Signale von diversen Geräten zu sammeln, wie z.B. von Einbruchmelderelais, verschiedene digitale Signale aus einer Transformatorstation, Industrie...

Entsprechend dem Eingangsspannungsbereich ist es in drei verschiedenen Hardware-Versionen verfügbar. Die technischen Spezifikationen finden Sie im Kapitel *Technische Daten* auf der Seite 148.

Der Digitalausgang kann auch einen Alarm auslösen (siehe das Kapitel *Alarme* auf der Seite 128). Der Zustand digitaler Eingänge kann ebenfalls zu Kontrollzwecken mithilfe des SCADA-Systems durch das Lesen entsprechender MODBUS-Register überwacht werden.

Relaisausgangsmodul PC

Das Relaisausgangsmodul ist ein Relaisschalter. Sein Hauptzweck besteht darin, als Alarmausgang verwendet zu werden.

Im Unterschied zum Relaisausgangsmodul des Haupt-E/A-Moduls 1 oder 2 kann nur ein einziger Alarm an jeden Ausgang angeschlossen werden (mit dem Relaisausgangsmodul des Haupt-E/A-Moduls 1 oder 2 kann eine Kombination aus Alarmgruppen an jeden Ausgang angeschlossen werden), um ihn auszulösen. Ausführliche Informationen über Alarme finden Sie im Kapitel *Alarme* auf der Seite 87.

RTC-Synchronisierungsmodul C 📼

Um das Modul C zu Synchronisierungszwecken nutzen zu können, muss dieses als eine Synchronisierungsquelle definiert werden. Siehe das Kapitel *Echtzeit-Synchronisierungsquelle* auf der Seite 51.

ACHTUNG

Die RTC-Synchronisierung ist ein wesentlicher Teil eines Instruments der A-Klasse. Bei Nichtvorhandensein der richtigen RTC-Synchronisierung funktioniert das Gerät als ein Instrument der S-Klasse.

Der PQ-Analysator **MAVOLOG PRO** unterstützt drei Typen der RTC-Synchronisierung:

- GPS-Zeitsynchronisierung (über das Synchronisierungsmodul C)
- IRIG-B-Zeitsynchronisierung (über das Synchronisierungsmodul C)
- NTP-Zeitsynchronisierung (über das Ethernet-Modul)

Anleitungen zum Anschließen des Synchronisierungsmoduls C finden Sie im Kapitel *Anschluss eines Echtzeit-Synchronisierungsmoduls C* auf der Seite 31.

BITTE BEACHTEN

Die im Synchronisierungsmodul C eingebaute serielle Schnittstelle kann unter bestimmten Bedingungen als unabhängige sekundäre Schnittstelle verwendet werden.

GPS-Zeitsynchronisierung

Zur korrekten GPS-Synchronisierung sind zwei Signale erforderlich.

- 1 pps mit TTL-Spannungspegel und
- NMEA 0183-codierter Kommunikationssatz

Die GPS-Schnittstelle hat die Konstruktion einer steckbaren 5-poligen Schraubklemme (+5 V für Receiver-Versorgung, ein 1 pps-Eingang und eine Standard-RS232-Kommunikationsschnittstelle). Wir empfehlen den GPS-Receiver GARMIN GPS18x.

BITTE BEACHTEN

Beim Anschließen des GPS an die serielle RS232-Kommunikationsschnittstelle beachten Sie bitte die erforderlichen Kommunikationsparameter. Die Standard-Kommunikationsgeschwindigkeit für den empfohlenen GPS-Receiver beträgt 4800 Bit/s.

IRIG-Zeitcode B (IRIG-B)

Unmoduliertes (DC 5 V-Pegelverschiebung) und moduliertes (1 kHz) seriell codiertes Format mit Unterstützung für 1 PPS, Tag des Jahres, aktuelles Jahr und unmittelbare Sekunden des Tages, wie in der Norm IRIG-200-04 beschrieben.

Unterstützte serielle Zeitcode-Formate sind IRIG-B007 und IRIG-B127. Die technischen Spezifikationen finden Sie im Kapitel *Technische Daten* auf der Seite 148.

Serielle Kommunikation (COM2)

Falls das Gerät die RTC-Kommunikation über den NTP-Server (über das Ethernet-Modul), IRIG-B oder nur 1 PPS ohne Datensynchronisierung nutzt, kann der serielle Kommunikationsport des RTC-Synchronisierungsmoduls C als sekundärer Kommunikationsport COM2 verwendet werden. Entweder kann die RS232- oder die RS485-Schnittstelle verwendet werden. COM1 und COM2 sind vollkommen unabhängig und können zur gleichen Aufgabe und zur gleichen Zeit verwendet werden.

Die Moduleinstellungen definieren Parameter, die für den Betrieb im RS485-Netzwerk oder Kommunikationen mit dem PC über die RS232-Schnittstelle wichtig sind.

Die Werkeinstellungen für die serielle Kommunikation COM2 sind:

MODBUS-Adresse	#33
Komm.geschwind.	4800
Parität	keine
Datenbits	8
Stoppbits	2

Adressbereich: 1 bis 247 Geschwind.bereich: 2400 bis 115200

BITTE BEACHTEN

Standardmäßig sind die COM1- und COM2-Adressen gleich (#33). In diesem Fall stellt eine Änderung der COM1-Adresse COM2 auf dieselbe Adresse um. Wenn die COM1- und COM2-Adressen nicht gleich sind, hat eine Änderung der COM1-Adresse keinen Einfluss auf die COM2-Adresse, und eine Änderung der COM2-Adresse hat keinen Einfluss auf die COM1-Adresse.

Einstellungen des RTC-Synchronisierungsmoduls C

Um eine Synchronisierung mit dem GPS- oder mit dem IRIG-Zeitcode zu ermöglichen, sollte eine korrekte Echtzeit-Synchronisierungsquelle definiert werden, wie im Kapitel *Allgemeine Einstellungen/Echtzeit-Synchronisierungsquelle* auf der Seite 49 beschrieben.

Alarme

Alarme dienen zur Meldung des Überschreitens der eingestellten Werte der gemessenen Größen und Größen aus verschiedenen Eingangsmodulen.

Alarme können je nach Einstellungen auch verschiedene Vorgänge auslösen:

- Visueller Alarm (bei einem Alarm geht eine spezielle Alarm-LED an)
- Akustischer Alarm (Alarme können Ton-Signalisierung auslösen)
- Relaisschalter (Alarme können Digitalausgänge an Hauptund Hilfs-E/A-Module schalten)

Die Alarmbedingung kann für jede gemessene Größe eingestellt werden, ebenso wie für Größen, die an Analogeingängen gemessen wurden, oder Signale aus dem Digital-/Impulseingang.

ACHTUNG

Neue Alarmwerte werden prozentual berechnet. Überprüfen Sie bei jeder Änderung der Anschlusseinstellung, ob die eingestellten Alarmwerte korrekt sind.

Die PUSH-Funktionalität von Alarmen 📼

Wenn der PUSH-Kommunikationsmodus aktiv ist, können alle Alarme an eine vordefinierte Stelle im lokalen oder im Weitverkehrsnetzwerk (Wide Area Network) gesendet (gepusht) werden. Die Einstellungen erlauben das Auswählen eines Zielortes, an den die Alarmdaten gesendet werden können.

Alarmdaten werden an den Server <u>sofort</u> gesendet, wenn ein Alarm ausgelöst wird. Können diese aufgrund von Kommunikationsproblemen nicht sofort gesendet werden, werden sie beim nächsten Alarm-Ereignis oder Daten-Sendeintervall gesendet (je nachdem, was als Erstes eintritt).

Alarme und Vorkommnis-Zeitstempel werden ebenfalls im internen Speicher abgelegt.

Weitere Informationen über den PUSH-Kommunikationsmodus und das XML-Datenformat finden Sie im Kapitel *PUSH-Kommunikationsmodus* auf der Seite 145 und in der *Anlage D* auf der Seite 184.

Zu verknüpfende Push-Daten

Wenn der PUSH-Kommunikationsmodus verwendet wird, sollte ein Link zum datenempfangenden Server (Client) definiert werden. Daten können an COM1, TCP-Link 1 oder TCP-Link 2 gesendet werden, je nach Typ der verwendeten Kommunikationsschnittstelle. Informationen über die Definition von PUSH-Links finden Sie im Kapitel *PUSH-Kommunikationseinstellungen* auf der Seite 147.

Im Gegensatz zu aufgezeichneten Werten werden Alarme sofort nach dem Vorkommen an den gewählten Link gesendet. Daher sind die Einstellungen für die Pushing-Periode und die Zeitverzögerung nicht anwendbar.

Zurücksetzung der Alarmstatistiken

Diese Einstellung dient ausschließlich zum Zurücksetzen von in der MAVO-View-Software angezeigten Online-Alarmstatistiken.

Bild 16: Alarmstatistiken zur grafischen Darstellung der Häufigkeit der Alarm-Vorkommnisse

Alarm-Gruppeneinstellungen 🖭

Der PQ-Analysator **MAVOLOG PRO** unterstützt die Aufzeichnung und die Speicherung von 32 Alarmen, die in 4 Gruppen von je 8 Alarmen unterteilt werden. Jede Alarmgruppe hat gemeinsame Einstellungen, die für alle Alarme innerhalb dieser Gruppe gelten.

MB-Zeitkonstante

Definiert eine Temperaturmodus-Leistungsmaxima-Zeitkonstante für die Alarmgruppe.

Bei der Überwachung einer bestimmten Größe ist es möglich, ihren eigentlichen Wert oder ihren Leistungsmaxima-Wert zu überwachen. Wird das Letztere gewählt, sollte eine Zeitkonstante für die Berechnung des Temperaturmodus-Leistungsmaxima-Werts eingestellt werden.

Diese Einstellung dient ausschließlich Alarmzwecken und ist unabhängig von den Leistungsmaxima-Berechnungswerten zu Überwachungs- und Aufzeichnungszwecken, beschrieben im Kapitel *Min./Max.-Werte* auf der Seite 126.

Vergleich der Zeitverzögerung

Diese Einstellung definiert die Verzögerungszeit (falls erforderlich) zwischen der Erfüllung der Alarm-Bedingung und der Alarm-Aktivierung. Ist die Alarm-Bedingung kürzer als diese Einstellung, wird der Alarm nicht ausgelöst.

Diese Einstellung wird verwendet, um sporadische und sehr kurze Auslöser auszuschließen.

Hysterese

Diese Einstellung definiert die Alarm-Deaktivierungshysterese.

Wenn sich die überwachte Größe dem eingestellten Grenzwert nähert, kann eine leichte Abweichung davon eine Reihe von Alarmen auslösen.

Die Hysterese sollte entsprechend der voraussichtlichen Abweichung der überwachten Größe eingestellt werden.

Reaktionszeit

Diese Einstellung definiert die Alarm-Reaktion auf die überwachte Größe.

Normale Reaktion: In diesem Fall wird die überwachte entsprechend den angezeigten Mittelungseinstellungen gemittelt (0,1 bis 5 Sek. – siehe das Kapitel Allgemeine Einstellungen / Durchschnittsintervall auf der Seite 49)

Schnelle Reaktion: In diesem Fall reagieren Alarme auf die nicht gemittelten Messungen (1 Signalperiode).

Diese Einstellung sollte entsprechend der erforderlichen Funktionalität verwendet werden. Eine schnelle Reaktion ist anfälliger für Pannen und transiente Effekte in einem System, dafür ist die Reaktionszeit kurz.

Einzelalarm-Einstellungen 🖻

Jeder Einzelalarm lässt verschiedene Einstellungen zu.

Parameter:	Strom I1	
Wert:	Aktueller Wert	\$
Bedingung:	11 <	0,5 A
	V Alarm aktiviert	2.00 %
Aktion:	🔲 Relais einschalten [Relai	is]
	Tonsignal einschalten [B	eep]

Bild 17: Einzelalarm-Einstellungen

Parameter

Diese Einstellung definiert die zu beobachtende Größe. Es ist ebenfalls möglich, Vorgangsgrößen aus den E/A-Modulen auszuwählen.

Wert

Für die ausgewählten Beobachtungsparameter sollte ein tatsächlicher Wert oder ein MB-Wert (Maximalleistung Bedarfsanforderungswert) eingestellt werden.

Bedingung

Es handelt sich um eine Kombination aus einem logischen Operator "Größer als" oder "Kleiner als" und einem Grenzwert der Bedingung. Bei Digital-/Impulseingängen kann die Bedingung "Ist groß" oder "Ist klein" gesetzt werden.

Maßnahme

Dieser Abschnitt besteht aus Kontrollkästchen, die verschiedene Funktionen Einzelalarme zuordnen.

Das "Relais einschalten"-Kontrollkästchen kann ausgewählt werden, wenn der Benutzer will, dass dieser Alarm den Ausgang (die Ausgänge) aktiviert, die mit seiner Alarmgruppe (Impulse, Relais oder bistabiles Ausgangsmodul) verbunden sind. Dieser Vorgang gilt ausschließlich für die E/A-Module 1 und 2. An die Relaisausgänge der E/A-Module A und B kann nur ein einziger Alarm angeschlossen werden. In diesem Fall hat die "Relais einschalten"-Einstellung keinen Einfluss.

Über das "Signalton einschalten"-Kontrollkästchen wird der eingebaute Piepser aktiviert, sofern dieser Alarm aktiv ist.

Alarmaktivierungs-Kontrollkästchen, aktiviert die Alarm-Einstellung.

Alarm-Typen

Visueller Alarm

Wenn der Alarm aktiviert wird, blinkt eine rote LED an der vorderen Seite des Geräts (siehe das Bild auf der nächsten Seite).

Akustischer Alarm

Wird der Alarm aktiviert, so wird vom Gerät ein hörbarer Alarm (ein Piepsen) ausgelöst. Dieser kann durch das Drücken einer beliebigen Taste an der vorderen Platte ausgeschaltet werden (siehe das Bild auf der nächsten Seite).

Alarm-Ausgang (Impuls) – Für die E/A-Module 1 und 2 vorgenommenen Einstellungen

Je nach Form des Alarmsignals verhält sich das Ausgangsrelais wie unten dargestellt.

Bild 18: Grafische Darstellung des Alarmbetriebs

Interner Speicher

Messungen, Alarme, PQ-Berichte und Details können in einem eingebauten Speicher des PQ-Analysators **MAVOLOG PRO**, 8 MB Flash, gespeichert werden. Diese Speichergröße ist ausreichend zum Speichern von EN 50160-konformen PQ-Berichten mit Details für mehr als 12 Monate. Alle im Speicher abgelegten Aufzeichnungen stehen über die Schnittstelle oder über die Speicherkarte zur Verfügung und können mithilfe der MAVO-View-Software angezeigt werden.

Das Gerät hat ebenfalls eine eingebaute Funktion, die eine geplante Übertragung von im Speicher abgelegten Daten an ein externes Datensammlungssystem ermöglicht. Ausführliche Informationen über diese Funktion finden Sie im Kapitel *PUSH-Kommunikationsmodus* auf der Seite 145.

Speicher-Organisation PC

Der interne Speicher des Geräts verfügt über 8 MB. Er ist in 5 Partitionen unterteilt, deren Größe durch den Benutzer und 2 fixierte Partitionen definiert wird.

Die benutzerdefinierten Partitionen sind der A-, B-, C- und D-Recorder, die zum Aufzeichnen von Messungen vorgesehen sind (jeder Recorder kann bis zu 32 Parameter speichern). Darüber hinaus werden alle ausgelösten Alarme in einer Alarm-Partition gespeichert.

Die fixierten Partitionen dienen zum Aufzeichnen von PQ-Berichten und Details (siehe das Kapitel *Die Konformität der Spannung mit der Norm EN 50160* auf der Seite 97).

Speichergröße: 8 MB Letztes Lesedatum: 02.04.2014 00:41:06	
Speicherbereich Belegt Frei	
Rekorder A 7,4% 34D.	18h
Rekorder B 0.2% 1.286	D, 19h
Rekorder C 4%. 102D.	2h
Rekorder D 27.3% 11D.1	5h
Alarme 23,3% 24.06	4
Qualitätsberichte 2.7% 1.743	D, Oh
Qualitätsabweichungen 0,5% 125.4	80

Bild 19: Organisation des internen Speichers

Speicherbetrieb

Der Speicher funktioniert in einer zyklischen Betriebsart entsprechend der FIFO-Methode (First In First Out). Dies bedeutet, dass nur die aktuellsten Aufzeichnungen im Speicher abgelegt werden, welche die jeweils ältesten ersetzen.

Die Größe der gespeicherten Daten oder die Speicherdauer hängt von der gewählten Partitionsgröße, von der Anzahl der aufgezeichneten Größen und dem Speicherintervall ab.

Der auf den Partitionen verfügbare Speicherplatz wird im Informationsmenü gezeigt (siehe das Kapitel *Anzeige der Geräteinformationen* auf der Seite 39).

Leeren des Speichers PC

Normalerweise muss der Speicher nicht geleert werden, da er in einer zyklischen Betriebsart arbeitet. Sollte dies trotzdem erforderlich sein, muss die Datenspeicherung zuerst gestoppt werden. Öffnen Sie die Geräteeinstellungen in der MAVO-View-Software und setzen Sie den "Recorderzustand" in den Speicher-Einstellungen auf "gestoppt", wie im untenstehenden Bild gezeigt.

Aktualisieren Geräteadresse: 55 MV-LOG	≫ 🧔	OM7 - USB. Einstellung: 115200 Keine 8.1
Einstellungen		F:\MAVO-View 2.1\Data\MV-LOG
MV-LOG	* Einstellung	Wert
Verbindung	Reserviert für Netzgualität	2.048 kB
- Anschluss	Speicheraufteilung	A=63%, B=33%, C=0%, D=0%, Alarme=4%
B A Kommunikation	Rekorder A Statua	Aktiv
Datenempranger	Rekorder B Status	Algiv
Einstellungen	Rekorder C Status	Gestoppt
	Rekorder D Status	Aktiv
Zahler	Alam-Status	Aktiv
Tarfuhr	Qualitätsberichte-Status	Aktiv
Feiertage	Qualtatsdaten-Status	Aktiv
En- & Ausgange	Speicher C Betriebsart	Standard Speicher
- 🌆 [1] Watchdog-Ausgan	9 Speicher D Betriebsart	Standard Sneicher

Bild 20: Aktivierung oder Deaktivierung der Datenspeicherung

Laden Sie die Änderungen in das Gerät und öffnen Sie das Speicherinfo-Formular (Bild 19 auf der vorherigen Seite) und die Schaltfläche "Formatieren". Wählen Sie die zu leerenden Speicherpartitionen und klicken Sie auf die Formatierungs-Schaltfläche. Wenn die Partitionen geleert sind, setzen Sie die "Recorderzustand"-Einstellung zurück auf "aktiv".

ACHTUNG

Es wird ausdrücklich empfohlen, die Recorderdaten durch Herunterladen zu sichern, bevor Sie Änderungen vornehmen – am Recorder, an den Energie-, Anschlusstyp-, Strom- und Spannungstransformator-Einstellungen oder an den verwendeten Strom- und Spannungsbereichen. Diese Änderungen könnten die aufgezeichnete Chronik beeinträchtigen, und die Daten könnten nicht mehr verfügbar sein.

Universal Standard-Speicher-Einstellungen PC

Der Universal Standard-Speicher besteht aus 4 Partitionen (A, B, C und D). Dieser hat weder einen Alarm-Recorder noch einen Recorder für PQ-Berichte oder Details. Individuell können folgende Einstellungen für jede der vier Partitionen vorgenommen werden:

Speicherintervall

Mit dem Speicherintervall definiert man das Zeitintervall zur Aufzeichnung von Messwerten.

Welcher Parametertyp bei jedem Intervall gespeichert werden sollte (durchschnittlich, min., max., aktuell) wird in den Einstellungen für jeden individuellen Parameter definiert, der nachstehend in diesem Kapitel beschrieben wird.

Die MB-Zeitkonstante (Maximalleistung Bedarfsanforderungswert)

Wenn Leistungsmaxima aufgezeichnet werden müssen, wird über diese Einstellung die Periode zur Berechnung der Max.- und Min.-Werte im Temperaturmodus eingestellt (Mindest-(MB) oder Höchst-(MB)). Es können verschiedene Parameter für die aufgezeichneten Parameter 1-8, 17-24 und 9-16, 25-32 verwendet werden. Diese Einstellung ist ausschließlich für die Recorder A und B verfügbar.

PUSH-Einstellungen

Wenn der PUSH-Kommunikationsmodus aktiv ist, können alle im Speicher abzulegenden Messungen an eine vordefinierte Stelle im lokalen oder im Weitverkehrsnetzwerk (Wide Area Network) gesendet (gepusht) werden – seit dem Zeitpunkt der Aktivierung der PUSH-Funktionalität, nicht für die vorherigen Aufzeichnungen. Die Einstellungen erlauben das Auswählen eines Zielortes, an den die Daten gesendet werden können; es kann ebenfalls ein Zeitintervall für die gesendeten Daten und eine Verzögerungszeit für das Senden von Daten ausgewählt werden, wenn diese aufgrund von Netzwerkbeschränkungen nicht sofort gesendet werden können.

Weitere Informationen über den PUSH-Kommunikationsmodus und das XML-Datenformat finden Sie im Kapitel *PUSH-Kommunikationsmodus* auf der Seite 145.

Aufgezeichnete Größen

Bei jeder aufzuzeichnenden Messung kann die benötigte Größe und ihr Typ innerhalb des Speicherungsintervalls eingestellt werden.

Bild 21: Aufgezeichnete Parametereinstellungen

Parameter **Parameter**

Hier kann die überwachte Größe aus einer Liste unterstützter Messungen ausgewählt werden.

Abgesehen von primären elektrischen Größen können auch Hilfsgrößen aus den Eingangsmodulen ausgewählt werden.

<u>Wert</u>

Der Typ einer ausgewählten Größe innerhalb des eingestellten Überwachungsintervalls kann auf verschiedene Bedingungen eingestellt werden.

- *Min.- und Max- Werte* stellen die minimal und maximal aufgezeichneten gemittelten Werte innerhalb des ausgewählten Speicherintervalls dar. Beachten Sie, dass der Min./Max.-Wert kein einzelner Periodenwert, sondern ein Durchschnittswert ist (0,1 Sek. bis 5 Sek.; siehe das Kapitel *Allgemeine Einstellungen/Durchschnittsintervall* auf der Seite 49).
- Der minimale (MB) und der maximale (MB) Wert stellen die Berechnung eines MB-Werts mit angewandter Temperaturfunktion dar. Die Temperaturfunktions-Zeitkonstante ist oben beschrieben (MB-Zeitkonstante). Sie gilt ausschließlich für die Recorder A und B.

- *Der Durchschnittswert* stellt den berechneten Durchschnittswert innerhalb des ausgewählten Speicherintervalls dar.

- Der aktuelle Wert
 stellt den ersten momentanen Wert innerhalb des ausgewählten
 Speicherintervalls dar. Beachten Sie, dass der momentane Wert
 kein einzelner Periodenwert, sondern ein Durchschnittswert ist
 (0,1 Sek. bis 5 Sek.; siehe das Kapitel Allgemeine Einstellungen /
 Durchschnittsintervall auf der Seite 49). Er gilt ausschließlich für
 die Recorder C und D.
- Der minimale und der maximale (Perioden-)Wert stellen den Min.- oder den Max.-Wert innerhalb des ausgewählten Speicherintervalls dar, berechnet <u>in einer einzigen Periode</u>. Diese Funktion erlaubt die Aufzeichnung sehr schneller Änderungen. Sie gilt ausschließlich für die Recorder C und D.

Die Konformität der Spannung mit der Norm EN 50160

Die europäische Norm beschreibt die Merkmale der Nieder-, Mittel- und Hochspannung in öffentlichen Energieversorgungsnetzen. Zweck der EN 50160-Norm ist es, die Netzqualitätskriterien / Grenzwerte hinsichtlich Höhe, Kurvenform, Frequenz und Symmetrie der drei Leiterspannungen zu definieren und zu beschreiben. Der Netzstöranalysator MAVOLOG PRO wurde zur permanenten Netzüberwachung hinsichtlich der Netzqualitätsnorm EN50160 konzipiert. Hohe Flexibilität der Parametrierung erlaubt eine Anpassung an andere Normen sowie Einsatz für allgemeine Leistungs- und Verbrauchsmessungen. Mithilfe der Einstellungs- und Überwachungssoftware MAVO-View können Spannungscharakteristika überwacht und wöchentliche Berichte über die die Qualität der Versorgungsspannung erstellt werden.

Auf der Grundlage der in der Norm spezifizierten Anforderungen an die Qualität der Versorgungsspannung werden die Standardparameter im Gerät eingestellt, entsprechend denen die Überwachung aller erforderlichen Spannungseigenschaften durchgeführt werden soll. Die Parameter können in den erweiterten Einstellungen für einzelne Charakteristika individuell geändert werden.

ACHTUNG

Die Werkeinstellungen für PQ-Charakteristika entsprechen der Norm EN 50160. Werden einzelne Parameter geändert, ist die Konformität der wöchentlichen Berichte mit diesem Standard nicht mehr gewährleistet.

Parameter der PQ-Charakteristika können nur mithilfe der MAVO-View-Einstellungssoftware eingestellt werden.

Aktualisieren	Geräteadresse: 35 Gerät #55, COM7 - USB, Einstellung: 115200, Keine, 8, 1				
-	Cit Einstellungen		F:\MAVO-View 2.1\Data\MV-LOG-k.		
	Display	* Enstellung	Wet		
Verbindung	Sichefheit.	Operwachungsmodus	EN 50160		
	E Zibler	Eektroenergiesystem	Nederspannung		
14	Coner	Anschlussform der Spannung	Phase-Neutral		
Cert	Feiedane	Versorgungsnennspärinung (V)	230		
Finstellungen	- En-& Ausgarige	Netz-Nennfrequenz	50 Hz		
	[1] Watchdog Ausgang	Flicker-Berechnungsfunktion	230V-Lampe		
	[2] Relais-Ausgang	Uberwachungszeitraum (Wochen)	1		
	[3] Analog-Engang	Erster Tag der Überwachung	Sonntag		
	[4] Analog-Eingang	'Flagged Data'-Bewertung	In Report einschließen		
messungen	A) 8 x Relais-Ausgang	Benchte: Daten senden an Link	Kein Senden		
	(B) 8 x Digital-Engang	Berichte: Sendeintervall	Jeden Datensatz (vollst. Report)		
1000	C Synchronisation, COM2	Berichte: Sende-Zeitversatz	Keine Verzögerung		
0.040	A firm Grant 1	Details: Daten aenden an Link	Kein Senden		
Analyse	A Alam Sa page 2	Details: Sendeintervall	Jeden Datensatz		
	Alam Grope 3	Details Sende-Zeitversatz	Keine Verzögerung		
Upgrades	Alam Guspe 4 Alam Selecter Vertaufs-Reloader B Vertaufs-Reloader D Vertaufs-Reloader D Vertaufs-Reloader D Spannungsenderungen Spannungsenderungen Spannungsenderungen Samnungsenderungen Samnungsenderungen	E	Pasewot		

Bild 22: Allgemeine PQ-Einstellungen

Allgemeine PQ-Einstellungen

Allgemeine PQ-Einstellungen sind grundlegende Parameter, die Einfluss auf andere Einstellungen haben.

Überwachungsmodus

Für den Überwachungsmodus können folgende Einstellungen vorgenommen werden:

- EN 50160: Überwachung entsprechend EN 50160 aktiviert.
 Wöchentliche Berichte werden entsprechend den Parametern verfasst
- Keine Überwachung: Wöchentliche Berichte zur Entsprechung des Netzwerks mit der Norm sind deaktiviert

Elektrisches Energiesystem

Die Anforderungen an die PQ-Überwachung variieren je nach Typ des überwachten öffentlichen Versorgungssystems. Es ist daher äußerst wichtig, den korrekten Typ zu wählen. Diese Einstellung beeinflusst einige der definierten Grenzwerte entsprechend der einschlägigen Norm EN 50160.

Der PQ-Analysator **MAVOLOG PRO** kann die Stromqualität in folgenden Systemen überwachen:

- in netzgekoppelten Niederspannungssystemen
- in netzgekoppelten Mittelspannungssystemen
- in Niederspannungs-Inselsystemen
- in Mittelspannungs-Inselsystemen

BITTE BEACHTEN

Mit der Auswahl eines der aufgelisteten Versorgungssysteme werden die PQ-Charakteristika automatisch für dieses konkrete System entsprechend den Anforderungen der Norm EN 50160 gesetzt.

Nennversorgungsspannung

Stellen Sie den Spannungspegel des überwachten Systems ein. Dieser Wert dient als Referenz zur Berechnung der Stromqualitäts-Indizes der Spannungsabweichungen und ist normalerweise gleich der Netzwerk-Nennspannung (auch als "Udin" in diversen Normen gekennzeichnet). Der voreingestellte Standardwert ist der EU-Niederspannungs-Standardwert 230 V.

Nennleistungsfrequenz

Die Nennfrequenz der überwachten Versorgungsspannung wird hiermit ausgewählt. Der voreingestellte Standardwert ist die EU-Standardfrequenz 50 Hz. Es können auch 60 Hz ausgewählt werden.

Flicker-Berechnungsfunktion

Der Niederspannungspegel für Haushaltslampen ist entweder 230 V oder 110 V. Die Funktion der Flimmererfassung variiert in Abhängigkeit von dieser Spannung. Da der tatsächliche Niederspannungspegel ein anderer sein kann als die sekundäre Spannung der verwendeten VT (Nennmessspannung), muss diese Einstellung auf ein Spannungsniveau gesetzt werden, das zur Versorgung von Haushaltslampen dient.

Überwachungsperiode (Wochen)

Die Überwachungsperiode gibt die Periode zur Erstellung von PQ-Berichten vor. Wenn der Überwachungsmodus auf EN 50160 gesetzt wird, wird die Überwachung kontinuierlich durchgeführt. Diese Einstellung definiert, wie oft Berichte erstellt werden sollten.

Tag des Überwachungsanfangs

Es wird ein Anfangswochentag für die Überwachungsperiode ausgewählt. Diese beginnt um 00:00 (Mitternacht) des ausgewählten Tages. Der ausgewählte Tag ist der erste Tag im Bericht.

Nachdem die Überwachungsperiode und der Überwachungsanfangstag definiert sind, werden PQ-Berichte kontinuierlich am Ende jeder Überwachungsperiode erstellt. Alle Berichte und dazugehörigen Anomalien innerhalb der Überwachungsperiode werden im internen Speicher des Gerätes abgelegt und können mithilfe der MAVO-View-Software analysiert werden.

Einstellung zum Markieren von Ereignissen / Flagging

Die Einstellung zum Markieren von Ereignissen spezifiziert die datenbezogenen Vorgänge (aufgezeichnete Ereignisse), die entsprechend dem Markierungskonzept IEC 61000-4-30 markiert wurden.

Markierte Daten sind Aufzeichnungen der Spannungsqualität, die von einem oder mehreren Spannungsereignissen (Unterbrechungen, Erhöhungen, Einbrüche) beeinträchtigt wurden.

Der Zweck des Markierens von Daten ist die Kennzeichnung aufgezeichneter Parameter, wenn bestimmte Störungen zur Beeinträchtigung von Messungen und zur Beschädigung von Daten führen könnten. Beispielsweise kann ein Spannungseinbruch Flicker, zwischenharmonische Oberschwingungen usw. verursachen. In diesem Fall werden alle Parameter, die zurzeit der Spannungsereignisse aufgezeichnet wurden, markiert. Bei späterer Bewertung können diese markierten Aufzeichnungen aus dem Abschlussbericht ausgelassen werden, indem eine entsprechende Einstellung gewählt wird.

BITTE BEACHTEN

Unabhängig von dieser Einstellung werden Messwerte immer im Recorder gespeichert und sind zur Analyse verfügbar. Markierungen beeinflussen PQ-Berichte nur als Ganzes.

Senden von Berichten und Berichtdetails

Wenn der PUSH-Kommunikationsmodus aktiv ist, können Berichte über die Netzqualität und Berichtdetails für jeden Parameter an eine vordefinierte Stelle im lokalen oder im Weitverkehrsnetzwerk (Wide Area Network) gesendet (gepusht) werden. Die Einstellungen erlauben das Auswählen eines Zielortes, an den die Daten gesendet werden können; es kann ebenfalls ein Zeitintervall für die gesendeten Daten und eine Verzögerungszeit für das Senden von Daten ausgewählt werden, wenn diese aufgrund von Netzwerkbeschränkungen nicht sofort gesendet werden können.

Weitere Informationen über den PUSH-Kommunikationsmodus finden Sie auf der Seite 145.

EN 50160-Parametereinstellungen

Erscheinung	PQ-Parameter	
Frequenzabweichungen	Frequenzverzerrung	
Spannungsabweich-	Spannungsschwankungen	
ungen	Spannungsunsymmetrie	
Spannungsänderungen	Rapide Spannungsänderungen	
	Flicker	
Spannungsereignisse	Spannungseinbrüche	
	Spannungsunterbrechungen	
	Spannungserhöhungen	
Oberschwingungen &	THD-Oberschwingungen	
THD	Zwischenharmonische Oberschwingungen	
	Signalspannung	
	1	

Tabelle 13: Stromqualität-Indizes entsprechend EN 50160

In der Norm EN 50160 werden die PQ-Parameter und die entsprechenden Grenzwerte zur Überwachung beschrieben, ob die Spannung des Versorgungssystems *entsprechend* der aufgeführten Norm funktioniert.

Die Grenzwert-Einstellungen und der erforderliche Prozentanteil des jeweiligen Ereignisses sind ähnlich wie bei den Anforderungen der Norm EN 50160.

Wenn eine Überwachung *entsprechend* dieser Norm erforderlich ist, muss an den PQ-Parametereinstellungen keine Änderung vorgenommen werden.

Eine ausführlichere Beschreibung bestimmter Vorgänge zur Überwachung von Parametern finden Sie im Kapitel *Messungen*.

Es gibt bestimmte PQ-Parameter, die für die Überwachung von Interesse sind, jedoch nicht in PQ-Berichten enthalten sein müssen. Diese Einstellungen haben keine standardisierten Grenzwerte und müssen *entsprechend* den Anforderungen des Versorgungsnetzwerks eingestellt werden.

- Kurzfristiges Flicker (Pst-Grenzwert = 1)
- Zwischenharmonische Oberschwingungen (10 Werte benutzerdefinierter Frequenzen)

Bild 24: Einstellungen der Netzqualitäts-Parameter werden über die Einstellungs- und Überwachungssoftware MAVO-View vorgenommen

In der Beschreibung im HILFE-Bereich der MAVO-View-Software sind deutlich die PQ-Parameter markiert, die nicht in den EN 50160-Bericht aufgenommen werden müssen.

Im untenstehenden Bild sind die Einstellungen für zwischenharmonische Werte dargestellt:

	Let a		
100	Einstellungen	1-	F\/MAVO+View 23\/Data/MV+LOG-k.n
90	Chiptey	* Einstellung	Wen
Verbindung	II Fowne	Committeenance 1 Systems No.	3
	Zieler	*Zwischenhamonische 2. Frequenz (Hz)	17
	- NO Tarluty	*Zwischenhamonische 3: Frequenz (Hz)	125
001	Featage	*Zwischenhamonische 4: Frequenz (Hz)	175
Einstellungen	E Cal En- & Auspange	* Zwachenhamonische 5 Frequenz (Hz)	225
	[1] Watchdog-Ausgang	* Zwischenhamonische 6 Frequenz (Hz)	275
-	[2] Relain-Ausgang	* Zwischenhamonische 7: Frequenz (Hz)	325
3	[3] Analog Engang	* Zwischen/amonische 8. Frequenz (Hz)	375
Management	Malog-Engang	* Zwischenhamonische 9 Frequenz (Hz)	475
messengen	- M (A) 5 x Relais Ausgang	* Zwischenhamonische 10: Frequenz (Hz)	575
Upgrades	Atam Gruppe 3 Atam Gruppe 4 Sandard Specher Vetauly-Relixorder A Vetauly-Relixorder C		

Bild 25: Einstellungen für 10 benutzerdefinierte zwischenharmonische Frequenzen

Zurücksetzungs-Vorgänge

Beim normalen Betrieb eines Gerätes müssen verschiedene Zählerwerte gelegentlich zurückgesetzt werden.

Zurücksetzung der Energiezähler (E1, E2, E3, E4) 🖭 👁

Alle oder einzelne Energiezähler (Messgeräte) werden zurückgesetzt.

➡ Hauptmenü → Zurücksetzungen → Energiezähler → Alle Energiezähler / der Energiezähler E1 / E2 / E3 / E4

Kosten der Energiezähler zurücksetzen (E1, E2, E3, E4) 🖭 👁

Alle oder individuelle Energiekosten werden zurückgesetzt.

➡ Hauptmenü → Zurücksetzungen → Energiezähler → Alle Kostenzähler / der Kostenzähler E1 / E2 / E3 / E4

Zurücksetzung der maximalen MB-Werte 🖭 👁

Temperaturmodus

Aktuelle und gespeicherte MBs werden zurückgesetzt.

Fixiertes Intervall / Wechselfenster

Die Werte im aktuellen Zeitintervall, in allen Unterfenstern für Wechselfenster und gespeicherte MBs werden zurückgesetzt. Zugleich wird auch eine Synchronisierung des Zeitintervalls mit dem Beginn des ersten Unterfensters durchgeführt.

Zurücksetzung der letzten MB-Periode 🖭 👁

Temperaturmodus

Der aktuelle MB-Wert wird zurückgesetzt.

Fixiertes Intervall / Wechselfenster

Die Werte im aktuellen Zeitintervall und in allen Unterfenstern für Wechselfenster werden zurückgesetzt. Zugleich wird auch eine Synchronisierung des Zeitintervalls durchgeführt.

B Hauptmenü \rightarrow Zurücksetzungen \rightarrow MB der letzten Periode

MB-Synchronisierung 🖭 👁

Temperaturmodus

In dieser Betriebsart hat die Synchronisierung keinen Einfluss.

Fixiertes Intervall / Wechselfenster

Mit der Synchronisierung wird die Zeit in einer Periode oder in einer Teilperiode für Wechselfenster auf 0 (null) gesetzt. Wird das Intervall auf 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 oder 60 Minuten gesetzt, wird die Zeit in einer Periode auf einen solchen Wert gesetzt, dass manche Intervalle nach dem Verstreichen einer Stunde zu Ende gehen.

Beispiel:

Hauptmenü → Zurücksetzungen → MB-Synchronisierung

Zeitkonstante (Intervall)	15 Min.	10 Min.	7 Min.
Synchronisierungs- Startzeit	10:42	10:42	10:42
Zeit in einer Periode	12 Min.	2 Min.	0 Min.
Erstes/letztes Intervall	10:45	10:50	10:49

Alarmrelais (1 von 2) aus 📼

Schalten Sie den Alarm aus (Relaisausgang).

Hauptmenü \rightarrow Zurücksetzungen \rightarrow Zurücksetzung des Alarmstatus

Zurücksetzung der min./max. Werte 📼 👁

Alle Min.-/Max.-Werte werden zurückgesetzt.

Zurücksetzung der Alarmstatistiken 🖭

Löscht die Alarmstatistiken. Dies kann mithilfe der MAVO-View-Software unter den Alarmeinstellungen durchgeführt werden. Diese Einstellung dient ausschließlich der Zurücksetzung von in der MAVO-View-Software angezeigten Online-Alarmstatistiken.

Einstellungen und Speicherkarte

Der Netzstöranalysator **MAVOLOG PRO** verfügt über einen eingebauten Steckplatz für eine SD-Speicherkarte in Normalgröße, die zur Übertragung von Messungen aus dem internen Speicher, zur Geräteeinstellung und Software-Aktualisierung verwendet wird. Die Speicherkarte wird mit dem FAT16-Dateisystem formatiert.

Verzeichnisstruktur auf einer Speicherkarte

Eine Verzeichnisstruktur wird definiert und ermöglicht eine korrekte Datenverarbeitung über eine Speicherkarte. Die Speicherkarte muss folgende Verzeichnisse und Dateien enthalten:

- DATEN
- EINSTELLUNGEN
- AKTUALISIERUNG (Upgrade)
- Datei: Automenu.txt (optional)

DATEN

Die Aufzeichnungen aus dem internen Speicher werden im DATEN-Verzeichnis gesammelt. Zum Hochladen (upload) von Daten mehrerer Geräte auf die Speicherkarte überprüft und erstellt jedes Gerät ggf. sein eigenes Unterverzeichnis vor der Datenübertragung. Jedes Unterverzeichnis verwendet eine Gerät-Seriennummer als seinen Namen und speichert Dateien mit darin enthaltenen Daten. Jeder Dateiname enthält das Datum (Jahr, Monat und Tag) und eine Aufzeichnungs-Sequenznummer des betreffenden Tages.

WARNUNG

Beim Laden (upload) einer Datendatei auf eine Speicherkarte wird, sofern bereits eine Datei mit der Sequenznummer 99 für jenen Tag vorhanden ist, eine Datei mit der Sequenznummer 00 erstellt. Die Datei mit der Sequenznummer 00 für den betreffenden Tag wird überschrieben, falls an jenem Tag noch weitere Daten geladen werden.

EINSTELLUNG

Einstellungen werden im Verzeichnis in zwei Aufzeichnungsmodi gespeichert:

- Mit einer Typenbezeichnung und einer Sequenznummer von 1 bis 9
- Mit einer Gerät-Seriennummer

AKTUALISIERUNG

Eine Datei mit Upgrades ist zum Hochladen mithilfe der MAVO-View-Software verfügbar. Der Name einer Datei besteht aus dem Namen der entsprechenden Gerätetyp-Bezeichnung und der Endung fl2 (z. B. MAVOLOGPRO.FL2).

Automenu.txt

Zur schnelleren und leichteren Aktualisierung der Firmware befindet sich die "Automenu.txt"-Datei im Hauptverzeichnis. Ist eine Speicherkarte mit einer Datei eingesteckt und ist die Upgrade-Version höher als die installierte, springt die Anzeige automatisch zum Speicherkartenmenü und es wird das Software-Aktualisierungsmenü angezeigt, andernfalls springt sie automatisch zum Dateispeicherungs-Menü. Ist die Aktualisierung beendet, die OK-Taste gedrückt und die Speicherkarte entfernt, wird das Menü, das vor dem Einstecken der Speicherkarte angezeigt war, wieder eingeblendet.

Der Benutzer kann die Automenu.txt-Datei mithilfe des Programms Text Editor erstellen. Eine neue Datei muss geöffnet und unter dem korrekten Namen (Automenu.txt) und ohne Inhalt gespeichert werden.

Beispiel:

DATEN

MC003973

MC009424

MC003974

06050301.MMC

06050301.MMC 06070301.MMC

06060301.MMC

06070301.MMC

EIN-STELLUNG

	MC003973.MSF
	MAVOLOGPRO-1.MSF
	MAVOLOGPRO-2.MSF
	MC750-1.MSF
UPGRADE	

MC760.FL2

Automenu.txt

Handhabung der Speicherkarte

Der Netzstöranalysator ist auf der vorderen Seite mit einem Steckplatz für Speicherkarten ausgestattet. Der Steckplatz ist durch eine Schutzabdeckung geschützt, die leicht entfernt werden kann, bevor die Karte eingesteckt wird. Die Schutzabdeckung muss nach Beenden der Speicheroperationen wieder fixiert werden.

ACHTUNG

Solange die Aktivitäts-LED der Speicherkarte blinkt, sollte diese nicht aus dem Steckplatz entfernt werden.

Speicherplatz-Informationen

Das Gerät überprüft das Dateisystem und die Kapazität der eingesteckten Speicherkarte.

SD-Karte → SD-Info

Datenspeicherung

Abschnitte

Für jeden Bereich muss definiert werden, ob er in eine Datei aufgenommen werden soll.

Datum

Seit der letzten Übertragung sind alle verfügbaren Daten aus der letzten offiziellen Messung mit einem Passwort enthalten. Für die letzte Woche und den letzten Monat sind alle Daten der letzten kompletten Einheit (eine Woche, ein Monat) mit dem Beginn des ersten Tags um 00:00 enthalten. Das ausgewählte Datum definiert einen Tag mit dem Beginn um 00:00, mit der Periode bis zur aktuellen Zeit der Datenübertragung. Nach der Auswahl aller Daten werden alle Daten für einen individuellen Bereich, die sich bis zum Beginn der Messung im Speicher befinden, übertragen.

Offizielle Messung

Wird die offizielle Messung ausgewählt, wird das Datum der Messung im Gerät gespeichert und bei der nächsten offiziellen Messung angewandt.

Beispiel:

Hauptmenü → SD-Karte → Datenspeicherung

Speichereinstellungen 🕮

Die Datei mit den aktuellen Geräteeinstellungen wird im Verzeichnis EINSTELLUNGEN gespeichert. Der Dateiname besteht aus der Seriennummer des Geräts und der MSF-Erweiterung. Falls sich die Datei bereits auf der Speicherkarte befindet, fragt das Gerät nach, ob die Datei überschrieben werden soll.

Ladeeinstellungen 壑

Zum Laden von Einstellungen werden die dem Gerätetyp entsprechenden Dateien auf dem LCD-Display angezeigt. Wenn eine Datei ausgewählt wird, müssen die zu überschreibenden Einstellungssegmente ausgewählt werden. Die Anzahl der zu ändernden Register wird neben jedem Segment angegeben. Nach der Übertragung der Einstellungen kann eine Fehlermeldung angezeigt werden. Fehler treten auf, wenn sich die Moduleinstellung und die Speicherkapazität von den im Gerät verwendeten unterscheiden. Die Anzahl der Einstellungen (Register), die nicht zusammenpassen und nicht geändert sind, wird nach einer Warnung angezeigt.

Grundeinstellungen

Bei der Übertragung der Grundeinstellungen werden die Anschlusseinstellungen, Wandlerverhältnisse, die verwendeten Spannungs- und Strombereiche sowie die Nennfrequenz nicht geändert. Neue Einstellungen können Energiezähler beeinträchtigen, wenn die Aufzeichnungen im Speicher abgelegt werden.

Alarme

Die Einstellungen aller Alarme werden geändert, aber alte Alarme mit bereits vorhandenen Einstellungen bleiben im Speicher.

Recorder

Die Recorder-Überschreibung ermöglicht eine Einstellungsänderung der Verbindung, des Wandlerverhältnisses, der verwendeten Spannungs- und Strombereiche sowie der Nennfrequenz. Alle anderen Daten im Speicher werden gelöscht.

Beispiel einer Anzeige auf dem LCD-Display für den MAVOLOG PRO:

O Hauptmenü \rightarrow SD-Karte \rightarrow Ladeeinstellungen

Firmware-Aktualisierung

Vor der Aktualisierung werden die Dateien auf der Speicherkarte überprüft; dies kann eine Weile dauern (ca. 1 Minute). Werden beide Versionen angezeigt, so kann eine Aktualisierung durchgeführt werden, falls die Version der Gerätesoftware eine ältere ist oder mit der Version auf der Speicherkarte übereinstimmt.

WARNUNG

Während der Aktualisierung der Firmware-Software dürfen Sie die Speicherkarte **nicht** entfernen; die Stromversorgung darf nicht unterbrochen werden – das Gerät könnte beschädigt werden!

Die Reparatur des Gerätes muss in diesem Fall von autorisierten Fachkräften durchgeführt werden.

Aktualisierungsfehler-Ursachen:

- Fehler 1: Speicherkarte nicht eingesteckt
- Fehler 2: Fehler des FAT16-Dateisystems
- Fehler 3: Datei existiert nicht (.fl2)
- Fehler 4: Fehler in .fl2-Datei
- Fehler 5: Datei zu lang (.fl2)
- Fehler 6: Ungültige Datei (.fl2)
- Fehler 7: Inkorrekte Aktualisierungsversion (.fl2)

MESSUNGEN

.....

Der PQ-Analysator **MAVOLOG PRO** führt Messungen mit einer konstanten Abtastfrequenz von 32 kHz durch. Die Messmethoden unterscheiden sich bei normalen Betriebsgrößen, wobei die Werte entsprechend den Aggregationsanforderungen der Norm IEC 61000-4-30 (Klasse A) gemittelt und aggregiert werden, sowie bei Spannungsereignissen, wobei die Halbperioden-Werte wieder entsprechend der Klasse A-Norm bewertet werden.

EINFÜHRUNG	111
AUSWAHL DER VERFÜGBAREN GRÖSSEN	113
ERKLÄRUNG DER GRUNDLEGENDEN KONZEPTE	117
BERECHNUNG UND ANZEIGE DER MESSUNGEN	119
VORHANDENE WERTE	120
MIN/MAXWERTE	126
ALARME	128
OBERSCHWINGUNGSANALYSE	130
PQ-ANALYSE	134
ONLINE-ÜBERWACHUNG	135
PQ-AUFZEICHNUNGEN	138

Einführung

Online-Messungen

Online-Messungen werden auf dem Display angezeigt oder können mithilfe der Einstellungs- und Überwachungssoftware MAVO-View überwacht werden.

Auf dem Display werden kontinuierlich Messungen durchgeführt; die Aktualisierungszeit hängt vom eingestellten Durchschnittsintervall ab, wobei die mithilfe der MAVO-View-Software überwachte Messwertrate fixiert ist und ca. jede Sekunde aktualisiert wird.

Zum besseren Überblick über die zahlreichen Messwerte werden diese in mehrere Gruppen unterteilt, die Hauptabmessungen, Min.- und Max.-Werte, Oberschwingungen, PQ-Parameter und Alarme enthalten.

In jeder Gruppe können Daten grafisch oder in ausführlicher tabellarischer Form dargestellt werden. Die Letztere erlaubt es, Messwerte zu fixieren und/oder Daten in diverse Anwendungsprogramme zur Berichterstellung zu kopieren.

Bild 26: Online-Messungen in grafischer Form – Zeigerdiagramm und Histogramm des gesamten täglichen aktiven Energieverbrauchs

Atualisieren	Gerätnadresse: 33 MV4.00	🛹 Geh	et aut + Getat #33, COM	7 - USB, Einstellung 1152	00.Keine.8.1				
	Messingen MV-LOG-								
100	Phase N-Messurger	11	12	13	Gesard	Andere			
entindung	Spanning	229.81 V	229,23 V	227,62 V		U" = 228.95 V			
	Strom	158.15 A	285.70 A	277.40 A	721.25 A	1~ + 240.41 A			
	Winkleistung	36.21 W	65.33 W	\$0.45 W	162,03 W				
(n)	Bindestung	1.98 var	-0,12 var	18.26 var	20.12 var				
influences	Scheinleittung	36.34 VA	65.48 VA	63.20 VA	165.03 VA				
	Leitungfiètor	0.9964 hd	0.9977 Kap	0.9571 Hd	0.5618 ind				
	Leidungswinkel	1.89 *	0.16*	16.60 *	7,08+				
	THD-Up	2.55 %	2.67 %	2.51 %					
	THOI	8,15 %	5.94 %	4,60 %					
anon-gen.	7004	4,48 %	3,26 %	2.53 %					
	Kifaldor	0.00	0.00	0.00					
1000	Overt Stronflaktor	0.0%	0.0%	0.0%					
	Geschepannung	0.00 V	0.00 V	0.00 V					
inalyse	Phase-Phase-Messurgen	L1-L2	12-13	13-13	Genard	Andere			
	Phase Phase Spanning	398.60 V	395.43 V	395.66 V		Upp ** + 396.56 V			
	Phaserwerkel	120.52 *	115,81 **	119,66 *					
20	THD-Upp	2.63 %	2.52 %	2.50 %					
pgrades	Gleichapannung	0.00 V	0.00 V	0.00 V					
	Neutralieter	Mecowert	Writel	Berechniet	Fellier	DC			
	Strom	2.88 A	-79.56 *	2,85 A	109.05 A				
	Sperrung	0.51 V	100.52 *			0.00 V			
	Energezähler	Energiezähler E1 (Exp)	Energezatier E2 (Exp)	Energiezabler E3 (mp)	Energiezabler E4 (Imp)	Adver Tarl			
	Generat	23.346.91 kWh	1.441,18 komh	995,33 kWh	28.480,88 kvah	1			
	Tart 1	23.346.91 kWh	1.441.10 kvarti	395.33 kWh	28.480.88 kvah				
	Terf 2	0.00 k/Mh	0,00 kvath	0.00 k/mh	0.00 kvah				
	Terf.3	0.004/05	0.00 kooth	0.01x00	d 00 kvett				

Bild 27: Online-Messungen in tabellarischer Form

Simulator / Interaktives Instrument

Eine zusätzliche Kommunikationsfunktion des Gerätes erlaubt eine interaktive Handhabung eines dislozierten Geräts, so als würde es sich direkt vor dem Benutzer befinden.

Diese Funktion ist nützlich für Präsentationen oder Produktschulungen.

Bild 28: Online-Oberschwingungsmessungen in grafischer Form und als Gerätesimulation

Auswahl der verfügbaren Größen

Die verfügbaren Online-Messgrößen und ihre äußeren Darstellungen können variieren, und zwar in Abhängigkeit vom Typ des Stromnetzwerks und anderen Einstellungen, z. B. Durchschnittsintervall, Leistungsmaxima-Modus, Blindleistung-Berechnungsmethode...

Die komplette Auswahl der verfügbaren Online-Messgrößen finden Sie in einer Tabelle auf der nächsten Seite.

BITTE BEACHTEN

Die Unterstützung der Messungen hängt vom Anschluss-Modus und vom Gerätetyp ab. Die berechneten Messungen (z. B. die Spannungen U_1 und U_2 bei einem 3-Phasen-, 4-Draht-Anschluss mit einer symmetrischen Belastung) dienen ausschließlich Informationszwecken.

BITTE BEACHTEN

Bei den Anschluss-Modi 3b und 3u werden ausschließlich die Zwischenphasen-Spannungen gemessen. Aus diesem Grund wird der Faktor √3 für die Berechnung der Qualität unter Berücksichtigung der Nenn-Phasenspannung angewandt. Beim 4u-Anschluss-Modus ist die Messunterstützung die gleiche wie bei 1b.

Messungstyp	Messung	3-Phasen 4-Draht	3-Phasen 3-Draht	1-Phase	Anmerkungen
Phasen-	Spannung				
messungen	U _{1-3_RMS}	-	;	; 1ph	
	U _{AVG_RMS}	-	7	7	
	Uunbalance_neg_RMS	7	-		
	Uunbalance_zero_RMS	7			
	Strom				
	I _{1-3_RMS}	;	;	🕻 1ph	
	I _{TOT_RMS}	;	;	7	
	I _{AVG_RMS}	7	;	7	
	Leistung				
	P _{1-3_RMS}	7	;	🕻 1ph	
	P _{TOT_RMS}	7	;	7	
	Q _{1-3_RMS}	7	7	📁 1ph	Die Blindleistung kann als quadratische
	Q _{TOT_RMS}	7	7	7	verzögerte Abtastung berechnet werden.
	S _{1-3_RMS}	-	7	; 1ph	
	S _{TOT_RMS}	-	7	7	
	PF _{1-3_RMS}	-	,	; 1ph	
	∮ <i>1-3_RM</i> S	-	,	; 1ph	PA – Leistungswinkel
	Oberschwingungsan	alyse			
	THD-U ₁₋₃	7	;	📁 1ph	
	THD-I ₁₋₃	;	;	📁 1ph	
	U _{1-3_harmonic_1-63_%}	7	7	🕻 1ph	% des RMS oder % der Basis
	U1-3_harmonic_1-63_ABS	7	7	🕻 1ph	
	U _{1-3_harmonic_1-63_} ≬	7	;	🕻 1ph	
	U _{1-3_inter-harmonic_%}	7	7	📁 1ph	Überwachung von bis zu 10 verschiedenen
	U _{1-3_inter-harmonic_ABS}	7	7	; 1ph	fixierten Frequenzen, % des RMS oder % der Basis
	U _{1-3_signaling_%}	7	7	📁 1ph	Überwachung der Signal(Brumm-)spannung
	U _{1-3_signaling_ABS}	7	7	🗲 1ph	der eingestellten Frequenz, % des RMS oder % der Basis
	I _{1-3_harmonic_1-63_%}	7	7	🕻 1ph	% des RMS oder % der Basis
	I _{1-3_harmonic_1-63_ABS}	-	;	📁 1ph	
	I _{1-3_harmonic_1-63_} ≬	-	;	🕻 1ph	
	Flicker				
	Pi ₁₋₃	7	7	; 1ph	Augenblickliche Flickerdarstellung, mit gemessenen 150 Abtastungen pro Sek. (Originalabtastung ist 1200 Abtastungen pro Sek.)
	Pst ₁₋₃	7	7	; 1ph	10 Min. statistische Bewertung (128 CPF- Klassen)
	<i>Plt</i> ₁₋₃	7	7	; 1ph	abgeleitet von 12 Pst gemäß EN 61000-4-15

Eine ausführlichere Beschreibung finden Sie in den folgenden Unterkapiteln.

Tabelle 14: Auswahl der verfügbaren Messgrößen

Messungstyp	Messung	3-Phase 4-Draht	3-Phase 3-Draht	1-Phase	Anmerkungen
Zwischen-	Spannung				
phasen-	Upp _{1-3_RMS}	,	7		
Messungen	Upp _{AVG_RMS}	-	-		
	THD-Upp ₁₋₃	,	-		
	∮ <i>x-y_RMS</i>	-			Zwischenphasen-Winkel
	Upp _{1-3_harmonic_1-63_%}	,	-	; 1ph	% des RMS oder % der Basis
	Upp1-3_harmonic_1-63_ABS	7	-	; 1ph	
	Upp1-3_harmonic_1-63_0	;	7	; 1ph	
	Uunderdeviation	;	-	; 1ph	Uunder. und Uover werden für Phasen- oder
	Uoverdeviation	;	7	; 1ph	den Anschluss-Modus berechnet.
Auslesung	Energie	,	7	7	
	Counter E ₁₋₄	,	-	-	Jeder Zähler kann für jeden der vier
	E_ TOT_1-4	,	-	7	vorbehalten sein. Die Gesamtenergie ist die
	Active tariff	7	7	-	Summe eines Zählers für alle Tarife. Tarife können fixiert, datum-/zeitabhängig oder tarifeingangsabhängig sein
Zusatzkanal-	Hilfslinie				
Messungen	U _{NEUTRAL-EARTH}	;	7	;	Die Hilfsspannung ist ausschließlich der Messung der Nullleiter-Erdung vorbehalten
	I _{NEUTRAL_meas}	7	-	7	Gemessener Neutralleiterstrom mit 4. Stromeingang
	I _{NEUTRAL_calc}	2	7	7	Berechneter Neutralleiterstrom
	INEUTRAL_err	2	7	2	Neutralleiterstrom-Fehler (Unterschied zwischen gemessenem und berechnetem Strom)
Leistungs-	Leistungsmaxima				
maxima-	MB_1 ₁₋₃	;	7	; 1ph	
Messungen	MB_P _{import}	;	-	7	
	MB_P _{export}	;	-	7	
	MB_Q _{ind}	;	-	7	
	MB_Q _{cap}	;	7	7	
	MB_S	;	7	7	

Eine ausführlichere Beschreibung finden Sie in den folgenden Unterkapiteln.

Tabelle 14: Auswahl der verfügbaren Messgrößen

Messungstyp	Messung	3-Phase 4-Draht	3-Phase 3-Draht	1-Phase	Anmerkungen
Min und Max	Min. und max.				
Messungen	U _{1-3_RMS_MIN}	-	7	; 1ph	
	U _{1-3_RMS_MAX}	;	;	; 1ph	
	Upp _{1-3_RMS_MIN}	7	7	;	
	Upp _{1-3_RMS_MAX}	7	;	;	
	I _{1-3_RMS_MIN}		7	; 1ph	
	I _{1-3_RMS_MAX}	7	7	; 1ph	
	P _{1-3_RMS_MIN}	7	7	; 1ph	
	P _{1-3_RMS_MAX}	7	7	; 1ph	
	P _{TOT_RMS_MIN}	7	7	; 1ph	
	P _{TOT_RMS_MAX}	7	7	; 1ph	
	S _{1-3_RMS_MIN}	7	7	; 1ph	
	S _{1-3_RMS_MAX}	7	7	; 1ph	
	S _{TOT_RMS_MIN}	7	7	; 1ph	
	S _{TOT_RMS_MAX}	7	7	; 1ph	
	freq _{MIN}	7	7	7	
	freq _{MAX}	7	7	7	
Andere	Verschiedenes				
Messungen	freq _{MEAN}	7	7	7	
	Interne Temp.	;	;	;	
	Datum, Zeit	7	;	;	
	Letzte Synchr.zeit	7	;	;	UTC
	GPS-Zeit	7	7	;	
	GPS-Längengrad	;	;	;	Falls der GPS-Receiver an einen speziellen
	GPS-Breitengrad	-	-	-	RTC-Zeit-Synchronisierungseingang
	GPS-Höhengrad	7	7	7	

Eine ausführlichere Beschreibung finden Sie in den folgenden Unterkapiteln.

Tabelle 14: Auswahl der verfügbaren Messgrößen

Erklärung der grundlegenden Konzepte

Abtastfrequenz

Ein Gerät misst alle primären Größen mit einer konstanten Abtastrate von 32 kHz (625 Samples/Periode bei 50 Hz).

Mittelungsintervall

Der Betrieb des PQ-Analysators **MAVOLOG PRO** hängt von mehreren Durchschnittsintervallen ab, die komplett korrekt definiert und auf den korrekten Wert eingestellt sein müssen.

Mittelungsintervall für Messungen und Anzeige

Aufgrund der Lesbarkeit der Messungen mittels LCD oder Kommunikation kann ein Durchschnittsintervall aus einer Reihe vorgegebener Werte (von 0,1 Sek. bis 5 Sek.) ausgewählt werden. Das Durchschnittsintervall (siehe das Kapitel *Durchschnittsintervall* auf der Seite 49) definiert die Aktualisierungsrate der angezeigten Messungen.

Die Alarm-Reaktionszeit wird durch das allgemeine Durchschnittsintervall beeinflusst, falls die Reaktionszeit-Einstellung auf "Normale Reaktion" gesetzt ist. Ist sie auf "Schnelle Reaktion" gesetzt, hängen Alarme von einer einzigen Periodenmessung ab.

Dieses Durchschnittsintervall hat keinen Einfluss auf PQ-Messungen.

Mittelungsintervall für Min.- und Max.-Werte

Min.- und Max.-Werte erfordern oft eine spezielle Mittelungsperiode, die die Erfassung kurzer Messspitzen aktiviert oder deaktiviert. Diese Einstellung erlaubt es, die Mittelung auf 1 bis 256 Perioden einzustellen.

Mittelungs-(Speicher)intervall für Recorder

Dieses Speicherintervall definiert eine Periode zum Ablegen von Daten im internen Speicher. Es kann auf 1 bis 60 Min. gesetzt werden. Am Ende jedes Intervalls können verschiedene Typen gemessener Daten im Recorder gespeichert werden (siehe *Universal-Recorder-Einstellungen* auf der Seite 94).

Mittelungs -(Aggregations)intervall für PQ-Parameter

Die Norm IEC61000-4-30 definiert verschiedene Aggregationsintervalle und -vorgänge zur Aggregation gemessener PQ-Parameter.

Für jeden PQ-Parameter kann das erforderliche Aggregationsintervall eingestellt werden. Die Standard-Aggregationsintervalle sind:

- 10 Perioden (12 für 60 Hz-System)
- 150 Perioden (180 für 60 Hz-System)
- 10 Sek.
- 10 Min. (auch grundleg. Zeitsynchronisierungs-Markierungsintervall)
- · 2 Std.

Es können auch andere Aggregationsintervalle in Abhängigkeit von den Einstellungen eingestellt werden. Der Netzstöranalysator **MAVOLOG PRO** unterstützt zusätzl. Aggregationsintervalle: 1 Min., 15 Min., 1 Std.

Leistungs- und Energiefluss

Auf den untenstehenden Bildern sehen Sie den Fluss der Wirkleistung, Blindleistung und -energie für den 4u-Anschluss.

Die Anzeige der Energieflussrichtung kann durch eine Änderung der Einstellungen der Energieflussrichtung auf der Seite 59 an die Anschluss- und Betriebsanforderungen angepasst werden.

Bild 29: Erklärung der Energieflussrichtung

Berechnung und Anzeige der Messungen

In diesem Kapitel geht es um die Erfassung, Berechnung und Anzeige aller unterstützten Messgrößen. Nur die wichtigsten Gleichungen werden beschrieben, sie sind jedoch vollständig im Kapitel *Gleichungen* auf der Seite 180 mit zusätzlichen Beschreibungen und Erklärungen dargestellt.

BITTE BEACHTEN

Die Berechnung und Anzeige von Messungen hängen vom verwendeten Anschluss ab. Ausführliche Informationen finden Sie im Kapitel Überblick über die unterstützten Messungen auf der Seite 113.

Tasten und Anzeigendarstellung

Zum Öffnen und Verlassen eines Display-Menüs wird die **OK**-Taste gedrückt. Die Richtungstasten ($\leftarrow \rightarrow \uparrow \downarrow$) werden zum Navigieren zwischen Anzeigen wie im untenstehenden Beispiel verwendet.

Beispiel des 4u-Anschluss-Modus:

The second seco

Vorhandene Werte

Hauptmenü		Messungen
Einstellungen Zurücksetzungen SD-Karten-Info Installation		 Min./max. Werte Graphen-Zeit Graphen-FFT Stromversorgungs-Qualität
14.11.2012	16:53:36	Demo-Zyklus
		← Hauptmenü

BITTE BEACHTEN

Die Anzeige der vorhandenen Werte hängt vom Anschluss-Modus ab. Daher unterscheidet sich die Anzeigen-Gestaltung leicht von Modus zu Modus.

Spannung 🖭 👁

Mit dem Gerät werden tatsächliche Effektivwerte (rms) aller Phasenspannungen (U1, U2, U3), Zwischenphasen-Spannungen (U12, U23, U31) und Nullleiter-Erdungs-Spannungen (Un), die daran angeschlossen sind, gemessen. Die Durchschnitts-Phasenspannung (Uf) und die Durchschnitts-Zwischenphasen-Spannung (Ua) werden mithilfe der gemessenen Phasenspannungen (U1, U2, U3) berechnet. Die Spannungsunsymmetrie wird über die Zwischenphasen-Spannungen (U12, U23, U31) berechnet.

Alle Spannungsmessungen stehen über die Schnittstelle, über Standardoder benutzerdefinierte LCD-Anzeigen, zur Verfügung.

 $\textcircled{\begin{tabular}{ll} \blacksquare \label{eq:constraint} \blacksquare \lab$

Strom 🖭 👁

Mit dem Gerät werden tatsächliche Effektivwerte (rms) von Phasenströmen und gemessenem Neutralstrom (Inm) gemessen, die durch die Stromeingänge geleitet werden. Der berechnete Neutralstrom (Inc), der Fehlerneutralstrom (Ie = |Inm - Inc|), der Phasenwinkel zwischen der Neutralspannung und dem Neutralstrom (ϕ In), der Durchschnittsstrom (Ia) und die Summe aller Phasenströme (It) werden über Phasenströme berechnet.

$$I_{RMS} = 1 \frac{\sum_{n=1}^{N} \dot{\underline{j}_{n}}}{N}$$

Alle Spannungsmessungen stehen über die Schnittstelle, über Standardoder benutzerdefinierte LCD-Anzeigen, zur Verfügung.

Hauptmenü \rightarrow Messungen \rightarrow Vorhandene Werte \rightarrow \rightarrow Strom

Wirk-, Blind- und Scheinleistung 🖭 👁

Die Wirkleistung wird mithilfe der augenblicklichen Phasenspannungen und -ströme berechnet. Alle Messungen können über die Schnittstelle oder auf dem LCD eingesehen werden. Ausführliche Informationen zur Berechnung finden Sie im Kapitel *Gleichungen* auf der Seite 180.

Es gibt zwei verschiedene Methoden zur Berechnung der Blindleistung, siehe das Kapitel *Blindleistung und Energieberechnung* auf der Seite 57.

 ${igsimeq}$ Hauptmenü ightarrowMessungen ightarrowVorhandene Werte ightarrowLeistung

Leistungsfaktor und -winkel 🖭 👁

Der Leistungswinkel wird als Quotient der Wirk- und Scheinleistung individuell für jede Phase ($\cos\phi1$, $\cos\phi2$, $\cos\phi3$) sowie als einziger Leistungswinkel ($\cos\phit$) berechnet. Das Spulensymbol kennzeichnet die induktive Last, und das Kondensatorsymbol die kapazitive Last. Zum korrekten Anzeigen des Leistungsfaktors über einen Analogausgang und zur korrekten Anwendung des Alarms wird der erweiterte Leistungsfaktor ePF angewandt. Er illustriert den Leistungsfaktor mit einem Wert, wie er in der untenstehenden Tabelle beschrieben ist. Zum Anzeigen auf der LCD haben beide die gleiche Anzeigefunktion: zwischen –1 und –1 mit dem Symbol für induktive und kapazitive Last.

Last	С	\rightarrow		\leftarrow	L
Winkel [°]	-180	-90	0	+90	+180 (179.99)
PF	-1	0	1	0	-1
ePF	-1	0	1	2	3

Tabelle 15	5: Darstellung	des erweiterten	PF	(ePF)
------------	----------------	-----------------	----	-------

Beispiel eines Analogausgangs für Leistungsfaktor und ePF:

Der Leistungswinkel bezeichnet den Winkel zwischen der ersten (grundlegenden) Spannungsoberschwingung und der ersten (grundlegenden) Stromoberschwingung für jede individuelle Phase. Der Gesamtleistungswinkel wird aus der Gesamtwirk- und der Gesamtblindleistung berechnet (siehe die Gleichung für den Gesamtleistungswinkel, Kapitel *Gleichungen* auf der Seite 180). Ein positives Vorzeichen bedeutet induktive Last, und ein negatives Vorzeichen bedeutet kapazitive Last.

${}^{\textcircled{}}$ Hauptmenü \rightarrow Messungen \rightarrow Vorhandene Werte

\rightarrow Leistungsfaktor und Leistungswinkel

Frequenz 🖭 👁

Die Netzwerkfrequenz wird mithilfe von Zeitperioden der gemessenen Spannung berechnet. Das Gerät verwendet eine Synchronisierungsmethode, die höchst immun gegen Oberschwingungsstörungen ist.

Das Gerät führt immer eine Synchronisierung mit der Phasenspannung *U1* durch. Ist das Signal in dieser Phase zu schwach, wird (wieder) eine Synchronisierung mit der nächsten Phase durchgeführt. Wenn alle Phasenspannungen zu niedrig sind (z. B. bei einem Kurzschluss), führt das Gerät eine Synchronisierung mit Phasenströmen durch. Ist kein Signal in den Spannungs- oder Stromkanälen vorhanden, zeigt das Gerät eine Frequenz von 0 Hz an.

Zusätzlich wird die Frequenz mit einem Mittelungsintervall von 10 Sekunden angezeigt.

 $\textcircled{\begin{tabular}{ll} \blacksquare \label{eq:constraint} \blacksquare \lab$

Energiezähler 🖭 👁

Es gibt drei Arten von Anzeigen auf Energiezählern:

- durch einzelne Zähler,

Bei der Anzeige von Zählermessungen nach Tarif hängt der Betrag in der oberen Zeile von den im Gerät eingestellten Tarifen ab.

Es gibt zwei Methoden zur Berechnung der Blindleistung, siehe das Kapitel *Blindleistung und Energieberechnung* auf der Seite 57.

Zusätzliche Informationen zur Einstellung und Definition einer Zählergröße finden Sie im Kapitel *Energie* auf der Seite 71.

 ${}^{\textcircled{}}$ Hauptmenü \rightarrow Messungen \rightarrow Vorhandene Werte \rightarrow Energie

MB-Werte 🖭 👁

MB-Werte und Vorkommens-Zeitstempel werden angezeigt für:

- Drei-Phasen-Ströme
- Wirkleistungen (Import und Export)
- Blindleistung (ind. und kap.)
- Scheinleistung

Hauptmenü \rightarrow Messungen \rightarrow Vorhandene Werte \rightarrow MB-Werte

Dynamische Leistungen werden entsprechend den eingestellten Zeitkonstanten und anderen Parametern kontinuierlich berechnet.

Zurücksetzungsleistungen sind max. Werte dynamischer Leistungen seit der letzten Zurücksetzung.

THD – Klirrfaktor 🖭 🐵

Der Klirrfaktor wird für Phasenströme, Phasenspannungen und Zwischenphasen-Spannungen berechnet und als Prozentanteil der erhöhten Oberschwingungskomponenten im Verhältnis zur Grund-Oberschwingung ausgedrückt (siehe das Kapitel *Oberschwingungs-Berechnung* auf der Seite 57).

Das Gerät verwendet eine Messungstechnik tatsächlicher Effektivwerte (rms), die genaue Messungen mit vorhandenen erhöhten Oberschwingungen bis zur 63. Oberschwingung gewährleistet.

Flicker 🖭 👁

Flicker ist einer der wichtigsten PQ-Parameter, der das menschliche Empfinden direkt (selbst wenn auch nur leicht) beeinflusst.

Das Flicker wird entsprechend der einschlägigen Norm IEC 61000-4-15 gemessen und statistisch ausgewertet.

Für grundlegende Flicker messungen in allen drei Spannungsphasen wird mit 1200 Messwerten pro Sekunde gearbeitet. Augenblickliche Flicker erscheinungen reduzieren diese Abtastrate um das 8-fache (150 augenblickliche Flicker berechnungen pro Sekunde) und verwenden ca. 3 Sek. Mittelungszeit.

Mithilfe weiterer statistischer Bewertungen wird Kurz- und Langzeit-Flicker berechnet.

- *Pi*₁₋₃ bezeichnet augenblickliches Flicker und wird alle 3 Sekunden gemittelt und aktualisiert. *Pi* wird aus 500 augenblicklichen Flicker berechnungen gemittelt.
- Pim₁₋₃ bezeichnet den max. Wert des augenblicklichen Flicker -Pi innerhalb eines 3 Sek. langen Flicker -Mittelungsintervalls. Dieser wird alle 3 Sekunden aktualisiert und nur auf dem Display angezeigt. Er ist nicht über die Schnittstelle verfügbar.
- *Pst*₁₋₃ bezeichnet eine 10 Min. lange statistische Auswertung des augenblicklichen Flickers und wird ca. alle 10 Minuten aktualisiert (x:00, x:10, x:20...).
- Plt₁₋₃ bezeichnet eine 2 Std. lange statistische Auswertung des kurzfristigen Flickers Pst und wird alle geraden 2 Stunden berechnet (0:00, 2:00, 4:00...)

Bis der Flicker berechnet ist, wird das Symbol – angezeigt.

Benutzerdefinierte Anzeigen 🖭 👁

Unten sind 4 verschiedene benutzerdefinierte Anzeigen dargestellt. Auf den ersten 3 sind verschiedene benutzerdefinierte Werte zu sehen. Auf der vierten Anzeige sieht man 5 verschiedene Werte als Kombination aus 3 Werten der ersten Anzeige und den ersten 2 Werten der zweiten Anzeige.

Siehe das Kapitel *Einstellungen benutzerdefinierter Anzeigen* auf der Seite 67.

 $\textcircled{\textbf{B}} Hauptmen \ensuremath{\ddot{u}} \rightarrow \textbf{Messungen} \rightarrow \textbf{Vorhandene Werte} \rightarrow \textbf{Benutzerdefiniert}$

Überblick 👁

Hier werden mehrere Messungen auf jeder Anzeige kombiniert, und es sind folgende Anzeigen zu sehen:

Anzeige 1:

	Stromphasen-Messungen			Stromphasen-Messungen	
U۲	Durchschnittsspannung U~	V	Р	Gesamtwirkleistung Pt	W
1	Phasenspannung U ₁	V	P1	Wirkleistung P ₁	W
2	Phasenspannung U ₂	V	P2	Wirkleistung P ₂	W
3	Phasenspannung U ₃	V	P3	Wirkleistung P ₃	W
I۲	Durchschnittsstrom I~	А	Q	Gesamtblindleistung Qt	va
1	Strom I ₁	А	Q1	Blindleistung Q ₁	va
2	Strom I ₂	А	Q2	Blindleistung Q ₁	va
3	Strom I ₃	А	Q3	Blindleistung Q ₁	va

Anzeige 2:

/•	.9* =:				
	Strom-Zwischenphasen-Messung	en		Strom-Zwischenphasen-Messungen	
U∆	Durchschn.zwischenphasen U~	V		Frequenz f	Hz
12	Zwischenphasen-Spannung U ₁₂	V	φ	Leistungswinkel φ_1	0
23	Zwischenphasen-Spannung U ₂₃	V	φ	Leistungswinkel φ_2	0
31	Zwischenphasen-Spannung U_{31}	V	φ	Leistungswinkel ϕ_3	0
PF	Gesamtleistungsfaktor		φ	Durch.zwischenphasen-Winkel ϕ^{\sim}	0
PF1	Leistungsfaktor PF ₁		φ	Leistungswinkel ϕ_{12}	0
PF2	Leistungsfaktor PF ₂		φ	Leistungswinkel ϕ_{23}	0
PF3	Leistungsfaktor PF ₃		φ	Leistungswinkel φ_1	0
Anze	ige 3:				
	Dynamische MB-Werte			Maximale MB-Werte	
P+	MB-Wirkleistung P (positiv)	W		MB-Wirkleistung P (positiv)	W
P-	MB-Wirkleistung P (negativ)	W	φ	MB-Wirkleistung P (negativ)	W
~ •	MB-Blindleistung Q-L			MB-Blindleistung Q-L	
Q₽		ver	φ	0	ver
~+	MB-Blindleistung Q-C			MB-Wirkleistung Q-C	
QŦ	0	ver	φ		ver
c	MB-Scheinleistung S	V		MB-Scheinleistung S	37.4
3		Α	φ		VA
I1	MB-Strom I1	А	φ	MB-Strom I1	Α
I2	MB-Strom I2	А	φ	MB-Strom I2	Α
13	MB-Strom I3			A φ MB-Stron	n I3
А				·	

Beispiel für MAVOLOG PRO bei 4u-Anschluss:

Hauptmenü →M	Iessu	ıngen →Vor	handene W	erte	→Überbli	ck
$\begin{array}{c cccccc} U_{\wedge} & 229.89 & V & P & +800.11 \\ 1 & 229.85 & V & P1 + 229.88 \\ 2 & 229.86 & V & P2 + 344.84 \\ 3 & 229.97 & V & P3 + 225.39 \\ I_{\wedge} & I_{\bullet} I_{\bullet} I_{\bullet} 02 & Q & +0.11 \\ 1 & I_{\bullet} 001 & A & 01 & -0.10 \\ 2 & I_{\bullet} 5002 & A & 02 & +0.11 \\ 3 & 0.9801 & A & 03 & +0.10 \end{array}$	⇔	U₄ 398.19 V 12 398.07 V 23 398.40 V 31 398.08 V PF +1.000L PF2 +1.000L PF3 +1.000L	$\begin{array}{c} 52.999 \ \text{Hz} \\ \varphi \ -119.98^{\circ} \\ \varphi \ -120.11^{\circ} \\ \varphi \ -119.94^{\circ} \\ \varphi \ +0.00^{\circ} \\ \varphi \ +0.03^{\circ} \\ \varphi \ +0.01^{\circ} \\ \varphi \ +0.02^{\circ} \end{array}$	⇔	P+=793,76 P-= 0.000 Q≥= 0.343 Q≠= 0.000 S =795,14 I1=0.9927 I2=1,4893 I3=0.9729	39.995kW 39.995kW 39.995kvan 39.995kvan 39.995kvan 19.998 A 19.998 A 19.998 A

Min.-/Max.-Werte

Alle min./max. Werte werden ähnlich wie die vorhandenen Werte angezeigt.

Durchschnittsintervall für Min.- und Max.-Werte 🖭

Min.- und Max.-Werte erfordern oft eine spezielle Mittelungsperiode, die die Erfassung kurzer Messspitzen aktiviert oder deaktiviert. Die Mittelung kann hierzu auf 1 bis 256 Perioden eingestellt werden.

Anzeige minimaler und maximaler Werte 🖭 👁

Vorhandene Werte werden in vergrößerter Schrift im Display zentriert angezeigt, während minimale und maximale Werte in kleinerer Schrift über und unter den vorhandenen Werten angezeigt werden.

Beispiel für Min.-/Max.-Anzeigen

U1 U2 U3 recentling U12	Aktuell 229.88 V 229.27 V	Minimum 221,29 V	Maximum	MV-LOG - Simi
U1 U2 U3 rspannung U12	Aktuell 229,88 V 229,27 V	Minimum 221,29 V	Maximum	
U1 U2 U3 rspannung U12	229,88 V 229,27 V	221,29 V		
U2 U3 rspannung U12	229.27 V		233,94 V	
U3 rspannung U12		220.77 V	233.61 V	
rspannung U12	228.25 V	215.63 V	233,45 V	
and a restrict to the second sec	398,49 V	383.16 V	405.48 V	
rspannung U23	395.85 V	382,08 V	404,58 V	
rspannung U31	396,31 V	373,07 V	404,37 V	
	166,99 A	7.8 A	342.6 A	
	270,35 A	7,04 A	407.25 A	
	254,37 A	13.3 A	401.3 A	
g P1	38,26 W	1,24 W	99,92 W	
g P2	61,80 W	1,38 W	92,35 W	
g P3	55,81 W	2,92 W	90,20 W	
rkleistung P	155.88 W	6.05 W	653,52 W	
ung S1	38,38 VA	1,77 VA	101,10 VA	
ung S2	61,98 VA	1,60 VA	92,81 VA	
ung S3	58,06 VA	3.05 VA	90,50 VA	
heinleistung S	158,44 VA	6,65 VA	656,62 VA	
	49,998 Hz	49,876 Hz	54,854 Hz	
nperatur	18.0 °C	14.01 'C	32,14 °C	
1	Datum	Zet		
sitpunkt	12.06.2014	14:28:45		
	g P1 g P2 g P3 detecting P ung S1 ung S3 heinleistung S nperatur n etpunkt	spamulug U31 398,31 V 165,99 A 165,99 A 270,35 A 254,37 A g P1 38,26 W g P2 61,80 W g P3 55,81 W rkleistrung P 155,88 W ung S1 38,38 VA ung S2 61,98 VA ung S3 58,06 VA heriteistung S 155,84 VA nperatur 18,0 °C n Datum etpunkt 12,06,2014	Impaining US1 358,31V 378,31V 166,59 A 7,8 A 270,35 A 7,04 A 274,37 A 13,3 A g P1 38,26 W 1,24 W g P2 g F3 55,81 W 4,86 M 1,24 W g P3 55,81 W 1,93 M 6,05 W 1,93 M 1,60 VA ung S2 61,88 VA 1,60 VA ung S3 58,06 VA 3,05 VA 1,998 Hz 45,976 Hz 49,976 Hz nperatur 18,0 °C 14,01 °C n Datum Zet elpunkt 12,06,2014 14,28,45	Beamung (J3) 353,31V 353,01V 464,37V 165,854 7,8A 342,5A 270,35A 7,04A 407,25A 284,37A 13,3A 401,3A g F1 38,25W 1,24W 99,52W g F2 61,80W 1,38W 92,35W g F3 55,81W 2,05W 92,02W kdeixtung P 155,88W 6,05W 653,52W ung S1 38,38VA 1,77VA 101,10VA ung S2 61,38VA 1,60VA 92,81VA ung S3 59,06VA 3,05VA 90,50VA hardward 160VC 140,17C 32,14 'C n Datum 24C 42,876 Hz stpurkt 12,06,2014 14,28,45 14,28,45

Bild 30: Tabellarische Darstellung minimaler und maximaler Werte

Bild 31: Grafische Darstellung minimaler und maximaler Werte

In der grafischen Darstellung minimaler und maximaler Werte werden relative Werte angezeigt. Der Grundwert der relativen Darstellung wird unter *Allgemeine Einstellungen/Anschluss-Modus/Verwendete Spannung, Strombereich* definiert.

Bei Phasenspannungen und Zwischenphasen-Spannungen wird derselbe Wert verwendet.

Alarme

Alarme sind eine wichtige Funktion zum Benachrichtigen über die Überschreitung benutzerdefinierter Funktionen, und nicht nur zur Visualisierung und Aufzeichnung bestimmter Ereignisse mit einem genauen Zeitstempel. Alarme können an Digital-/Alarmausgänge angeschlossen werden, um verschiedene Vorgänge auszulösen (Schalter-Schließung, Linientrennung, Antriebsstart oder -stopp...).

Die Überwachung der Alarmchronik ist ebenfalls sehr praktisch. Diese Option ist über das Display oder, noch besser, über die Kommunikation mithilfe der Überwachungs- und Einstellungssoftware MAVO-View verfügbar.

Das Alarm-Menü auf dem Display erlaubt es, den Zustand der gegenwärtigen und früheren Alarme zu überwachen.

Im Alarmmenü werden Gruppen von Alarmen mit dem jeweiligen Status von Einzelalarmen angezeigt. Auch angeschlossene Alarmausgänge werden in der untersten Zeile angezeigt. Falls der angezeigte Alarmausgang markiert ist, bedeutet dies, dass er aktiv ist (Relais geschlossen). Bei jedem aktiven Alarm wird die Anzahl der Alarme in einer bestimmten Gruppe an einer bestimmten Stelle angegeben: Gruppe 1: 1 - - 45 - - 8. Ein Punkt steht für einen inaktiven Alarm.

Im untenstehenden Beispiel gab es 1 Alarm, der unter einer in Gruppe 1/Alarm 1 (mittleres Bild) definierten Bedingung ausgelöst wurde. Die Bedingung für diesen Alarm war *U1* > 250.00 V (rechtes Bild). Der Alarm aktivierte den Relaisausgang 2 (mittleres Bild, das markierte "Out2").

Überblick über Alarme 🖭

In diesem ausführlichen Überblick sind Alarme in Gruppen zusammengefasst. Unter der Nummer der Alarmgruppe in der ersten Spalte ist die jeweilige Bedingung angegeben, der entsprechende Zustand ist in der zweiten Spalte und die Anzahl der Ereignisse für die jeweilige Bedingung steht in der dritten Spalte. Der aktive Alarm ist markiert.

Jatei Extras	Ansicht Hilfe			
123-10		6		
Aktualisieren	Gerätendresse: 33	🗢 Gehe zuz •		
-	Messungen			MV-LOG - Simulation
1	Aam-Gruppe 1	Zustand	Ereignisse	
Verbindung	1:U1 < 200.0 V (Relais)	Aa	5	
	2: U2 < 200.0 V [Relais]	An	2	
	3. U3 < 200.0 V (Relais)	An	8	
0.000	4: U1 > 300.0 V (Relain)	An	.0	
stellungen	5: U2 > 300.0 V (Relais)	Aus		
	6: U3 > 300.0 V [Relais]	Aut	0	
	7			
623	8.4			
	Aam-Gruppe 2	Zustand	Energrisse	
interior yes.	9:11 > 1.200 kA [Relax]	As	1	
	10.12 > 1.200 kA (Relas)	As	2	
Served.	11:13 > 1.200 kA [Felas]	Aa	1	
- Com	12 -			
-maryse	12 -			
	14 -			
100	15 -			
20	16: -			
Upgrades	Alam Gruppe 3	Zietand	Ereignate	
	12 .			
	18 -			
	19:			
	20: -			
	21.0			
	22 -			
	23 -			
	74 -			

😫 🔜 😂 📲 🛍		3		
Aktualisieren	Geräteadresse: 33	Gehe zu: -		
30	🥶 Messungen			MV-LOG - Simulati
Verbindung	I: U1 < 200,0 ∨	9: I1 > 1,200 kA	© 17:-	② 25: -
	2: U2 < 200,0 V	10: 12 > 1,200 kA	© 18; -	© 26 -
000	3: U3 < 200,0 V	11: 13 > 1,200 kA	© 19	© 27 -
Einstellungen	4: U1 > 300,0 V	© 12: -	© 20: -	© 28: -
	5: U2 > 300.0 V	© 13: -	© 21 -	© 29
600	⑥ 6: U3 > 300,0 V	14: -	© 22: -	30 -
Messungen	© 7:-	© 15: -	© 23: -	© 31: -
messengen	© 8 -	© 16:-	© 24 -	© 32: -
Analyse	10			
Upgrades	6			
	2-			
	0	2 8 8 10 11 12 12 14 15 1	E 17 10 10 00 01 00 00 00	26 27 28 28 20 21 22
	123400	Alarmstatistik se	it 11.6.2014 15:04	26 27 28 23 36 31 32 Alarm-Nr.

Bild 33: Grafische Darstellung von Alarmen

In der MAVO-View-Software werden alle Alarme in tabellarischer und grafischer Form dargestellt, siehe Bilder unten. Für jeden Alarm wird Folgendes dargestellt:

- Gruppenzugehörigkeit
- Gruppenalarmbedingungen
- Momentaner Alarmzustand

Anzahl der Alarmereignisse seit der letzten Zurücksetzung

Oberschwingungsanalyse

Hauptmenü			Messungen	
Einstellungen Zurücksetzungen SD-Karten-Info Installation			Vorhandene Werte Min./max. Werte Alarme	
			Stromversorgungs-Qualität	
14.11.2012	16:53:36		Demo-Zyklus	
			<⊓ Hauptmenü	

Die Oberschwingungsanalyse ist ein wichtiger Teil der Netzüberwachung. Frequenzwandler, Wechselrichter, elektronische Motorantriebe, LEDs, Halogen- und andere moderne Lampen – all diese Vorrichtungen verursachen Oberschwingungs-Verzerrungen der Versorgungsspannung und können andere empfindliche Geräte im Netz insoweit beeinflussen, dass dies zu Fehlfunktionen oder sogar Defekten führt. Besonders empfindlich sind im Versorgungsbereich eingesetzte Ausgleichsgeräte, deren Kondensatorbatterien als Drainage für höhere Oberschwingungen fungieren, um ihre Wirkung zu verstärken. Höhere Oberschwingungsströme, die durch die Kondensatoren fließen, können Überhitzungen verursachen, was ihre Lebensdauer verkürzt oder sogar zu Explosionen führen kann.

Eine Überwachung von Oberschwingungsverzerrungen ist daher nicht nur wichtig, um Fehlfunktionen von Haushaltsgeräten zu verhindern und die Lebensdauer von Motoren zu verlängern, sondern auch um ernsthafte Schäden an Versorgungsgeräten zu verhindern und Gefahren für Menschen zu vermeiden, die in der Nähe von Ausgleichsgeräten arbeiten.

Da die Oberschwingungsanalyse so wichtig ist, werden in der speziellen Norm IEC 61000-4-7 Methoden zur Messung und Berechnung von Oberschwingungsparametern definiert.

Der PQ-Analysator **MAVOLOG PRO** misst Oberschwingungen bis zur 63. Oberschwingung und bewertet folgende Oberschwingungsparameter:

- Phasenspannungs-Oberschwingungssignale
- THD U_{P-N}
- Zwischenphasen-Oberschwingungssignale
- THD U_{P-P}
- Strom-Oberschwingungssignale
- THD I
- Zwischenharmonische Oberschwingungen (10 benutzerdefinierte zwischenharmonische Oberschwingungswerte)
- Signalspannung (Überwachung von Brumm-Kontrollsignalen)

BITTE BEACHTEN

Zwischenharmonische Oberschwingungen sind nur über die Schnittstelle verfügbar.

Alle aufgelisteten Oberschwingungsparameter können online überwacht, im internen Speicher abgelegt (nicht alle auf einmal) und mit dem Alarmbedingungs-Grenzwert verglichen werden.

Die letztere Option ist, in Verbindung mit dem Alarm-Relaisausgang, zur Meldung und/oder zum automatischen Anschluss von Ausgleichsgeräten verfügbar, wenn zu viele Oberschwingungen eine Gefahr für den Betrieb von Kondensatoren darstellen.

Anzeige von Oberschwingungsparametern 📼 👁

Oberschwingungsparameter können auf LCD-Geräten in grafischer Form und als Daten angezeigt werden.

Die Darstellung einzelner Oberschwingungen besteht aus dem

- Absoluten Wert
- Prozentwert
- Phasenwinkel zwischen Grund- und Oberschwingungen

BITTE BEACHTEN

Der relative Wert kann als Prozentanteil der Basiseinheit oder als Prozentanteil des RMS-Wertes berechnet werden. Dieser relative Faktor kann unter den Allgemeinen Einstellungen (siehe *Einstellung der Oberschwingungs-Berechnung* auf der Seite 57) ausgewählt werden.

${f ar w}$ Hauptmenü ightarrow Messungen ightarrow Graphen-Zeit / Graphen-FFT

Anzeige einer Phasenspannung im Zeit-Raum-Diagramm. Angezeigt werden ebenfalls der Spitzenwert der beobachteten Phasenspannung und ihr RMS-Wert. Die Anzeige von Zwischenphasen-Spannungen ist ähnlich.

Anzeige eines Stroms im Zeit-Raum-Diagramm. Angezeigt werden ebenfalls der Spitzenwert des beobachteten Stroms und sein RMS-Wert.

Anzeige einer Phasenspannung im Frequenz-Raum-Diagramm. Angezeigt werden ebenfalls der RMS-Wert, der Einheitswert (100%), die Systemfrequenz und der THD-Wert. Die Anzeige von Zwischenphasen-Spannungen ist ähnlich.

Anzeige eines Stroms im Frequenz-Raum-Diagramm. Angezeigt werden ebenfalls der RMS-Wert, der Einheitswert (100%), die Systemfrequenz und der THD-Wert. Weitere Informationen über die Oberschwingungsparameter, insbesondere einzelne Oberschwingungswerte, erhalten Sie, wenn das Gerät an die Schnittstelle angeschlossen ist und die Überwachungs- und Einstellungs-Software MAVO-View verwendet wird.

Jatei Lebas	Ansicht Hills	-			
12 13 - 10	H 4 4 7 11 0 0 0	8			
Aktualisieren	Geritteadresse: 33	A Geh	e 24 *		
	Messungen				MV-LOG - Simular
100	Hamprische I	U.	12	11	
Vebindung	DDI	8.60 %	6075	4.72 %	
	Ente	63.56 A	73.29 A	44.505 A	
	1. Hamoriache	100.30 %	100.34 %	100.28 %	
Cas	1. Hamorische - Reckbert	65.77 A	73.54 A	45.111.A	
installungen	1. Hamonoche - Phasenwritel	69.10 *	-34.85*	174.59 *	
	2. Hamoniache	0.00%	2.06%	0.06%	
	2 Hamonache - Abackzweit	0.00 A	EQ4A	0.034 A	
	2 Hamoniathe - Phasenumbel	90.00 *	-68.04*	-32.01 *	
Line of the line o	3. Hamanache	0.22%	2.64%	0.54%	
or or other	3 Hamorache - Aback.twet	0.15 A	£47.A	0.243 A	
	3 Hamonache - Phasenwinkel	-33.65 *	150.12*	-22.55 *	
5.00	4. Hamonache	0.01 %	0.02%	0.04.5	
100	4. Hamprische - Rockzweit	0.01 A	0.01 A.	0.018 A	
Ananyse	4. Hampische - Phaserswickel	0.00 *	116.56.1	-75.97 *	
	5. Hamurische	1.89%	1.69%	0.62 %	
100	5. Hamonische - Absolutivet	1.31 A	1.24 A	6.969 A	
30	5. Hamonache - Phasenwirkal	133.40 *	-75.50 *	44.52 *	
Upgrades	6. Hamorische	0.01%	6.04%	0.02%	
	6. Hamonoche - Absolutivent	0.01.A	0:03 A	0.509 A.	
	6 Hamorooche - Phasenwolut	0.00 *	96.31 *	-26.57 *	
	7. Haminische	0.42%	6.32%	2.06.0	
	7. Hamonache - Absolutivet	0,29 A	0.23 A	0.455.A	
	7. Hamoneche - Phasenwerkei	-31.56 *	151.56 *	2656*	
	8. Haminache	0.06 %	0.04%	0.003	
	8. Hamorische - Absolutivet	604A	0.03 A	0.000 A	
	3. Marrowin (in . Phanepurchal	.79.69."	. 46.91.*	90.00 *	

Bild 34: Tabellarische Darstellung von Phasenspannungs-Oberschwingungskomponenten

Bild 35: Grafische Darstellung von Phasenspannungs-Oberschwingungskomponenten

MC	
<u> </u>	
	- 11
000 🧖	2

BITTE BEACHTEN

Entsprechend der Norm IEC 61000-4-7, die Methoden der Berechnung von Oberschwingungsparametern definiert, bezeichnen Oberschwingungsund zwischenharmonische Oberschwingungswerte keine Signalstärke spezifischer Oberschwingungsfrequenzen, sondern die gewichtete Summe zentrierter (Oberschwingungs-)Werte und ihre Seitenbänder. Weitere Informationen finden Sie in der erwähnten Norm.

Datei Extras	Ansicht Hilfe								
🖬 🕹 💕 • 🗈	日本市大学会会	-							
Aktualisieren	Geräteadresse: 33		🛹 Gehe zu: +						
	3 Messungen							MV-LOG - Sime	latio
	Zwischenhamonische	Frequenz	L1	12	13	L1-L2	L2-L3	L3-L1	
Verbindung	1. Zwischenhamonische	36 Hz	2.22 V	2.31 V	1.53 V	0.00 V	0.00 V	0.00 V	
	2. Zwischenhamonische	44 Hz	0.41 V	0.14 V	0.32 V	0.00 V	0.00 V	0.00 V	
	3. Zwischenhamonische	68 Hz	0.20 V	0.50 V	0.11 V	0.00 V	0.00 V	0.00 V	
ens	4. Zwischenhamonische	76 Hz	0.09 V	0.11 V	0.14 V	0.00 V	0.00 V	0.00 V	
Finstellungen	5. Zwischenhamonische	117 Hz	1.04 V	1,11 V	0.07 V	0,00 V	0.00 V	0.00 V	
entremangen	6 Zwischenhamonische	123 Hz	0.05 V	0.14 V	0.25 V	0,00 V	0.00 V	0.00 V	
	7. Zwischenhamonische	237 Hz	2.22 V	2,31 V	1,53 V	0,00 V	0,00 V	0,00 V	
	8. Zwischenhamonische	243 Hz	0.05 V	0.16 V	0.05 V	0.00 V	0.00 V	0.00 V	
	9. Zwischenhamonische	477 Hz	0.25 V	0,14 V	0,39 V	0,00 V	0,00 V	0,00 V	
Messungen	10. Zwischenhamonische	597 Hz	0.02 V	0.07 V	0.07 V	0.00 V	0.00 V	0.00 V	
	Signalspannung	Frequenz	L1-L2	L2-L3	L3-L1	L1-L2	L2-L3	L3-L1	
(int	Signalspannung	210 Hz	0.08 V	0,18 V	0,16 V	0,000 V	0,000 V	0.000 V	
200	THD - Setenbander	LI	L2	L3					
Analyse	THD - Setenbänder	2,93 %	3,06 %	2.88 %					٦
	Harmonische - Settenbänder	L1	L2	L3					
	Basis	226,86 V	226,76 V	228,21 V					1
20	1. Harmonische	99.89 %	99.96 %	99.85 %					
Upgrades	1. Hamonische - Absolutivert	226,61 V	226,67 V	227.87 V					
	2. Harmonische	0,18 %	0.06 %	0.14 %					
	2. Harmonische - Absolutwert	0,41 V	0.14 V	0,32 V					
	3. Harmonische	0.09 %	0.22 %	0.05 %		-			
	3. Harmonische - Absolutwert	0.20 V	0.50 V	0.11 V					
	4. Hamonische	0.04 %	0,05 %	0.06 %					
	4. Harmonische - Absolutwert	0.09 V	0.11 V	0,14 V					
	5. Harmonische	3.02 %	3,05 %	2,59 %			1		
	E. Unmanische Maskeune Messungen Min/Max Hamonische Lin	C 0E M	C 071/ Hamopische I	F G11/	EN 50160	Marme			
	measurger reprint remonstore op	Trainer section opp	Training Boorie T	Zwischennamonische	1 211 30 100 1	Cecurine			

Band 36: Tabellarische Darstellung von 10 zwischenharmonischen Phasenspannungs-Komponenten

Bild 37: Grafische Darstellung von zwischenharmonischen Phasenspannungs-Komponenten

PQ-Analyse

Die PQ-Analyse ist eine Grundfunktionalität des **PQ-Analysators MAVOLOG PRO**. Die PQ (Power Quality) ist ein sehr geläufiger und bekannter Begriff. Jedoch entspricht er nicht ganz seiner eigentlichen Bedeutung.

Bei der PQ-Analyse geht es im Wesentlichen um die Qualität der Versorgungs**spannung**. Die Versorgungsspannung stellt eine Größe dar, für deren Qualität die Versorgungsunternehmen/Netzbetreiber verantwortlich sind. Sie beeinflusst das Verhalten angeschlossener Technik und Geräte.

Der Strom und die Leistung auf der anderen Seite sind eine Konsequenz unterschiedlicher Lasten und liegen daher in der Verantwortung der Verbraucher. Durch korrekte Filterung kann die Lastdifferenz innerhalb des internen Verbraucher-Netzwerks oder, hauptsächlich, innerhalb der einzelnen Einspeisung eingeschränkt werden, während eine schlechte Versorgungsspannungs-Qualität einen viel größeren Bereich beeinflusst.

Daher sind die Grenzwerte, die die Versorgungsspannung erreichen darf (alias PQ) nur auf solche Anomalien beschränkt, die in der Norm EN50160 festgelegt sind:

Ereignis	PQ-Parameter
Frequenzabweichungen	Frequenzverzerrung
Spannungsabweich-	Spannungsschwankungen
ungen	Spannungsunsymmetrie
Spannungsänderungen	Schnelle Spannungsänderungen
	Flicker
Spannungsereignisse	Spannungseinbrüche Spannungsunterbrechungen
	Spannungserhöhungen
Oberschwingungen & THD	THD-Oberschwingungen Zwischenharmonische Oberschwingungen Signalspannung

Tabelle 16: Netzqualität-Parameter und deren Grenzwerte sind in der NormEN 50160 definiert

Zur Bewertung der Spannungsqualität können im internen Speicher des Gerätes Hauptcharakteristika abgelegt werden. Die Berichte werden auf der Grundlage der gespeicherten Daten erstellt. Die Daten der letzten 300 Wochen und bis zu 170.000 Variationen der gemessenen Größen, basierend auf den Standardwerten, werden im Bericht abgelegt, was eine Erfassung von Anomalien/Ereignissen im Netzwerk erlaubt.

Die MAVO-View-Software bietet einen kompletten Überblick über Berichte mit einem ausführlichen Übersicht über einzelne gemessene Größen und Anomalien. Ein Überblick über die Konformität einzelner gemessener Größen in vorherigen und aktuellen Überwachungsberichten ist möglich.

Online-Überwachung

Wenn alle PQ-Parameter eingestellt und die Analyse aktiviert ist (Informationen über die Einstellungen für eine PQ-Analyse finden Sie im Kapitel *Die Konformität der Spannung mit der Norm EN 50160* auf der Seite 97), startet die PQ-Überwachung mit einem definierten Datum und beginnt damit, wöchentlich Berichte zu erstellen (falls die Einstellung der Überwachungsperiode auf eine Woche gesetzt ist).

Die MAVO-View-Software aktiviert den Überwachungszustand der aktuellen und der vorherigen Überwachungsperiode. Beide Perioden können auch auf einem Gerätedisplay angezeigt werden.

$\textcircled{ { \ensuremath{ \blacksquare } } }$ Hauptmenü ightarrow Messungen ightarrow Stromversorgungs-Qualität

→ Aktuelle Periode/Vorherige Periode

Beispiel eines PQ-Berichtes für eine aktuelle Periode, erstellt auf einem Gerätedisplay. Ausführliche Informationen über PQ erhalten Sie über die Schnittstelle.

Aktuelle Periode Start : 11.05.2014 Ende : 17.05.2014 Status : Unvollst. Ermittelt: X Bericht: 20/2014	Hauptinformationen über die aktuelle Überwachungsperiode. Die Periode ist nicht abgeschlossen und entspricht momentan nicht EN 50160.
Aktuelle Periode Frequenz 1 : X Frequenz 2 : X Unsymmetrie : V Spannung 1 : X Spannung 2 : X Bericht: 20/2014	Anzeige des aktuellen Status der PQ-Parameter. Einige entsprechen momentan nicht EN 50160.
Aktuelle Periode THD : ¥ Harmonische : ¥ Kurze Schwankg : Lange Schwankg : ¥ Schnelle Spädg : ¥ Bericht: 24/2014	Anzeige des aktuellen Status der PQ-Parameter. Einige entsprechen momentan nicht EN 50160.
Actual period Overvoltages : Dips : Short inter. : Long inter. : Signalling v. : Report: 2/2013	Anzeige des aktuellen Status der PQ-Parameter. Einige entsprechen momentan nicht EN 50160.

MAVO-View erleichtert die Online-Überwachung von PQ-Parametern und den Überblick über die Berichte.

Verbindung Verbindung Einstellungen Messungen Analyse	Attedresse: 33 Attedresse: 33 Messingen uele Überwachungspeidel ehr: 25/2014 aneter guenzabweichung 1 guenzabweichung 2 annungsänderungen 1 annungsänderungen 2 annungsänderungen 4 annungsänderungen 4 annungs	Statidatum 12.06.2014 L1 (System) 99.84 % 100.00 % 99.52 % 1 99.62 % 1 99.84 %	Gehe zu: • Endedatum 19:06:2014 L2 100,00 % 100,00 %	Status Unvoltstandig L3 97,86 % 100.00 %	Konformität OK Mehrphasig	Standard EN 50160 Konformität OK OK OK	MV-LDG - Sir Geforderte Qualität 99,5 % / Woche 100 % / Woche
Aktualisieren Aktualisieren Aktualisieren Verbindung Para P	äteadresse: 33 Messungen uelle (bewachungspeide icht: 25/2014 amteit quenzabweichung 1 quenzabweichung 2 annungsänderungen 1 annungsänderungen 1 annungsänderungen 2 genet Pieker Pit	Statidatum 12.06.2014 L1 (Syntem) 99.84 % 100.00 % 98.24 % 100.00 % 99.62 % 1 99.84 %	Cehe zu: - Endedatum 19.06.2014 L2 100.00 % 100.00 %	Status Unvollstandig L3 97,86 % 100.00 %	Konformität OK Mehrphasig	Standard EN 50160 Konformität OK OK OK	MV-LOG - Sir Gefordeite Qualität 99,5 % / Woche 95 % / Woche 95 % / Woche
Verbindung Para Einstellungen Spar Messungen Spar Analyse Har Spar	Messungen uele Überwachungspesiode richt: 25/2014 ameter guenzabweichung 1 guenzabweichung 1 guenzabweichung 2 annungsänderungen 1 annungsänderungen 2 annungsänderungen 4 gabet Picker Pit	Statidatum 12.06.2014 L1 (System) 99.84 % 100,00 % 99.62 % 100,00 % 99.62 % 1 99.64 %	Endedatum 19.06.2014 L2 100.00 % 100.00 %	Status Unvollständig L3 97,86 % 100,00 %	Konformität OK Mehrphasig	Standard EN 50160 Konformität OK OK OK	MV-LOG - Sir Gefordete Qualität 99,5 % / Woche 100 % / Woche 95 % / Woche
Verbindung Beri Para Einstellungen Spa Messungen Spa Analyse Kurz Analyse Sga	uele Überwachungsperiode icht: 25/2014 ameter quenzabweichung 1 quenzabweichung 2 annungsänderungen 1 annungsänderungen 2 annungsänderungen 2 annungsänderungen 4 metele Spannungsänder, iggete Ricker Pit	Stattdatum 12.06.2014 L1 (Syntem) 99.84 % 100.00 % 99.62 % 1 99.62 % 1 99.84 %	Endedatum 19.06.2014 L2 100,00 % 100,00 %	Status Unvollständig L3 97,86 % 100,00 %	Konformität OK Mehrphasig	Standard EN 50160 Konformität OK OK OK	Geforderte Qualităt 99,5 % / Woche 100 % / Woche 95 % / Woche
Verbindung Para Einstellungen Spa Messungen Saa Analyse Har Sign	keht: 25/2014 ameter quenzabweichung 1 quenzabweichung 2 annungsänderungen 1 annungsänderungen 2 annungsunsymmetre nnelle Spannungsänder. rigzet-Ricker Pit	12.06.2014 L1 (System) 99,84 % 100,00 % 98,24 % 100,00 % 99,62 % 1 99,84 %	19.06.2014 L2 100.00 % 100.00 %	Unvollständig L3 97,86 % 100,00 %	OK Mehrphasig	EN 50160 Konformität OK OK OK	Geforderte Qualităt 99,5 % / Woche 100 % / Woche 95 % / Woche
Einstellungen Kessungen Analyse Kess Analyse Kess	ameter quenzabweichung 1 quenzabweichung 2 annungsänderungen 1 annungssänderungen 2 annungsusymmetrie melle Spannungsänder. rgzet-Ricker Pit	L1 (System) 99,84 % 100,00 % 98,24 % 100,00 % 99,62 % 1 99,84 %	L2 100.00 % 100.00 %	L3 97,86 % 100,00 %	Mehrphasig	Konformität OK OK OK	Geforderte Qualität 99,5 % / Woche 100 % / Woche 95 % / Woche
Einstellungen Spa Kessungen Spa Analyse Hart Spa	quenzabweichung 1 quenzabweichung 2 annungsänderungen 1 annungsänderungen 2 annungsunsymmetrie nnelle Spannungsänder. ngzet-Ficker Pt	99,84 % 100,00 % 98,24 % 100,00 % 99,62 % 1 99,84 %	100.00 %	97,86 % 100,00 %		ок ок ок	99,5 % / Woche 100 % / Woche 95 % / Woche
Einstellungen Span	quenzabweichung 2 annungsänderungen 1 annungsänderungen 2 annungsunsymmetrie nnelle Spannungsänder. igzeit-Ricker Pit	100,00 % 98,24 % 100,00 % 99,62 % 1 99,84 %	100,00 %	97,86 % 100,00 %		ок ок	100 % / Woche
Einstellungen Spa Spa Messungen Spa Analyse Lang Analyse HH Har Sga	annungsänderungen 1 annungsänderungen 2 annungsunsymmetrie nnelle Spannungsänder. ngzeit-Ricker Pit	98.24 % 100.00 % 99.62 % 1 99.84 %	100.00 %	97,86 % 100,00 %		ОК	95 % / Works
Analyse Sga	annungsänderungen 2 annungsunsymmetrie nnelle Spannungsänder. ngzeit-Ricker Pit	100,00 % 99,62 % 1 99,84 %	100,00 %	100,00 %			30 % / TTOURS
Messungen Spa Messungen Spa Spa Spa Spa Spa Spa Analyse Hu Har Sgm	annungsunsymmetrie nnelle Spannungsänder. igzeit-Flicker Pit	99,62 % 1 99,84 %				OK	100 % / Woche
Messungen Soh Spar Spar Spar Spar Spar Spar Spar Analyse THC Har Sign	nnelle Spannungsänder. Igzeit-Ricker Pit	1 99.84 %	-			OK	95 % / Woche
Messungen Spain Spain Analyse The Harr Sign	ngzeit-Flicker Pit	99.84 %	2	1	1	OK	20 / Woche
Analyse Sign	and the state of the second		95,77 %	96,39 %		OK	95 % / Woche
Analyse Span	annungseinbruche	2/19	1/14	3/18	2/19	OK	50 / Jahr
Analyse Ham Sign	annungsüberhöhungen	0/8	0/1	0/2	0/8	ОК	50 / Jahr
Analyse Lang THC Ham Sign	ze Unterbrechungen	1/1	1/2	1/2	1/1	OK	100 / Jahr
Ham Sign	nge Unterbrechungen	1/1	1/1	1/1	1/1	ОК	10 / Jahr
Ham	D's	99.57 %	98,69 %	98.44 %		OK	95 % / Woche
Sign	monische	99,88 %	99,43 %	99.61 %		ОК	95 % / Woche
The second secon	nalspannung	100,00 % / 100,00 %	100,00 % / 100,00 %	100,00 % / 100,00 %		ОК	99 % / Tag
ENI	61000-4-31	L1 (System)	L2	L3			
Upgrades Kurz	zzeit-Ricker Pst	98,55 %	95.46 %	96,12 %			
Vorig	ige Überwachungsperiode	Startdatum	Endedatum	Status	Konformität	Standard	
Beric	icht: 24/2014	05.06.2014	11.06.2014	Vollständig	Verfehlt	EN 50160	
Para	ameter	L1 (System)	L2	L3	Mehrphasig	Konformität	Geforderte Qualität
Freq	quenzabweichung 1	99,91 %	-			OK	99.5 % / Woche
Freq	quenzabweichung 2	100.00 %				OK	100 % / Woche
Spar	annungsänderungen 1	99,55 %	97.33 %	98,73 %		OK	95 % / Woche
Spar	annungsänderungen 2	100.00 %	100,00 %	100.00 %		OK	100 % / Woche
Snar	en noen Min /May Hamonia	95.91 %	Do Hamoniecha I / 7w	iechanhamonieche II	NEDICO Alama	OK	95 % / Woche

Für alle Parameter werden die Hauptinformationen angezeigt:

Aktuelle Qualität

Die aktuelle Qualität wird bei einigen Parametern als Prozentanteil der Zeit ausgedrückt, wenn sich die Parameter innerhalb der Grenzwerte befanden, und bei anderen (Ereignissen) wird sie als die Anzahl der Ereignisse innerhalb der überwachten Periode ausgedrückt.

Die aktuelle Qualität wird bei einigen Parametern in allen drei Phasen gemessen, und bei einigen nur in einer einzigen Phase (Frequenz). Die Ereignisse sind auch als Multiphasen-Ereignisse möglich (mehr Informationen über Multiphasen-Ereignisse finden Sie in den folgenden Kapiteln).

Ereignisse werden entsprechend EN 50160 jährlich bewertet. Die Informationen über die aktuelle Qualität setzen sich daher, wie im obenstehenden Bild dargestellt, aus zwei Beträgen (x / y) zusammen, wobei:

- "x" die Anzahl der Ereignisse in der überwachten Periode und
- "y" die Gesamtanzahl der Ereignisse im aktuellen Jahr ist

Erforderliche Qualität

Die erforderliche Qualität ist der Grenzwert für die Entsprechung zur Norm EN 50160 und wird direkt mit der aktuellen Qualität (mit historischen Werten aus Speicher) verglichen. Das Vergleichsergebnis ist der aktuelle Entsprechungsstatus.

Weitere Informationen über die Grenzwerte der erforderlichen Qualität finden Sie in der Norm EN 50160.

BITTE BEACHTEN

Um die Erstellung eines kompletten Qualitätsberichts zu gewährleisten, sollte die Hilfsstromversorgung für das Gerät während der gesamten Periode, für die der Bericht benötigt wird, nicht unterbrochen werden. Wird die Firmware aktualisiert oder wird die Stromversorgung innerhalb der Überwachungsperiode unterbrochen, ist der Qualitätsbericht unvollständig – Status: Nicht komplett.

- Die dunkelgrüne Farbe markiert die erforderliche Qualität
- Die hellgrüne Farbe markiert die aktuelle Qualität
- Die rote Farbe markiert eine Nichtentsprechung zur Norm EN 50160
- Die graue Farbe bei Ereignissen markiert die Anzahl der Ereignisse
- "MP" bei Ereignissen markiert Multiphasen-Ereignisse

PQ-Aufzeichnungen

Eine noch ausführlichere Beschreibung der PQ-Ereignisse erhalten Sie beim Zugriff auf PQ-Berichte mit Details über Anomalien aus dem internen Speicher.

Die Struktur und der Betrieb des internen Speichers und die Anleitungen zum Zugriff auf Daten im internen Speicher finden Sie in den Kapiteln *Geräteverwaltung* auf der Seite 42 und *Interner Speicher* auf der Seite 92.

Nach dem Zugriff auf den Speicher werden Informationen über die heruntergeladenen Daten angezeigt.

Aktualisieren	Gerateadresse: 33		Gehe zu: *	
erbindung	Ubersicht			F:\MAVO-View 2.1\Data\MV-LOG Demo.
nstellungen	Gerät Typ: Seriennummer: Software-Version: Beschreibung: Standort:	MV-LOG MC014626 1.00 MV-LOG PQ Analyser - Clas Main line	۶A	
Analyse	Datenübertragung Übertragungsdatum Rekorder A. Rekorder B Rekorder D Akame Qualitätöberichte	15.3.2013 11:15:11 Datensätze: 1.389 Datensätze: 2.084 Datensätze: 0 Datensätze: 0 Datensätze: 4 Datensätze: 3	01.03.2013 nach 15.03.2013 01.03.2013 nach 15.03.2013 08.03.2013 nach 15.03.2013 02.03.2013 nach 15.03.2013	
Upgrades.	Gualitätsabweichungen	Datensätze: 779	24.02.2013 nach 16.03.2013	

Bild 40: Informationen über die heruntergeladenen Daten mit Schaltflächen für unterschiedliche Speicherpartitionen

Alle Informationen über die Netzqualität werden unter der Schaltfläche *Berichte zur Qualität* abgelegt.

Extras	Ansicht Hille								
unifrience.	Garitandrarer 33		43	de Caba tur a					
Ganareren	Andres SS			He General .					Deviller LOG De
lin .	ager interyse			MOP OR				CONDEV CO- FIEW 2.4	Total Mit-Lod De
30	Bencht Sta	et br	nde	Kordomital	Status	Abweichun	gsanalyse	Bemerkung	
indung	11/2013 101	12 2013 TH	082013	OK .	Validendig	NortHappe	d Athence a gen		
	10/2013 030	3.2013 09	03.2013	UK	voestandig	Non Hagged	d Abweichungen		
19	05/2013 24.0	2.2013 02	03.2015	verone	voestandig	Non Flagger	a vaweionungen		
THE R. P. LEWIS									
sungen	fiberwachungspa	rameter EN 5	0160						PG-Report erstellen
sungen	fiberwachungspa Parameter	rameter EN 5 Korfomtit	0160 L1 (System)	12	13	Mehrphasig	Geforderte Qualit	at Grenzwert	PQ-Report enstellen Abweichunger
alyse	Reservachungspi Parameter Frequenzabweichung 1	Konformtät OK	0160 L1 (System) 100,00 %	12	13	Mehiphasig	Geforderte Qualt 59.5 % / Woche	& Grenzweit ±1%	PG-Report enstellen Abweichunger Abweichungen a
alyse	Oberwachungspi Parameter Frequenzabweichung 1 Frequenzabweichung 2	Konformtik OK OK	0160 L1 (System) 100,00 % 100,00 %	U2	13	Mehrphasig	Geforderte Qualit 59,5 % / Woche 100 % / Woche	& Grenzwet ±1% +4%/5%	PG-Report ensiellen Abweichunger Abweichungen a Acweichungen a
oungen olyse	Überwachungspi Paraneter Frequenzabweichung 1 Frequenzabweichung 2 Spannungsänderungen 1	Konformetiet OK QK OK	L1 (System) 100,00 % 100,00 % 97,50 %	L2 	L3 50.50 %	Mehrphang	Geforderte Qualit 99,5 % / Woche 100 % / Woche 55 % / Woche	at Grenzweit ±1% +4%,-5% ±10%	PG-Report erstellen Abweichungen Abweichungen a Abweichungen a Abweichungen a
oungen olyse	Oberwachungspi Paraneter Frequenzabweichung 1 Frequenzabweichung 2 Spannungsänderungen 1 Spannungsänderungen 2	Kanformelier EN 5 Kanformelie OK OK OK	0160 L1 (System) 100.00 % 100.00 % 97.50 % 100.00 %	12 58.10 % 100.00 %	L3 59.50 % 100.00 %	Mehiphang	Gefordeste Qualit 99,5 % / Woche 100 % / Woche 95 % / Woche 100 % / Woche	at Grenzweit ±1% +4%/-5% ±10% +10%/-15%	PG-Report ensiellen Abweichungen Reweichungen a Reweichungen a Boweichungen a Boweichungen a
alyse	Oberwachungspi Paranter Frequerzabweichung 1 Frequerzabweichung 2 Spannungsinderunge 1 Spannungsinderunge 1 Spannungsungersteilter	Kanformelier EN 5 Kanformelië OK OK OK OK	0160 L1 (System) 100,00 % 100,00 % 97,50 % 100,00 % 99,20 %	12 58.10 % 100.00 %	L3 59.80 % 100.00 %	Mehshang	Geforderte Qualit 99,5 % / Woche 100 % / Woche 55 % / Woche 100 % / Woche 95 % / Woche	at Grenzweit ±1% +4%/-5% ±10% +10%/-15% 2%	PO-Report ensiellen Abweichungen an Remichungen an Romichungen an Romichungen an Romichungen an
alyse grades	Oberwachungsp/ Pagnete Frequezabweichung 1 Frequezabweichung 2 Sparnungsinderungen 1 Sparnungsinderungen 1 Sparnungsinderungen 2	Konformtik OK OK OK OK OK K OK	L1 (System) 100,00 % 100,00 % 97,50 % 100,00 % 99,20 % 0	(2 	L3 	Nehrshang	Geforderte Qualit 99,5 % / Woche 100 % / Woche 55 % / Woche 95 % / Woche 95 % / Woche 20 / Woche	2% Grenzwest ±1% ±1% ±1% ±1% ±1% ±1% ±1% ±1%	PO-Report ensiellen Abweichungen Romeichungen a Romeichungen a Romeichungen a Romeichungen a Romeichungen a
alyse grades	Oberwachungspi Paramter Fregunzabweichung 1 Seannungsindeungen 1 Spannungsändeungen 2 Spannungsändeungen 2 Sohen Spannungsändeungen 2	Kortomtis OK OK OK OK K OK	0160 L1 (System) 100,00 % 97,50 % 100,00 % 99,20 % 0 100,00 %	12 96.10 % 100.00 %	13 99,80 % 100,00 % 0 100,00 %	Mehrphang 0	Gefordete Qualit 99,5 % / Woche 100 % / Woche 55 % / Woche 95 % / Woche 95 % / Woche 20 / Woche Nar Info	at Greenzwest ±1% +4%/-5% ±10% +10%/-15% 2% ±5% 1	PO-Report entellen Abweichungen Noveichungen a Noveichungen a Noveichungen a Noveichungen a Noveichungen a Noveichungen a
alyse grødes	Oberwaichungspa Pagneter Pregenzabweichung 1 Pregenzabweichung 2 Spannungsinderungen 2 S	Karlomtit OK OK OK OK K K K K K K	C160 L1 (System) 100,00 % 97,50 % 100,00 % 99,20 % 0 100,00 % 98,30 %	L2 58.10 % 100.00 % 100.00 %	L3 59,80 % 100,00 % - 0 100,00 % 58,30 %	Mehyhang 0	Gefordene Qualit 99.5 % / Woche 100 % / Woche 55 % / Woche 95 % / Woche 95 % / Woche Nar Info 95 % / Woche	a Genzvet. 1% 442/6% 10% 10%/15% 2% 45% 1 1 1	PO-Report entellen Abweichungen Brweichungen a Boweichungen a Boweichungen a Boweichungen a Brweichungen a Roweichungen a Roweichungen a
alyse	Oberwachungspi Parameter Frequenzabweichung 1 Searnungsindenungen 1 Searnungsindenungen 2 Searnungsungemeter Schreite Sparnungsind Kurzunt Floken Pat Lungseite Alcher Pat Searnungsenbrüche	Kartomia OK OK OK K OK K OK OK OK	0160 L1 (System) 100,00 % 97,50 % 100,00 % 99,20 % 0 100,00 % 98,30 % 9 / 0	12 58.10 % 100.00 % 0 100.00 % 5 98.60 % 0 / 0	13 99.80 % 100.00 % - 100.00 % 98.30 % 07.0	Mehyhang 0 0/6	Geforderte Qualit 99.5 % / Woche 100 % / Woche 95 % / Woche 96 % / Woche	38 Grenzwet ±1% +4%/4% ±10% +10%/15% 2% ±5% 1 90%	PO-Repot entitlen Atmichungen Anmichungen a Atmichungen a Atmichungen a Atmichungen a Atmichungen a Atmichungen a Atmichungen a Atmichungen a
alyse grødes	Oberwalchungspi Paranete Freguerzabweichung 1 Soarnungsindeungen Sortenungsindeungen Sortenis Sparnungsind Kurzett Flokter Pit Langset Ricker Pit Saarnungsehnliche Soarnungsichnlichunge	Konformatik OK OK OK OK W W OK W OK OK OK	0160 L1 (System) 100,00 % 57.50 % 100,00 % 99.20 % 0 100,00 % 98.30 % 0 % 0 % 0 %	L2 	13 	Mehphang 0 0/6 0/7	Gefordene Qualit 99.5 % / Woche 100 % / Woche 95 % / Woche 96 % / Woche 96 % / Woche 90 / Jahr	& Geenzwet ±1% +4%/6% ±10%/15% 2% ±5% 1 1 90% 110%	PO-Repot entelen Anwechunge Breischungen a Boeischungen a Boeischungen a Boeischungen a Boeischungen a Romichungen a Breischungen a Boeischungen a
alyse	Oberwachungspi Paramie Imaurizhiedhurg 1 Searnurgishdeurgen 1 Searnurgishdeurgen 1 Searnurgisheurgen Schwei Spannurgishd Kurzet Faker Pit Samungsbehöhe Samungsbehöhe Samungsbehöhunge	Karforntik OK OK OK OK K OK OK OK OK	L1 (System) 100,00 % 57,50 % 99,20 % 0 100,00 % 98,30 % 9,20 % 0 100,00 % 98,30 % 9/0	12 96.10 % 100.00 % 0 100.00 % 98.60 % 0 / 0 0 / 0	L3 	Nehphaug 0 0/6 0/7 3/33	Gefordeste Qualit 99.5 % / Woche 100 % / Woche 100 % / Woche 35 % / Woche 35 % / Woche 35 % / Woche 35 % / Woche 50 / Jahr 50 / Jahr 100 / Jahr	at Genzvet ±1% ±472/5% ±10% ±10%/15% 2% ±5% 1 1 90% 110% 5%, <180e	PD-Repot entellen Anwechunge Romichusen a Romichungen a Romichungen a Romichungen a Romichungen a Romichungen a Romichungen a Romichungen a Romichungen a Romichungen a
alyse	Oberwachungspi Parante Finsanzabieschurg 1 Finsanzabieschurg 1 Sonnungsinderungen Sonnungsinderungen Sonnungsinderungen Largert Ricker Pfa Largert Ricker Pfa Largert Ricker Pfa Largert Ricker Pfa	Korlomtit OK OK OK OK W OK W OK OK OK OK OK	0150 L1 (System) 100,00 % 97,50 % 97,50 % 99,20 % 6 100,00 % 98,30 % 0 / 0 0 / 0 0 / 0 0 / 0	12 58.10 % 100.00 % 98.60 % 94.00 0 / 0 0 / 0	L3 	Mehphang 0 0/6 0/7 3/33 0/3	Gefordeste Quali 99.5 % / Woche 100 % / Woche 55 % / Woche 55 % / Woche 20 / Woche 20 / Woche 20 / Woche 56 % / Woche 56 % / Woche 50 / Jahr 100 / Jahr 100 / Jahr	2 Genzvet. 51% 44%/5% 210% 10%/15% 2% 1 90% 10% 5%, <100e 5%, >100e	PQ-Repot entellen Anwechungen Anwechungen a Anwechungen a Anwechungen a Anwechungen a Anwechungen a Anwechungen a Anwechungen a Anwechungen a Anwechungen a Anwechungen a
alyse	Aberwachungspi Paratet Fregunzabescharg 1 Somrungsinderungen Somrungsinderungen Somrungsinderungen Somrungsinderungen Karzel Floher Pa Somrungserbilder Somrungserbilder Karzel Floher Pa Somrungserbilder Karzel Floherhourgen Lange Erletenchungen Teito	Kardomtát OK OK OK OK OK K OK OK OK OK OK OK	C160 L1 (System) 100,00 % 100,00 % 37,50 % 100,00 % 99,20 % 0 100,00 % 98,30 % 0 / 0 0 / 0 0 / 0 100,00 %	(2 98.10 % 100.00 % 0 100.00 % 98.60 % 0 / 0 0 / 0 100.00 %	L3 	Mehyhang 0 0/6 0/7 3/33 0/3	Geforderte Qualit 99.5 % / Woche 100 % / Woche 95 / Jahr 100 / Jahr 100 / Jahr 95 % / Woche 95 / Jahr	a Genzwet ±1% +4%/6% ±10%/15% 2% +10%/15% 2% 1 1 90% 110% 5%, >100% 5%, >100% 5%, >100% 5%, >100% 5%, >100% 5%, >100% 5%, >100% 5%, >10% 5%, >10% 5%, >10% 5%, >10% 5%, >10% 5%, >10% 5%, >10% 5%, >10% 5%, >10%	PO-Repot estellen Atwechungen Remichungen Remichungen Remichungen Remichungen Remichungen Remichungen Remichungen Remichungen Remichungen Remichungen Remichungen Remichungen
avingen aviyse grødes	Oberwachungspi Parante Fingunzabieschung 1 Fingunzabieschung 2 Sonnungsinderungen Sonnungsinderungen Sonnungsinderungen Karzel Reisen Pat Karzel Reisen Pat Karzel Reisen Pat Karzel Reisenburgen Karzel Reisenburgen Karzel Reisenburgen Karzel Reisenburgen Karzel Reisenburgen Karzel Reisenburgen	Korlomatia 0K 0K	L1 (System) 100,00 % 97,50 % 100,00 % 99,20 % 99,20 % 0 /0 0 /0 0 /0 0 /0 0 /0 0 /0 0 /0 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0	62 98.10 % 100,00 % 98.60 % 94.0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0	L3 59,50 % 100,00 % 0 100,00 % 98,30 % 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 100,00 % 99,60 %	Mehiphasig 0 0/6 0/7 3/33 0/3	Gefordeste Qualit 99,5 % / Woche 100 % / Woche 55 % / Woche 20 / Woche 20 / Woche 20 / Woche 55 % / Woche 50 / Jahr 100 / Jahr 100 / Jahr 55 % / Woche 55 % / Woche	# Genuxed: ±1% ±1% ±4%/5% ±10% ±10%/5% ±10% ±10%/5% 1 90% 110% 5%, <180e	PG-Report entellen Atwechungen Atwechungen a Bareschungen a Bareschungen a Bareschungen a Atwechungen a Bareschungen a Bareschungen a Bareschungen a Bareschungen a Bareschungen a Bareschungen a Bareschungen a

Bild 41: Hauptfenster der aufgezeichneten PQ-Berichte

Das Hauptfenster ist in zwei Teile gegliedert. Der obere Teil enthält Informationen über die aufgezeichneten PQ-Berichte, und der untere Teil enthält ausführliche Informationen über jeden der obenstehenden Berichte.

Für jeden überwachten Parameter kann der entsprechende Anomalie-Bericht angezeigt werden. Dies stellt eine komplette Liste genau zeitgestempelter Messungen dar, die außerhalb der PQ-Grenzwerte lagen.

Bewertung markierter Daten / Flagging

Die Einstellung zum Markieren von Ereignissen spezifiziert die datenbezogenen Vorgänge (aufgezeichnete Ereignisse), die entsprechend dem Markierungskonzept IEC 61000-4-30 markiert wurden.

Markierte Daten sind Aufzeichnungen der Spannungsqualität, die von einem oder mehreren Spannungsereignissen (Unterbrechungen, Erhöhungen, Einbrüche) beeinträchtigt wurden.

Der Zweck des Markierens/Flaggings von Daten ist die Kennzeichnung aufgezeichneter Parameter, wenn bestimmte Störungen zur Beeinträchtigung von Messungen und zur Beeinflussung von Daten führen könnten. Beispielsweise kann ein Spannungseinbruch Flicker, zwischenharmonische Oberschwingungen usw. verursachen. In diesem Fall werden alle Parameter, die zurzeit der Spannungsereignisse aufgezeichnet wurden, markiert.

Markierte Daten werden in den PQ-Bericht aufgenommen oder ausgelassen, und zwar in Abhängigkeit von der entsprechenden Einstellung (siehe das Kapitel *Einstellung zum Markieren von Ereignissen* auf der Seite 99).

BITTE BEACHTEN

Unabhängig von dieser Einstellung werden Messwerte immer im Recorder gespeichert und sind für eine Analyse verfügbar. Markierungen beeinflussen PQ-Berichte nur als Ganzes. Bei der Bewertung der Details von PQ-Parametern können

- alle Ereignisse
- nicht markierte Ereignisse

wie im untenstehenden Bild dargestellt werden.

Datei Extras	Ansicht Hilfe							
😫 🛃 💕 • 💼		8 4 2 8						
Aktualisieren	Geräteadresse: 33		1	🔹 Gehe zu: 🔹				
	Analyse						5	E-\MAVO-View 21\Data\MV-LOG Demo
3	Spannungsände	rungen 1, 24.02.2	013 - 02.0	3.2013				
Verbindung	Filter: Alle Abweich	nungen	Abweichun	igen: 112 Schließ	en			
	Alle Abweich	unden		March of Part	the local Rd			
- 62	Start Non-Flagged	d Abweichungen	Phase	Mitterwert [3-]	Mitterwert [V]	Uauer	Hagged	
0	24.02.2010-01-00	24.02.2012.07.20.00	2	22,00	202,75	00.10.00	Nein	
Einstellungen	24.02.2013 07.10.00	24.02.2013 07.20.00	2	00.00	202,40	00.10.00	Main	_
	24.02.2013 08.00.00	24.02.2013 08.10.00	3	96.62	199.23	00.10.00	Main	
	24.02.2013 03.40.00	24.02.2013 03.50.00	2	85.04	195.59	00.10.00	Nain	
	24.02.2013 16:00:00	24.02.2013 16:10:00	2	85.23	196.03	00.10.00	Nain	
	24.02.2013 17:20:00	24 02 2013 17:30:00	1	89.11	204.95	00.10.00	Nein	
messungen	24 02 2013 19:00:00	24 02 2013 19:10:00	3	85.58	196.83	00.10.00	Nein	
	24.02.2013 19:10:00	24.02 2013 19:20:00	1	85.70	197.11	00:10:00	Nein	
STORE .	24.02.2013 23:20:00	24.02 2013 23:30:00	1	87.42	201.07	00:10:00	Nein	
H CPC	25.02.2013 00.20:00	25.02 2013 00:30:00	1	36.08	197,98	00:10:00	Nein	
Analyse	25.02.2013 01:00:00	25.02.2013 01:10:00	2	88.62	203.83	00:10:00	Nein	
	25.02.2013 01:50:00	25.02.2013 02:00:00	3	85.87	197,50	00:10:00	Nein	
-	25.02.2013 02:00:00	25.02.2013 02:10:00	1	89.04	204.79	00:10:00	Nein	
	25.02.2013 03:20:00	25.02.2013 03:30:00	1	89,79	206,52	00:10:00	Nein	
Unaradar	25.02.2013 04:20:00	25.02.2013 04:30:00	2	87,92	202,22	00:10:00	Nein	
opgrades	25.02.2013 10:40:00	25.02.2013 10:50:00	2	87,17	200,49	00:10:00	Nein	
	25.02.2013 10:50:00	25.02.2013 11:00:00	2	89.64	206,17	00:10:00	Nein	
	25.02.2013 15:50:00	25.02.2013 16:00:00	1	88,99	204,68	00:10:00	Nein	
	25.02.2013 16:30:00	25.02.2013 16:40:00	3	89,20	205,16	00:10:00	Nein	
	25.02.2013 16:40:00	25.02.2013 16:50:00	2	85,36	196,33	00:10:00	Nein	
	25.02.2013 16:50:00	25.02.2013 17:00:00	1	86.89	199,85	00:10:00	Nein	
	25.02.2013 17:30:00	25.02.2013 17:40:00	2	87.31	200,81	00:10:00	Nein	
	25.02.2013 17:50:00	25.02.2013 18:00:00	2	85,12	195,78	00:10:00	Nein	
	25.02.2013 18:40:00	25.02.2013 18:50:00	2	86.14	198,12	00:10:00	Nein	
	25.02.2013 22:10:00	25.02.2013 22:20:00	1	87,21	200,58	00:10:00	Nein	
	00-00-50 5100 CD 30	25.02.2013 23-20-00	2	29.47	203 37	00-10-00	Nain	1

Bild 43: Anzeige aller nicht markierten Ereignisse

Multiphasen-Ereignisse

In Abhängigkeit von der Norm EN 50160 sollten Ereignisse (Unterbrechungen, Erhöhungen, Einbrüche) Multiphasen-aggregiert sein.

Multiphasen-Aggregation stellt eine Methode dar, bei welcher Ereignisse, die in allen Phasen zur gleichen Zeit vorkommen, durch ein einziges Multiphasen-Ereignis ersetzt werden, da sie mit großer Wahrscheinlichkeit durch eine einzige Anomalie im Netzwerk verursacht wurden.

Jedoch sollten alle Ereignisse aufgezeichnet werden, um einem Informationsverlust vorzubeugen. Daher werden bei Multiphasen-Anomalien vier Ereignisse aufgezeichnet – drei Ereignisse für jede Phase und ein zusätzliches Multiphasen-Ereignis.

Start	Ende	Phase	Mittelwert [%]	Mittelwert [V]	Dauer	Flagged		
24.02.2013 01:20:0	0 24.02.2013 01:30:00	2	88,15	202,75	00:10:00	Nein		
24.02.2013 07:10:00	0 24.02.2013 07:20:00	3	88,00	202,40	00:10:00	Nein		
24.02.2013 08:00:00	0 24.02.2013 08:10:00	2	89,90	206,77	00:10:00	Nein		
24.02.2013 09:40:00	0 24.02.2013 09:50:00	3	86,62	199,23	00:10:00	Nein		
24.02.2013 11:40:00	0 24.02.2013 11:50:00	2	85,04	195,59	00:10:00	Nein		
24.02.2013 16:00:00	0 24.02.2013 16:10:00	2	85,23	196,03	00:10:00	Nein		

Bild 44: In der Spalte "Phase" werden Multiphasen-Ereignisse in der Ereignisliste mit einem "-" markiert. In diesem Beispiel kommen in der 3. Zeile zwei Ereignisse vor, und Ereignisse stellen Multiphasen-Ereignisse dar.

Die Definition eines Multiphasen-Einbruchs und einer Multiphasen-Erhöhung ist:

"Ein Multiphasen-Ereignis beginnt, wenn die Spannung in einer oder in mehreren Phasen den Grenzwert für eine Ereignis-Erfassung überschreitet, und endet, wenn die Spannung in allen Phasen wieder den Normalwert erreicht hat."

Die Definition einer Multiphasen-Unterbrechung ist:

"Eine Multiphasen-Unterbrechung beginnt, wenn die Spannung in einer oder in mehreren Phasen den Grenzwert für eine Unterbrechung überschreitet, und endet, wenn die Spannung in mindestens einer Phase wieder den Normalwert erreicht hat."

Die Details von Spannungsereignissen werden auf zwei Weisen dargestellt – erstens als eine Liste aller Ereignisse mit allen Details und zweitens als eine Tabelle entsprechend den UNIPEDE DISDIP-Spezifikationen.

Altualizieren	Garätandrorren 33		1.	Geberry -					
ARCOMISICICIT	Analyse			• Gene zu. •				F:\MAVO-View 2.1	\Data\MV-LOG Demo
Verbindung	Spannungseinbrüt Filter: Alle Abweichur	che, 24.02.20	13 - 02.03.20 • Abweichun	013 gen: 6 Schließer	1				
Einstellungen	Statistik	10 - 200 ms	> 200 ms	> 500 ms	>1s		5 - 60 s	Andere (> 60 s)	
	80 < Un < 90 %	0	0	0	0		1	0	
	70 < Un < 80 %	0	0	0	0		0	0	
	40 < Un < 70 %	0	0	0	2		1	0	
	5 < Un < 40 %	0	0	0	2		0	0	
0	Un < 5 %	0	0	0	0		0	0	
0	Start	Ende	Pha	ise Minimum [%] Mini	mum [V]	Dauer		
Messungen	27.02.2013 12:25:20.648	27.02.2013 12:	25:25,138		61,84	66,31	00:00:04,490		
Analyse	01.03.2013 18:21:20,522	01.03.2013 18:	21:21,712	•	28,83	110,79	00:00:01,190		
	01.03.2013 18:46:05,501	01.03.2013 18:	46:19,691	·	48.17	43,93	00:00:14,190		
	02.03.2013 01:22:25,648	02.03.2013 01:	22:30,138	4	19,10	193,09	00:00:04,490		
	02.03.2013 03:47:00,482	02.03.2013 03:	47:07.672		83,95	0.00	00:00:07.190		
	02.03.2013 10:00:36,541	02.03.2013 10:	00:39,731		48,41	142,23	00:00:03,190		

KOMMUNIKATIONSMODI

Der PQ-Analysator **MAVOLOG PRO** unterstützt zwei Kommunikationsbetriebsarten, um alle Anforderungen an die Konnektivität und Flexibilität zu erfüllen.

Der **Standard-POLL-Kommunikationsmodus** wird für die meisten Benutzer-Interaktionszwecke zusammen mit der Überwachungs- und Einstellungs-Software MAVO-View, mit SCADA-Systemen und mit anderen MODBUS-orientierten Datenerfassungs-Programmen verwendet.

Der **PUSH-Kommunikationsmodus** wird zum Senden nicht angeforderter Daten an vorgegebene Links zwecks Speicherung von Daten in diversen Datenbanken verwendet.

POLL-KOMMUNIKATIONSMODUS	144
PUSH-KOMMUNIKATIONSMODUS	145

POLL-Kommunikationsmodus

Hierbei handelt es sich um den am weitesten verbreiteten Kommunikationsmodus. Die Daten werden auf Anfrage zur Verfügung gestellt (On-Demand), was bedeutet, dass dieser Modus für direkte Verbindungen von Einstellungs- und/oder Überwachungs-Software mit einem einzigen Dienst geeignet ist, oder für die Netzwerk-Kommunikation mehrerer Geräte, wozu die Schaffung einer entsprechenden Kommunikations-Infrastruktur erforderlich ist.

Das Gerät sendet Daten, wenn externe Software eine Anfrage entsprechend dem MODBUS RTU- oder MODBUS TCP-Protokoll sendet.

Dieser Kommunikationstyp wird normalerweise zur Sammlung von Echtzeit-On-demand-Messungen zu Kontrollzwecken verwendet.

Zur Einrichtung des POLL-Kommunikationsmodus sind nur grundlegende Kommunikationseinstellungen entsprechend dem Kommunikationstyp (seriell, USB, ETHERNET) erforderlich. Siehe das Kapitel *Kommunikation* auf der Seite 60.
PUSH-Kommunikationsmodus

Der PUSH-Kommunikationsmodus wird hauptsächlich für das GOSSEN METRAWATT **MAVO-Database**-System zur externen Überwachung, Analyse und Berichterstattung verwendet.

Der PQ-Analysator **MAVOLOG PRO** entfaltet seine volle Wirkung dann, wenn das Gerät als Teil eines Energie-Überwachungssystems verwendet wird, das aus strategisch positionierten Messgeräten besteht, die mit der *MAVO-Database*-Software verbunden sind. Diese Drei-Ebenen-Middleware ist ein perfektes Tool für Versorgungsunternehmen, Energielieferanten und andere Parteien auf beiden Seiten der Angebotsund Nachfrage-Kette.

MAVO-Database-Datensammler mit Push-Kommunikation erlaubt automatische Aufzeichnungen aller vorgegebenen Messparameter. Diese werden in der

MAVO-Database-Datenbank abgelegt, wobei eine Sicherungskopie derselben Parameter auch lokal im Speicher jedes Geräts abgelegt wird. Datenbank-Aufzeichnungen im XML-Format können in tabellarischer und grafischer Form durchsucht und eingesehen werden, und zwar mithilfe des

MAVO-Database-Clients, oder sie können von einer Drittpartei-Anwendung verwendet werden.

Datenbank-Aufzeichnungen können zahlreiche Parameter von Drei-Phasen-Systemen, Netzqualitäts-Parameter, physische Parameter (Temperatur, Druck, Windgeschwindigkeit...) sowie Alarme und Alarm-Protokolle enthalten.

Bild 47: MAN

MAVO-Database-Client-Fenster

Erklärung

Im Kommunikationsmodus sendet das Gerät (Master-)Werte vorgegebener Größen in vorgegebenen Zeitintervallen an zwei unabhängige Server (Datensammler – Slave), die Daten in Datenbanken zur weiteren Analyse sammeln.

Dieser Kommunikationsmodus ist sehr nützlich für die periodische Überwachung von Messwerten in Systemen, wo Echtzeit-Daten nicht erforderlich sind, wo die Betriebssicherheit bei der Datensammlung andererseits aber sehr wichtig ist (z. B. zu Abrechnungszwecken, zur Nachbearbeitung und zur Ausgabe von Trend-Warnungen).

Andererseits sendet das Gerät beim Betrieb in diesem Modus Informationen über Alarme sofort nach deren Vorkommen (Echtzeit-Alarm-Überwachung).

Dieser Kommunikationstyp optimiert auch den Kommunikationsverkehr.

Protokoll- und Datenformat

Das Gerät verwendet das XML-Format zum Senden von Daten. Dieses Format ist sehr weit verbreitet und leicht zu benutzen, auch mit Software-Lösungen Dritter. Das zur Datenübertragung verwendete Protokoll ist TCP/IP.

Alle gesendeten Messwerte sind mit einem Zeitstempel versehen , um diese Daten bei Bedarf rekonstruieren zu können (falls die Kommunikation abbricht und die Daten erst später gesendet werden). Daher ist die Zeitsynchronisierung des Clients und des Servers von entscheidender Bedeutung. Zu diesem Zweck sendet der Server mit jeder Antwort auf erhaltene Daten ein Paket mit Synchronisierungsdaten an das Gerät. Beträgt der Zeitunterschied mehr als +/- 2 Sek., wird die interne Uhr des Geräts zurückgesetzt. Weitere Informationen über das verwendete XML-Format finden Sie in der *Anlage D* auf der Seite 184.

ACHTUNG

Die Zeitsynchronisierung mithilfe des Push-Systems hat die niedrigste Priorität. Sind andere Zeitsynchronisierungs-Quellen (GPS, NTP, IRIG-B) verfügbar, haben diese Priorität zur Synchronisierung der RTC.

Durch das Verwenden der Zeitsynchronisierung mit der Push-Funktionalität erfüllt das Gerät nicht die Anforderungen an Messgeräte der A-Klasse und kann nur als ein Messgerät der S-Klasse verwendet werden.

Datenübertragung

Jede Übertragung von der Master-Seite (Gerät) muss von der Client-Seite (Server) zur Bestätigung der erfolgreichen Datenübertragung anerkannt werden. Falls der Client nach dem Verstreichen der vorgegebenen Reaktionszeit keine Bestätigung erhält (siehe *Ethernet-Kommunikation* auf der Seite 62), wird er versuchen diese während des nächsten Zeitintervalls zu senden. Dieses wiederholte Senden von Daten wird so lange dauern, bis der Master auf die gesendeten Daten reagiert. Danach wird der Client alle verfügbaren Daten seit dem Augenblick senden, an dem er keine Antwort vom Master mehr erhielt.

Der PULL- und der PUSH-Kommunikationsmodus können zur selben Zeit aktiv sein. Arbeiten mit beiden Kommunikationsmodi ist zur selben Zeit möglich, wenn die PULL-Kommunikation über COM2 oder über das Ethernet-Modul durch den Port hergestellt wird, der zur Kommunikation über das MODBUS-Kommunikationsprotokoll reserviert ist (Informationen über den Port 502 finden Sie im Kapitel *Ethernet-Kommunikation* auf der Seite 62).

Unterstützte Größen und Einstellungen

Das Senden von Daten im PUSH-Kommunikationsmodus ist eng mit dem Speichern von Messungen in einem Recorder verbunden. Das Gerät kann an (einen) ausgewählte(n) Server einen Block von Messgrößen senden, die im Speicher abgelegt sind. Für jede Speicherabteilung (Recorder A bis D, Alarmrecorder und Qualitätsberichte mit Detailrecorder) können separate Einstellungen vorgenommen werden.

Schritt 1

Nehmen Sie mithilfe der MAVO-View-Software korrekte PUSH-Kommunikationseinstellungen vor, in denen die Zeitsynchronisierungs-Quelle, die Reaktionszeit, das Datumformat und die Parameter des empfangenden Servers definiert sind.

Schritt 2

Definieren Sie die Daten (Größen) für Recorder/zur Übertragung. Wählen Sie für jeden Teil des Recorders aus, an welche(n) Server die Daten gesendet werden sollen. Diese Einstellung kann für Alarme, Recorder A bis D, Qualitätsberichte und Details vorgenommen werden.

Mehr Informationen über die PUSH-Datenübertragung und das MAVO-Database-System zur Sammlung dieser Daten finden Sie auf der Webseite von GOSSEN METRAWATT oder in der Dokumentation zum MAVO-Database-System.

TECHNISCHE DATEN

Im folgenden Kapitel finden Sie alle technischen Daten zum Betrieb des **MAVOLOG PRO** PQ-Analysators.

GENAUIGKEIT	<u></u>
EINGÄNGE	151
ANSCHLUSS	152
SCHNITTSTELLEN-KOMMUNIKATION	152
E/A-MODULE	153
SICHERHEIT	155
BETRIEBSBEDINGUNGEN	156
ABMESSUNGEN	157

Genauigkeit

Gemessene Werte	Messbereich	Genauigkeitsklasse	
	(Direkter Anschluss)	Norm	Klasse
Wirkloidung	1,8 – 18 kW (In = 5 A)	IEC61557-12	0,2
Wirkleistung	0 – 1,8 kW (ln = 1 A)	IEC61557-12	0,5
Blindleistung	0 – 18 kvar	IEC61557-12	1
Scheinleistung	0 – 18 kVA	IEC61557-12	0,2
Wirkenergie	9-stellig	IEC61557-12	0,2S
Blindenergie	9-stellig	IEC61557-12	2
Scheinenergie	9-stellig	IEC61557-12	0,2
Rms-Strom	0,001 bis 12,5 Arms	IEC61557-12	
(I ₁ , I ₂ , I ₃ , lavg)	In = 1 A oder 5A		0,1
(I _{n_meas})	In = 1 A oder 5A ⁽¹⁾		0,2
(I _{n_calc})	In = 1 A oder 5A		0,5
Rms-Phasenspannung	U _{meas} :10 - 600 V _{L-N}	IEC61557-12	0,1
(U ₁ , U ₂ , U ₃ , U _{n-g} , U _{avg})	U _{din} = 120/230V	IEC61000-4-30	A-Klasse
Rms-Zwischenphasen-Spannung	19 1000 \/	IEC61557-12	0,1
(U ₁₂ , U ₂₃ , U ₃₁ , U _{avg})	18 - 1000 V _{L-L}	IEC61000-4-30	A-Klasse
Negativ-Spannungssequenz-	10 600 \/	IEC61557-12	0,2
Unsymmetrie ⁽²⁾	10 - 000 V _{L-N}	IEC61000-4-30	A-Klasse
(U ₂)			
Null-Spannungssequenz-Unsymmetrie ⁽²⁾	10 - 600 V · · ·	IEC61557-12	0,2
(<i>u</i> ₀)		IEC61000-4-30	A-Klasse
SpannungsFlicker		IEC61000-4-15	F1-Klasse
(Pst Plt)	0,2 Pst – 10 Pst	IEC61000-4-30	(2)
			A-Klasse
Frequenz – aktuell	50 / 60Hz	IEC61557-12	0,02
(<i>f</i>)	307 00112	IEC61000-4-30	A-Klasse
Frequenz - (durchschnittl. 10 s)	50 / 60 Hz	IEC61557-12	0,02
(f _{10s})		IEC61000-4-30	A-Klasse
Nenn-Frequenzbereich	16400 Hz	IEC61557-12	0,02

Gemessene Werte	Messbereich	Genauigkeitsklasse		
	(Direkter Anschluss)	Norm	Klasse	
Leistungsfaktor (<i>PF_A</i>)	-1(C)0+1(L)	IEC61557-12	0,5	
Spannungserhöhungen		IEC61557-12	0,2, ±1 cyc	
(U _{swl})	100 – 120 % O _{din}	IEC61000-4-30	A-Klasse	
Spannungseinbrüche	5 100 % 11	IEC61557-12	0,2, ±1 cyc	
(U_{dip})	5 – 100 % O _{din}	IEC61000-4-30	A-Klasse	
Spannungsunterbrechungen	0 5 9/ 11	IEC61557-12	±1 cyc	
(U _{int})	0 – 5 % U _{din}	IEC61000-4-30	A-Klasse	
	10 – 200% von	IEC61557-12	0,3	
THDU ⁽³⁾	IEC61000-4-2 Klasse 3	IEC61000-4-7	I-Klasse	
	Bis zu 4kHz	IEC61000-4-30	A-Klasse	
	10 – 200% von	IEC61557-12	0,15	
Spannungs-Oberschwingungen	IEC61000-4-2 Klasse 3	IEC61000-4-7	I-Klasse	
(O_{h_l-n}, O_{h_l-l})	Bis zu 4kHz (63 rd)	IEC61000-4-30	A-Klasse	
Zwischenharmonische	10 – 200% von	IEC61000-4-7	I-Klasse	
Spannungs-Oberschwingungen	IEC61000-4-2 Klasse 3	IEC61000-4-30	A-Klasse	
(<i>U</i> _{<i>l</i>h})				
THDI ⁽⁴⁾	Bis zu 4kHz	IEC61557-12	0,3	
Strom-Oberschwingungen (I_h)	Bis zu 4kHz (63 rd)	IEC61557-12	0,5	
Signalspannung				
(U _{msv})		1EC01000-4-30	A-Masse	
Eastzait Libr (PTC)	synchronisiert		A-Klasse	
	unsynchronisiert	1000-4-30	< ±1 Sek./Tag	

(1) Genaue Messungen des Neutralstroms (I_{n_meas}) bei niedrigeren Frequenzen (16 Hz – 30 Hz) sind bis zu 6 A rms möglich (2) Die Spannungs-Unsymmetrie wird als Amplituden- und Spannungs-Unsymmetrie U_{nb} gemessen

(3) Test-Spezifikationen für den Flimmermesser entsprechend der Norm IEC61000-4-15:2010
(4) Beim Messen des THD kann der Benutzer einstellen, wie dieser berechnet werden soll (als % des Grundwerts oder als % des RMS-Werts)

Eingänge

Spannungs- eingang	Anzahl der Kanäle Abtastrate Min. Synchronisierungsspannung Nennwert (U _N) Max. Messwert (kont.) Max. zugelassener Wert Verbrauch Eingangsimpedanz	4 ⁽¹⁾ 32 kHz 1 V _{rms} 500 V _{LN} , 866 V _{LL} 600 V _{LN} ; 1000 V _{LL} 1,2 × U _N ständig 2 × U _N ; 10 s < U ² / 4,2 MΩ pro Phase 4,2 MΩ pro Phase
Strom- eingang		
- 00	Anzahl der Kanäle	4
	Abtastrate Nennwert (I _N)	32 kHz 1 A. 5 A
	Max. Messwert	12,5 A sinus
	max. zugelass. wert (thermisch)	≤ 300 A; 1 s
	Verbrauch	$< I^2 \times 0,01\Omega$ pro Phase
Frequenz		
	Nennfrequenz (f _n) Messbereich	50, 60 Hz 16…400 Hz
Versorgung		
	Merkmal A00 (Standard): Nennspannung AC Nennfrequenz Nennspannung DC Verbrauch (max. alle E/A) Übergangseinschaltstrom	CAT III 300 V 80 276 V 40 65 Hz 70 300 V < 8 VA < 20 A ; 1 ms
	Merkmal A01 (nicht mehr lieferbar): Nennspannung AC Nennfrequenz Nennfrequenz DC Verbrauch (max. alle E/A) Übergangseinschaltstrom	CAT III 300 V 48 77 V 40 65 Hz 19 70 V < 8 VA < 20 A ; 1 ms

Anschluss

Anschlussklemmen	Max. zulässiger Leiterquerschnitt		
Spannungseingänge (4)	2,5 mm ²	mit Stiftanschluss	
	4 mm^2	massiver Draht	
Stromeingänge (3)	≤ Ø 6 mm	n ein isolierter Leiter	
Versorgung (3)	2,5 mm ²	mit Stiftanschluss	
	4 mm ²	massiver Draht	
Module 1, 2 (2 x 3)	2,5 mm ²	mit Stiftanschluss	
	4 mm ²	massiver Draht	
Module A, B (2 x 9)	2,5 mm ²	mit Stiftanschluss	
	4 mm ²	massiver Draht	
Modul C (1 x 7)	2,5 mm ²	mit Stiftanschluss	
	4 mm ²	massiver Draht	

Zulässige Leiterquerschnitte

WARNUNG

Die vierte Spannungsanschlussklemme (Anschlussklemme 12), die den vierten Spannungs-Messkanal darstellt, darf NUR an die Erdung angeschlossen werden. Diese Anschlussklemme muss immer an die ERDUNG angeschlossen bleiben!

Schnittstellen-Kommunikation

	Ethernet	USB	RS232	RS485
Anschlusstyp	Netzwerk	Dir	ekt	Netzwerk
Max. Verbindungslänge	30 m	2 m	3 m	1000 m
Klemmen	RJ-45	USB - B	Schr	aubklemmen
Isolation	Entspre	Entsprechend der Norm EN 61010-1:2010		
Übertrag.modus	Asynchron			
Protokoll Übertragungsrate	MODBUS TCP / DNP3 Auto- Erkennung	CP MODBUS RTU / DNP3 Auto-Erki		'3 Auto-Erkennung
	10/100 MB/s	2.400 bis 115.200 Bit/s		

E/A-Module

Digital- ausgangs- modul	Typ Zweck Bemessungsspannung Max. Schaltstrom Kontaktwiderstand Impuls	Relaisschalter 2 x Alarmausgang, 2 x Universal- Digitalausgang 230 $V_{AC/DC} \pm 20\%$ max 1000 mA (Hauptsteckplatz) 100 mA (Hilfs-Steckplatz) $\leq 100 \text{ m}\Omega (100 \text{ mA}, 24 \text{ V})$ Max. 4000 lmp/Std Min. Länge 100 ms
Bistabiles Alarm- ausgangs- modul	Anzahl der Ausgänge Max. Schaltleistung Bemessungsspannung Max. Schaltstrom Kontaktwiderstand	1 40 VA 230 V _{AC/DC} ± 20% max 1000 mA ≤ 100 mΩ (100 mA, 24 V)
Status- (Wächter) ausgangs- modul	Typ Anzahl der Ausgänge Normalbetrieb Fehlererkennungs-Verzög. Bemessungsspannung Max. Schaltstrom Kontaktwiderstand	Relaisschalter 1 x Wächter + 1 x Relaisausgang Relais in AN-Position ≈ 1,5 s 230 V _{AC/DC} ±20% max 1000 mA ≤ 100 mΩ (100 mA, 24 V)
Impuls- ausgangs- modul	Typ Zweck Bemessungsspannung Max. Schaltstrom Impulslänge	Optokoppler-Open-Kollektor-Schalter Impulsausgang 40 V _{AC/DC} 30 mA ($R_{ONmax} = 8 \Omega$) programmierbar (2 999 ms)
Analog- ausgangs- modul	Ausgangsbereich Genauigkeit Max. Last Linearisierung Anzahl der Unterbrechungspunkte Ausgangswert-Grenzen Reaktionszeit (Messungs- und Analogausgang) Restwelligkeit	020 mA 0,5% des Bereichs 150Ω Linear, quadratisch 5 $\pm 120\%$ des Nennausgangs hängt vom eingestellten allgemeinen Durchschnitt ab Intervall (0,1s - 5s) < 1 % p.p.

Zeit- synchroni- sierungs- Eingangs- modul C	Digitaleingang 1pps-Spannungsebene Max. Verbrauch an +5 V- Klemme Zeitcode-Telegramm AM-Analogeingang Trägerfrequenz Eingangsimpedanz Amplitude Modulationsverhältnis	GPS oder IRIG-B TTL TTL-Ebene (+5 V) 100 mA RS232 (GPS) DC Pegelverschieb. (IRIG-B) IRIG-B AM moduliert 1 kHz 600 Ohm 2,5 VP-Pmin, 8 VP-Pmax 3:1 – 6:1
Analog- eingangs- modul		
DC-Strom- eingang	Nenneingangsbereich 1 Eingangswiderstand Genauigkeit Temperaturdrift Wandlerauflösung Analogeingangsmodul	-20020 mA (±20%) 20 Ω 0,5 % des Bereichs 0,01% / °C 16 Bit (sigma-delta) intern referenziert unsymmetrisch
DC- Spannungs -eingang	Nenneingangsbereich 1 Eingangswiderstand Temperaturdrift Wandlerauflösung Analogeingangsmodul	–10…0…10 V (±20%) 100 kΩ Genauigkeit 0,5 % des Bereichs 0,01% / °C 16 Bit (sigma-delta) intern referenziert unsymmetrisch
Widerstand/ Temperatur- eingangs- modul	Nenneingangsbereich (nied.)* Nenneingangsbereich (hoch)* Anschluss Wandlerauflösung Analogeingangsmodul * Niedriger oder hoher Eingangsber (Widerstand oder Temperatur) we	0 - 200 Ω (max. 400 Ω) PT100 (-200 °C850 °C) 0 2 kΩ (max. 4 kΩ) PT1000 (-200 °C850 °C) 2-Draht-Genauigkeit 0,5 % des Bereichs 16 Bit (sigma-delta) intern referenziert unsymmetrisch eich und der primäre Eingangswert rden mithilfe der MAVO-View-

Tarif- eingangs- modul	Anzahl der Eingänge Spannung * Hängt von der eingebauten H	2 5 48 V AC/DC * 110 ±20% V AC/DC * 230 ±20% V AC/DC * ardware ab
Digital- eingangs- modul	Anzahl der Eingänge Spannung * Hängt von der eingebauten H	2 5 48 V AC/DC * 110 ±20% V AC/DC * 230 ±20% V AC/DC * ardware ab
Impuls- eingangs- modul	Bemessungsspannung Max. Strom Min. Impulsbreite Min. Impulsperiode Eingestellte Spannung Zurücksetzungsspannung	5 48 V DC (±20%) 8 mA (bei 48 V DC + 20% 0,5 ms 2 ms 40 120 % der Bemessungssp. 0 10 % der Bemessungssp.

Sicherheit

Sicherheit τσ	Schutzklasse II Entsprechend EN 61010-1:2010 600 V rms, CAT III 300 V rms, CAT IV Verschmutzungsgrad 2
Prüfspannung	Uaux gegen SELV-Schaltkreise – 3,51 kV rms Andere Schaltkreise zu Funktionserde – 2,21 kV rms
EMC	Richtlinie zur elektromagnetischen Kompatibilität 2004/108/EC Entsprechend EN 61326-1:2006 für industrielle Umgebung
Schutz	Entsprechend EN 60529: 1997/A1:2000 Vorderseite (mit Schutzabdeckung für Speicher- Steckplatz): IP40 Rückseite (mit Schutzabdeckung): IP20

Betriebsbedingungen Das Gerät erfüllt die Anforderungen an die folgenden Normen innerhalb der angegebenen Genauigkeitsbereiche: IEC61557-12, IEC61326-1, IEC61000-4-30 and IEC61000-4-7

Umgebungs-			
beungungen	Umgebungstemperatur	K55 Temperaturklasse entspr. EN 61557-12 -10 … 55 °C	
	Lagerungstemperatur- Bereich	-40 +70 °C	
	Ambient humidity	≤ 75% relative Luftfeuchte (keine Kondensation)	
	Max. Lagerungs- und Transport-Feuchtigkeit	≤ 90% relative Luftfeuchte (keine Kondensation)	
	Max. Temperatureinfluss für Spannungs- und Strombereiche	± 20 ppm / K (10 V 600 V; 0,05 A 10 A) (<i>T_{amb}</i> : -30 °C +70 °C)	
Einfluss der Netzversor- auna			
	Max. Einflussgrenzwerte von Versorgungsspannung und -Strom (IEC61557-12)	< ± 0,02 % (Versorgungsspannungs größe und Frequenz innerhalb eines definierten Bereichs)	
	Gleichtaktunterdrückung am Eingang (IEC61557-12)	< ± 0,08 % (Gleichtaktspannung bei 500 V)	
Elektromagnetische Verträglichkeit			
g	Externes Wechselstromfeld IEC61326-1	< ± 0,02 % Bewertungskriterium A	
	Elektrostatische Entladungen IEC61326-1	(IEC61000-4-2) Bewertungskriterium B	
	Hochfrequente Elektromagnetische Felder IEC61326-1	(IEC61000-4-3) Limit 1 %; < ± 0,4 % ^(a) Bewertungskriterium A	
	Leitungsgeführte Störgrößen IEC61326-1	(IEC61000-4-6) Limit 1%; < ±0,4 % ^(a) Bewertungskriterium A	
	^(a) Die Prüfung wird mit Wirkleistung am Pulsausgang durchgeführt. Der Fehler (0.4%) ist abhängig von Kurzzeitmessungen.		

Abmessungen

Maßzeichnung

Anschlusstabelle

	Funktion		Anschluss	Kommentar
		IL1	1/3	
AC-Strom	AC Strom	IL2	4/6	
	AC-Strom	IL3	7/9	
Messeingang:		ILN	26/27	
messengang.		UL1	2	
		UL2	5	
	AC-Opannung	UL3	8	CAT III 300V
		UN	11	
		ω +	15	
	Modul 1/2	ϖ– (gemeinsam)	16	
		መ +	17	
		መ +	18	
Eingänge/ Modul 3/4 Ausgänge:	Modul 3/4	ϖ– (gemeinsam)	19	
		መ +	20	
	Modul A	ω	30-38	
	Modul B	ω	40-48	
	Modul C	ω	52-58	
		+ / AC (L)	13	CAT III 300V
Hilfsspannungsve	rsorauna:	– / AC (N)	14	
	rinsspannangsversorgang.	ERDE	12	Die Erdungsklemme muss immer angeschlossen bleiben! α
	DC 405	A	21	
Kommunikation	K0400	В	22	Unterstutzt werden RS232 und RS485, aber nur eine serielle Kommunikation kann auf einmal
		RX	23	benutzt werden!
	RS232	GND	24	die Anschlussklemmen 21 bis 25 nicht verwendet
		ТХ	25	(bleiben offen).

ANLAGE A: MODBUS-Kommunikationsprotokoll

Kommunikationsprotokolle

Die Modbus- und DNP3-Protokolle werden über die RS232- und RS485oder die Ethernet-Kommunikation aktiviert. Beide Kommunikationsprotokolle werden an allen Kommunikationsports des Gerätes unterstützt. Die Antwort gehört demselben Typ an wie die Anfrage.

Modbus

Das Modbus-Protokoll aktiviert den Betrieb des Gerätes in Modbus-Netzwerken. Bei Geräten mit serieller Kommunikation aktiviert das Modbus-Protokoll die Punkt-zu-Punkt-Kommunikation (z. B. Gerät zu PC) über die RS232-Kommunikation und die Multidrop-Kommunikation über die RS485-Kommunikation. Das Modbus-Protokoll ist eine weitläufig unterstützte, offene, ursprünglich von Modicon entwickelte Verbindung.

In diesem Dokument sind die Modbus-Hauptregister aufgelistet. Die komplette, aktuelle Modbus-Tabelle finden Sie auf der Website von GOSSEN METRAWATT.

Die Speicherreferenz für die Eingangs- und Holding-Register ist jeweils 30000 und 40000.

BITTE BEACHTEN

Die aktuelle und komplette MODBUS-Tabelle finden Sie auf der Webseite von GOSSEN METRAWATT.

	MODBUS			
Parameter	Reg	Ture		
	Start	Ende	тур	
Aktuelle Zeit	30101	30104	T_Zeit	
Frequenz	30105	30106	Т5	
Spannung U ₁	30107	30108	Т5	
Spannung U ₂	30109	30110	Т5	
Spannung U ₃	30111	30112	Т5	
Durchschn. Phasen-Spannung U [~]	30113	30114	Т5	
Zwischenphasen-Spannung U ₁₂	30118	30119	Т5	
Zwischenphasen-Spannung U ₂₃	30120	30121	Т5	
Zwischenphasen-Spannung U ₃₁	30122	30123	Т5	
Durchschn. Zwischenphasen- Spannung U _{pp~}	30124	30125	Т5	
Neutral-zu-Massen-Spannung Uno	30485	30486	Т5	
Strom I ₁	30126	30127	Т5	
Strom I ₂	30128	30129	Т5	
Strom I ₃	30130	30131	Т5	
Neutralstrom Inc (berechnet)	30132	30133	Т5	
Neutralstrom Inm (gemessen)	30134	30135	Т5	
Durchschnittsstrom	30136	30137	Т5	
Gesamtstrom I	30138	30139	Т5	
Tatsächliche Leistung P1	30142	30143	Т6	
Tatsächliche Leistung P2	30144	30145	Т6	
Tatsächliche Leistung P ₃	30146	30147	Т6	
Tatsächliche Gesamtleistung P	30140	30141	Т6	
Blindleistung Q1	30150	30151	Т6	
Blindleistung Q2	30152	30153	Т6	
Blindleistung Q3	30154	30155	Т6	
Gesamtblindleistung Q	30148	30149	Т6	
Scheinleistung S1	30158	30159	Τ5	
Scheinleistung S2	30160	30161	Т5	
Scheinleistung S3	30162	30163	Т5	
Gesamtscheinleistung S	30156	30157	Τ5	

Register-Tabelle der aktuellen Messungen (1)

	MODBUS			
Parameter	Reg	-		
	Start	Ende	тур	
Leistungsfaktor PF1	30166	30167	Τ7	
Leistungsfaktor PF2	30168	30169	Τ7	
Leistungsfaktor PF3	30170	30171	Τ7	
Gesamtleistungsfaktor PF	30164	30165	Τ7	
Leistungswinkel U1-I1	30173		T17	
Leistungswinkel U2-I2	30174		T17	
Leistungswinkel U3-I3	30175		T17	
Winkel zwischen In und Un	30488		T17	
Leistungswinkel atan2 (Pt, Qt)	30172		T17	
Winkel U1-U2	30115		T17	
Winkel U2–U3	30116		T17	
Winkel U3-U1	30117		T17	
Winkel Un-U1	30487		T17	
Spannungs-Unsymmetrie Uu	30176		T16	
Spannung Unsym.Nullsequenz Uo	30177		T16	
U1 Signalspannung Abs	30592	30593	Т5	
U2 Signalspannung Abs	30594	30595	Т5	
U2 Signalspannung Abs	30596	30597	Т5	
THD I1	30188		T16	
THD I2	30189		T16	
THD 13	30190		T16	
THD U1	30182		T16	
THD U2	30183		T16	
THD U3	30184		T16	
THD U12	30185		T16	
THD U23	30186		T16	
THD U31	30187		T16	
Innere Temperatur	30181		T2	

Register-Tabelle der aktuellen Messungen (2)

	MODBUS			
Parameter	Reg	Terre		
	Start	Ende	тур	
Max. Leistung seit der letzten Zurücksetzung				
Tatsächl. MB-Leistung P (positiv)	30542	30543	Т6	
Tatsächl. MB-Leistung P (negativ)	30548	30549	Т6	
MB-Blindleistung Q - L	30554	30555	Т6	
MB-Blindleistung Q - C	30560	30561	Т6	
MB-Scheinleistung S	30536	30537	T5	
MB-Strom I1	30518	30519	Τ5	
MB-Strom I2	30524	30525	Τ5	
MB-Strom I3	30530	30531	Т5	
Dynamische Leistungswerte				
Tatsächl. MB-Leistung P (positiv)	30510	30511	Т6	
Tatsächl. MB-Leistung (negativ)	30512	30513	Т6	
MB-Blindleistung Q - L	30514	30515	Т6	
MB-Blindleistung Q - C	30516	30517	Т6	
MB-Scheinleistung S	30508	30509	Τ5	
MB-Strom I1	30502	30503	T5	
MB-Strom I2	30504	30505	T5	
MB-Strom I3	30506	30507	T5	

Register-Tabelle der aktuellen Messungen (3)

	MODBUS			
Parameter	Reg	ister	Turn	
	Start	Ende	ιγρ	
Energie				
Energiezähler 1 Exponent	30401		T2	
Energiezähler 2 Exponent	30402		T2	
Energiezähler 3 Exponent	30403		T2	
Energiezähler 4 Exponent	30404		T2	
Zähler E1	30406	30407	Т3	
Zähler E2	30408	30409	Т3	
Zähler E3	30410	30411	Т3	
Zähler E4	30412	30413	Т3	
Zähler E1 Tarif 1	30414	30415	Т3	
Zähler E2 Tarif 1	30416	30417	Т3	
Zähler E3 Tarif 1	30418	30419	Т3	
Zähler E4 Tarif 1	30420	30421	Т3	
Zähler E1 Tarif 2	30422	30423	Т3	
Zähler E2 Tarif 2	30424	30425	Т3	
Zähler E3 Tarif 2	30426	30427	Т3	
Zähler E4 Tarif 2	30428	30429	Т3	
Zähler E1 Tarif 3	30430	30431	Т3	
Zähler E2 Tarif 3	30432	30433	Т3	
Zähler E3 Tarif 3	30434	30435	Т3	
Zähler E4 Tarif 3	30436	30437	Т3	
Zähler E1 Tarif 4	30438	30439	Т3	
Zähler E2 Tarif 4	30440	30441	Т3	
Zähler E3 Tarif 4	30442	30443	Т3	
Zähler E4 Tarif 4	30444	30445	Т3	
Zähler E1 Kosten	30446	30447	Т3	
Zähler E2 Kosten	30448	30449	Т3	
Zähler E3 Kosten	30450	30451	Т3	
Zähler E4 Kosten	30452	30453	Т3	
Aktiver Tarif	30405		T1	

Register-Tabelle der aktuellen Messungen (4)

Aktuelle Zähler-Berechnung:

Cnt.× 10 exponent

	MODBUS		
Parameter	Reg	_	
	Start	Ende	тур
Flicker		· · · ·	
	00500	1	- - - -
Flicker Pst1	30580		117
Flicker Pst2	30581		117
Flicker Pst3	30582		T17
Flicker Plt1	30583		T17
Flicker Plt2	30584		T17
Flicker Plt3	30585		T17
Flicker Pf5 - L1	30586	30587	T5
Flicker Pf5 - L2	30588	30589	T5
Flicker Pf5 - L3	30590	30591	T5
Phasenspannung-Oberschwingu	ungsdaten		
	1	,	
U1 Oberschwingungsdaten			
Grundlage für % Berechnung	31001	31002	T5
U1 1 Oberschwingung Abs %	31003		T16
U1 1 OberschwPhasenwinkel	31004		T17
U1 Oberschwing. von 2 bis 62			
U1 63 Oberschwingung Abs %	31127		T16
U1 63 OberschwPhasenwinkel	31128		T17
U2 Oberschwingungsdaten			
Grundlage für % Berechnung	31129	31130	T5
U2 1 Oberschwingung Abs %	31131		T16
U2 1 OberschwPhasenwinkel	31132		T17
U2 Oberschwing. von 2 bis 62			
U2 63 Oberschwingung Abs %	31255		T16
U2 63 OberschwPhasenwinkel	31256		T17
U3 Oberschwingungsdaten			
Grundlage für % Berechnung	31257	31258	T5
U3 2 Oberschwingung Abs %	31259		T16
U3 2 OberschwPhasenwinkel	31260		T17
U3 Oberschwing. von 3 bis 30			
U3 63 Oberschwingung Abs %	31383		T16
U3 63 OberschwPhasenwinkel	31384		T17

Register-Tabelle der aktuellen Messungen (5)

		MODBUS	
Parameter	Reg	T	
	Start	Ende	тур
Netzspannungs-Oberschwingung	jsdaten		
U12 Oberschwingungsdaten	1		
Grundlage für % Berechnung	31385	31386	Т5
U12 1 Oberschwingung Abs %	31387		T16
U12 1 OberschwPhasenwinkel	31388		T17
U12 Oberschwing. von 2 bis 62			
U12 63 Oberschwingung Abs %	31511		T16
U12 63 OberschwPhasenwinkel	31512		T17
U23 Oberschwingungsdaten			
Grundlage für % Berechnung	31513	31514	Т5
U23 1 Oberschwingung Abs %	31515		T16
U23 1 OberschwPhasenwinkel	31516		T17
U23 Oberschwing. von 2 bis 62			
U23 63 Oberschwingung Abs %	31639		T16
U23 63 OberschwPhasenwinkel	31640		T17
U31 Oberschwingungsdaten			
Grundlage für % Berechnung	31641	31642	Т5
U31 2 Oberschwingung Abs %	31643		T16
U31 2 OberschwPhasenwinkel	31644		T17
U31 Oberschwing. von 3 bis 30			
U31 63 Oberschwingung Abs %	31767		T16
U31 63 OberschwPhasenwinkel	31768		T17

Register-Tabelle der aktuellen Messungen (6)

		MODBUS	
Parameter	Re	Tree	
	Start	Ende	Тур
Phasenspannung-Oberschwingu	ngsdaten		
I1 Oberschwingungsdaten	T		
Grundlage für % Berechnung	31769	31770	T5
I1 1 Oberschwingung Abs %	31771		T16
I1 1 OberschwPhasenwinkel	31772		T17
I1 Oberschwing. von 2 bis 62			
I1 63 Oberschwingung Abs %	31895		T16
I1 63 OberschwPhasenwinkel	31896		T17
I2 Oberschwingungsdaten			
Grundlage für % Berechnung	31897	31898	T5
I2 1 Oberschwingung Abs %	31899		T16
I2 1 OberschwPhasenwinkel	31900		T17
I2 Oberschwing. von 2 bis 62			
I2 63 Oberschwingung Abs %	32023		T16
I2 63 OberschwPhasenwinkel	32024		T17
I3 Oberschwingungsdaten			
Grundlage für % Berechnung	32025	32026	T5
I3 2 Oberschwingung Abs %	32027		T16
I3 2 OberschwPhasenwinkel	32028		T17
I3 Oberschwing. von 3 bis 30			
I3 63 Oberschwingung Abs %	32151		T16
13 63 OberschwPhasenwinkel	32152		T17

Register-Tabelle der aktuellen Messungen (7)

	MODBUS				
Parameter	Reg	ister	True		
	Start	Ende	тур		
Zwischenharmonische Phasensp	annung-Obers	chwingungsdat	en		
U1 Zwischenharmonische Oberso	chwingungsdat	en	ſ		
Grundlage für % Berechnung	32153	32154	Т5		
1. Zwisch. Oberschwing. Abs %	32155		T16		
2. Zwisch. Oberschwing. Abs %	32156		T16		
3. – 10. Zwisch. Oberschwingung	32157	32164	T16		
U2 Zwischenharmonische Oberso	chwingungsdat	en			
Grundlage für % Berechnung	3271	3272	Т5		
1. Zwisch. Oberschwing. Abs %	32173		T16		
2. Zwisch. Oberschwing. Abs %	32174		T16		
3. – 10. Zwisch. Oberschwing.	32175	32182	T16		
U3 Zwischenharmonische Oberschwingungsdaten					
Grundlage für % Berechnung	32189	32190	Т5		
1. Zwisch. Oberschwing. Abs %	32191		T16		
2. Zwisch. Oberschwing. Abs %	32192		T16		
3. – 10. Zwisch. Oberschwing.	32193	32200	T16		

Register-Tabelle der aktuellen Messungen (8)

Änderungen bei allen anderen MODBUS-Registern sind vorbehalten. Die aktuellen MODBUS-Registerdefinitionen finden Sie auf der Webseite von GOSSEN METRAWATT: <u>www.gossenmetrawatt.com</u>

Register	Inhalt	Тур	Ind.	Werte / Abhängigkeiten	Min.	Max.	Pass. Stufe
40143	Anschluss- Modus	T1	0	Kein Modus	1	5	2
			1	1b – Einz. Phase			
			2	3b – 3-Phasen 3- Draht symmetr.			
			3	4b – 3-Phasen 4- Draht symmetr.			
			4	3u – 3-Phasen 3- Draht symmetr.			
			5	4u – 3-Phasen 4- Draht symmetr.			
40144	CT sekundär	Т4		mA			2
40145	CT sekundär	T4		A/10			2
40146	VT sekundär	Т4		mV			2
40147	VT primär	T4		V/10			2
40148	Stromein- gangs- bereich (%)	T16		10000 für 100%	5,00	200,00	2
40149	Spannungs- eingangs- bereich (%)	T16		10000 für 100%	2,50	100,00	2
40150	Frequenz- Nennwert	T1		Hz	10	1000	2

Register-Tabelle der Haupteinstellungen

Datentypen-Dekodierung

Тур	Bitmaske	Beschreibung
T1		Wert ohne Vorzeichen (16 Bit)
		Beispiel: 12345 = 3039 (16)
т2		Wert mit Vorzeichen (16 Bit)
12		Beispiel: -12345 = CFC7 (16)
Т2		Long-Wert mit Vorzeichen (32 Bit)
15		Beispiel: 123456789 = 075B CD 15 (16)
		Short-Float ohne Vorzeichen (16 Bit)
τı	Bits # 15…14	Decade-Exponent (Ohne Vorzeichen 2 Bit)
14	Bits # 13…00	Binärer Wert ohne Vorzeichen (14 Bit)
		Beispiel: 10000*102 = A710 (16)
		Messung ohne Vorzeichen (32 Bit)
TE	Bits # 31…24	Decade-Exponent (Mit Vorzeichen 8 Bit)
15	Bits # 23…00	Binärer Wert ohne Vorzeichen (24 Bit)
		Beispiel: 123456*10-3 = FD01 E240 (16)
		Messung mit Vorzeichen (32 Bit)
те	Bits # 31…24	Decade-Exponent (Signed 8 Bit)
10	Bits # 23…00	Binärer Wert mit Vorzeichen (24 Bit)
		Beispiel: - 123456*10-3 = FDFE 1DC0 (16)
		Leistungsfaktor (32 Bit)
	Bits # 31…24	Vorzeichen: Import/Export (00/FF)
Т7	Bits # 23…16	Vorzeichen: Induktiv/Kapazitiv (00/FF)
	Bits # 15…00	Wert ohne Vorzeichen (16 Bit), 4 Dezimalstellen
		Beispiel: 0,9876 CAP = 00FF 2694 (16)
		Zeit (32 Bit)
	Bits # 31…24	1/100s 00 - 99 (BCD)
та	Bits # 23…16	Sekunden 00 - 59 (BCD)
15	Bits # 15…08	Minuten 00 - 59 (BCD)
	Bits # 0700	Stunden 00 - 24 (BCD)
		Beispiel: 15:42:03.75 = 7503 4215 (16)

Datentypen-Dekodierung (2)

Тур	Bitmaske	Beschreibung
		Datum (32 Bit)
	Bits # 31…24	Tag des Monats 01 - 31 (BCD)
T10	Bits # 23…16	Monat des Jahres 01 - 12 (BCD)
	Bits # 15…00	Jahr (Ganzzahl ohne Vorzeichen) 19984095
		Beispiel: 10, SEP 2000 = 1009 07D0(16)
T16		Wert ohne Vorzeichen (16 Bit), 2 Dezimalstellen
110		Beispiel: 123.45 = 3039(16)
T47		Wert mit Vorzeichen (16 Bit), 2 Dezimalstellen
11/		Beispiel: -123.45 = CFC7(16)
		IEEE 754 Gleitkomma-Einzelpräzisionswert
	Bits # 31	(32 Bit)
	Bits # 31	Vorzeichen-Bit (1 Bit)
T_float	Bits # 31	Exponenten-Feld (8 Bit)
		Mantisse (23 Bit)
		Beispiel: 123.45 gespeichert als 123.45000 = 42F6 E666(16)
T Str4		Text: 4 Zeichen (2 Zeichen für 16 Bit-
·		Register)
T_Str6		Text: 6 Zeichen (2 Zeichen für 16 Bit- Register)
T_Str8		Text: 8 Zeichen (2 Zeichen für 16 Bit-
		Tout: 16 Zoichon (2 Zoichon für 16 Dit
T_Str16		Register)
T_Str40		Text: 40 Zeichen (2 Zeichen für 16 Bit- Register)

ANLAGE B: DNP3-Kommunikationsprotokoll

Kommunikationsprotokolle

Die Modbus- und DNP3-Protokolle werden über die RS232- und RS485- oder die Ethernet-Schnittstelle aktiviert. Beide Schnittstellenprotokolle werden an allen Kommunikationsports des Gerätes unterstützt. Die Antwort gehört demselben Typ an wie die Anfrage.

DNP3

Das Modbus-Protokoll aktiviert den Betrieb des Gerätes in DNP3-Netzwerken. Bei Geräten mit serieller Schnittstelle aktiviert das DNP3-Protokoll die Punkt-zu-Punkt-Kommunikation (z. B. Gerät zu PC) über die RS232-Kommunikation und die Multidrop-Kommunikation über die RS485-Schnittstelle.

Das Gerät reagiert automatisch auf MODBUS- oder DNP3-Anfragen.

BITTE BEACHTEN

Die aktuelle und komplette DNP3-Tabelle finden Sie auf der Webseite von GOSSEN METRAWATT.

	Version: F
DNP J.U Gerätenrofil-Dokument	Datum: 8. Jan 2013
Name des Geräts: Measurement centre	
Name des Händlers: GOSSEN	
METRAWATT Betroffene Modelle:	
Höchste unterstützte DNP-Ebene:	
Für Antworten: 1	
Hervorzuhebende Objekte, Funktionen und/ode	r Qualifier, die zusätzlich zu den höchsten unterstützten
DNP-Ebenen unterstützt werden (die komplette Liste	finden Sie in der Implementierungstabelle DNP V3.0):
Maximale Datenverbindungs-	Maximale Anwendungs-Fragmentoröße
Rahmengröße (Oktetts):	(Oktetts):
Übertragen: 292	Übertragen: 2048
Emptangen: 249 Maximale Datenverbindungs-Wdb anzabl:	Emptangen: 249 Maximale Anwendungsschichten-Wiederbolungsanzahl:
☐ Konfigurierbar	☐ Konfigurierbar
Erfordert eine Bestätigung der Datenverbindung	sschicht:
I I Nie	
□ Immer	
Manchmal	
🗖 Konfigurierbar	
Erfordert eine Bestätigung der Anwendungsschi	cht:

Zeitüberschreitungen beim Warten auf:						
Best. der Datenverbind.: M Keine D Festgele	egt auf: Variabel 🛛 Konfigurierbar					
Kompl. Anwend.fragment : M Keine D Festgele	egt auf: Variabel 🛛 Konfigurierbar					
Best. der Anwendung: 🗹 Keine 🗖 Festgele	egt auf: 🛛 💭 Variabel 🖵 Konfigurierbar					
Kompl. Anwend.reaktion: M Keine D Festgele Andere:	egt auf:					
Sendet/führt Kontrollmaßnahmen durch:						
Binärausgänge SCHREIBEN 🛛 🗹 Nie 🗖 Imm	er 🗖 Manchmal 🗖 Konfigurierbar					
AUSWÄHLEN/ANWENDEN 🛛 🗹 Nie 🗖 Imm	er 🗖 Manchmal 🗖 Konfigurierbar					
DIREKTE ANWENDUNG 🛛 🗹 Nie 🗖 Imm	er 🗖 Manchmal 🗖 Konfigurierbar					
DIREKTE ANW. – KEINE BEST. 🗹 Nie 🗖 Immer 🗖 Manchmal 🗖 Konfigurierbar						
Zählung > 1 🛛 🗹 Nie 🗖 Immer 🗖 Manchi	mal 🗖 Konfigurierbar					
Impuls an 🗹 Nie 🗖 Immer 🗖 Manchr	nal 🗖 Konfigurierbar					
Impuls aus 🛛 🗹 Nie 🗖 Immer 🗖 Manch	mal 🗖 Konfigurierbar					
Sperre an 🛛 🗹 Nie 🗖 Immer 🗖 Manchr	nal 🗖 Konfigurierbar					
Sperre aus 🛛 🗹 Nie 🗖 Immer 🗖 Manchn	nal 🗖 Konfigurierbar					
Schlange 🛛 🗹 Nie 🗖 Immer 🗖 Manchm	nal 🗖 Konfigurierbar					
Schlange leeren 🛛 🗹 Nie 🗖 Immer 🗖 Manchm	al 🗖 Konfigurierbar					
Berichtet über Binäreingangs-Änderungsereignisse,	Berichtet über zeitmarkierte Binäreingangs-					
wenn keine spezifische Variation angefragt:	Anderungsereignisse, wenn keine spezifische					
☑ Nie	Variation angefragt:					
Nur nicht zeitmarkierte	Binäreingangs-Änderung mit Relativzeit					
☐ Konfigurierbar	🗖 Konfigurierbar					
Sendet unaufgeforderte Antworten:	Sendet statistische Daten in unaufgeforderten Antworten:					
☑ Nie						
☐ Konfigurierbar	Beim Neustart des Geräts					
Nur bestimmte Objekte	Bei einer Änderungsmarkierung im Status					
Manchmal	5 5					
UNAUFGEFORDERTE ANTWORTEN	Keine anderen Optionen sind erlaubt.					
AKTIVIEREN/DEAKTIVIEREN						
Funktions-Codes unterstützt						
Standard-Zähler-Objekt/-Variation:	Überlauf des Zählers bei:					
G Keine Zähler berichtet	Keine Zähler berichtet					
☐ Konfigurierbar	🗖 Konfigurierbar					
☑ Standard-Objekt: 30	🗖 16 Bits					
✓ Standard-Variation: 4	□ 32 Bits					
Punkt-für-Punkt-Liste beigefügt	☑ Anderer Wert: 20000					
	Punkt-für-Punkt-Liste beigefügt					
Sendet Multifragment-Antworten:						

MAVOLOG PRO / Version 1.03

Objekt						An	frage		Antwort		
Objekt- Nummer	Variations- Nummer		Beschreibung			ons-	Qualif Codes	ier- (hex)	Funktions- Codes (dec)	Qualifier - Codes (hex)	
0	242	Geräteeiger	nschaften –	Software-Version	1			00	129	00, 17	
0	243	Geräteeiger	1			00	129	00, 17			
0	246	Geräteeiger	nschaften –	Benutzer-zugeord. I	D 1			00	129	00, 17	
0	248	Geräteeiger	nschaften –	Seriennummer	1			00	129	00, 17	
0	250	Geräteeiger	nschaften –	Produktname	1		00		129	00, 17	
0	252	Geräteeigenschaften – Herstellername					00		129	00, 17	
0	254	Geräteeiger Anfrage auf	nschaften – alle Eigens	Nicht konkretisierte schaften	-	l	00	, 06			
0	255	Geräteeiger Variationen	nschaften –	Liste von Eigenscha	ift 1		00	, 06	129	00, 5B	
				Punkte f	ür Obj	ekt 0)				
0	Software-Ve	ersion	T_Str3		Daten	va	r	242			
0	Hardware-V	'ersion	T_Str2		Daten	va	r	243			
0	Benutzer-zug	jeordnete ID	T_Str2		Daten	va	r	246			
0	Seriennumr	ner	T_Str8		Daten	va	r 248				
0	Produktnam	ne	T_Str16		Daten	va	r	250			
0	Herstellerna	me	T_Str20		Daten	va	r	252			

		Objek	t			A	nfra	ge	A	ntwort
Objekt- Nummer	Variations- Nummer	Beschreibung				Funktions- Codes (dec)		Qualifier - odes (hex)	Funktions- Codes (dec)	Qualifier - Codes (hex)
10	0	Binärausgar	ngsstatus		1		(00, 01, 06		
10	2	Binärausgar	ngsstatus		1		(00, 01, 06	129	00, 01
		1		Punkte für	r Objel	kt 10				
0	Relais 1		T1		Daten	0		1		
1	Relais 2		T1		Daten	0		1		
2	Relais 3		T1		Daten	0		1		
3	Relais 4		T1		Daten	0		1		
4	Steckplatz A	A - Relais 1	T1		Daten	0		1		
5	Steckplatz A	A - Relais 2	T1		Daten	0		1		
6	Steckplatz A	A - Relais 3	T1		Daten	0		1		
7	Steckplatz A	A - Relais 4	T1		Daten	0		1		
8	Steckplatz A	A - Relais 5	T1		Daten	0		1		
9	Steckplatz A	A - Relais 6	T1		Daten	0		1		
10	Steckplatz A	A - Relais 7	T1		Daten	0		1		
11	Steckplatz A	A - Relais 8	T1		Daten	0		1		
12	Steckplatz E	3 - Relais 1	T1		Daten	0		1		
13	Steckplatz E	3 - Relais 2	T1		Daten	0		1		
14	Steckplatz E	3 - Relais 3	T1		Daten	0		1		
15	Steckplatz E	3 - Relais 4	T1		Daten	0		1		
16	Steckplatz E	3 - Relais 5	T1		Daten	0		1		
17	Steckplatz E	3 - Relais 6	T1		Daten	0		1		
18	Steckplatz E	3 - Relais 7	T1		Daten	0		1		
19	Steckplatz E	3 - Relais 8	T1		Daten	0		1		

	Objekt						nfrag	ge	Antwort	
Objekt- Nummer	Variations- Nummer		Besc	hreibung	Funk Co (d	tions- des ec)	Q C	ualifier - odes (hex)	Funktions- Codes (dec)	Qualifier - Codes (hex)
30	0	16-Bit-Analo	16-Bit-Analogeingang ohne Markierung				(00, 01, 06		
30	2	16-Bit-Analo	geingan	g mit Markierung	1		(00, 01, 06	129	00, 01
30	4	16-Bit-Analo	geingan	g ohne Markierung	1		(00, 01, 06	129	00, 01
				Punkte fü	r Objel	kt 30				
0	U1		T16		Daten	-Ur	ı	+Un		
1	U2		T16		Daten	-Ur	ı	+Un		
2	U3		T16		Daten	-Ur	۱	+Un		
3	Uavg (Phas	e-zu-neutral)	T16		Daten	-Ur	۱	+Un		
4	U12		T16		Daten	-Ur	۱	+Un		
5	U23		T16		Daten	-Ur	۱	+Un		
6	U31		T16		Daten	-Ur	ı	+Un		
7	Uavg (Zwiso	henphasen-)	T16		Daten	-Ur	ı	+Un		
8	11		T16		Daten	-In		+In		
9	12		T16		Daten	-In		+In		
10	13		T16		Daten	-In		+In		
11	l gesamt		T16		Daten	-In		+In		
12	l neutral (be	rechnet)	T16		Daten	-In		+In		
13	l neutral (ge	messen)	T16		Daten	-In		+In		
14	lavg		T16		Daten	-In		+In		
15	Wirkleistung	Phase L1	T17		Daten	-Pr	l	+Pn		
16	Wirkleistung	Phase L2	T17		Daten	-Pr	l	+Pn		
17	Wirkleistung (P3)	Phase L3	T17		Daten	-Pr	I	+Pn		
18	Wirkleistung	gesamt (Pt)	T17		Daten	-Pi	t	+Pt		
19	Blindleistung	g Phase L1	T17		Daten	-Pr	l	+Pn		
20	Blindleistung	Phase L2	T17		Daten	-Pr	I	+Pn		
21	Blindleistung	g Phase L3	T17		Daten	-Pr	I	+Pn		
22	Blindleistung	g gesamt (Qt)	T17		Daten	-Pi	t	+Pt		
23	Scheinleistu (S1)	ng Phase L1	T16		Daten	-Pr	I	+Pn		
24	Scheinleistu (S2)	ng Phase L2	T16		Daten	-Pr	l	+Pn		
25	Scheinleistu (S3)	ng Phase L3	T16		Daten	-Pr	١	+Pn		
26	Scheinleistu	ng gesamt	T16		Daten	-Pi	t	+Pt		
27	Leistungsfal (PF1)	ktor Phase 1	T17		Daten	-1		+1		
28	Leistungsfal	ktor Phase 2	T17		Daten	-1		+1		
29	Leistungsfal (PF3)	ktor Phase 3	T17		Daten	-1		+1		

			Punkte für	Objekt	t 30 (2)		
30	Leistungsfaktor ges. (PFt)	T17		Daten	-1	+1	
31	CAP/IND P. F. Phase 1 (PF1)	T17		Daten	-1 CAP	+1	300% für -1 IND
32	CAP/IND P. F. Phase 2 (PF2)	T17		Daten	-1 CAP	+1	300% für -1 IND
33	CAP/IND P. F. Phase 3 (PF3)	T17		Daten	-1 CAP	+1	300% für -1 IND
34	CAP/IND P. F. gesamt	T17		Daten	-1 CAP	+1	300% für -1 IND
35	j1 (Winkel zwischen U1 und	T17		Daten	-100°	+100°	
36	j2 (Winkel zwischen U2 und	T17		Daten	-100°	+100°	
37	j3 (Winkel zwischen U3 und	T17		Daten	-100°	+100°	
38	Leistungswinkel gesamt (atan2(Pt,Qt))	T17		Daten	-100°	+100°	
39	j12 (Winkel zwischen U1 und U2)	T17		Daten	-100°	+100°	
40	j23 (Winkel zwischen U2 und U3)	T17		Daten	-100°	+100°	
41	j31 (Winkel zwischen U3 und U1)	T17		Daten	-100°	+100°	
42	Frequenz	T17		Daten	Fn-10Hz	Fn+10Hz	
43	U unsymmetrisch	T16		Daten	-100%	+100%	
44	I1 THD%	T16		Daten	-100%	+100%	
45	I2 THD%	T16		Daten	-100%	+100%	
46	I3 THD%	T16		Daten	-100%	+100%	
47	U1 THD%	T16		Daten	-100%	+100%	
48	U2 THD%	T16		Daten	-100%	+100%	
49	U3 THD%	T16		Daten	-100%	+100%	
50	U12 THD%	T16		Daten	-100%	+100%	
51	U23 THD%	T16		Daten	-100%	+100%	
52	U31 THD%	T16		Daten	-100%	+100%	
	MAX. LEISTUNG SEIT LETZTER						
53	Wirkleistung gesamt (Pt) - (positiv)	T16		Daten	-Pt	+Pt	
54	Wirkleistung gesamt (Pt) - (negativ)	T16		Daten	-Pt	+Pt	
55	Blindleistung gesamt (Qt) - L	T16		Daten	-Pt	+Pt	
56	Blindleistung gesamt (Qt) - C	T16		Daten	-Pt	+Pt	
57	Scheinleistung gesamt	T16		Daten	-Pt	+Pt	
58	11	T16		Daten	-In	+In	
59	12	T16		Daten	-In	+In	
60	13	T16		Daten	-In	+In	
	DYNAMISCHE LEISTUNGSWERTE						
61	Wirkleistung gesamt (Pt) - (positiv)	T16		Daten	-Pt	+Pt	

	Punkte für Objekt 30 (3)							
62	Wirkleistung gesamt (Pt) - (negativ)	T16		Daten	-Pt	+Pt		
63	Wirkleistung gesamt (Qt) - L	T16		Daten	-Pt	+Pt		
64	Wirkleistung gesamt (Qt) - C	T16		Daten	-Pt	+Pt		
65	Scheinleistung gesamt (St)	T16		Daten	-Pt	+Pt		
66	11	T16		Daten	-In	+In		
67	12	T16		Daten	-In	+In		
68	13	T16		Daten	-In	+In		
	ENERGIE							
69	Energiezähler 1	T17		Daten			(32-Bit-Wert) MOD 20000	
70	Energiezähler 2	T17		Daten			(32-Bit-Wert) MOD 20000	
71	Energiezähler 3	T17		Daten			(32-Bit-Wert) MOD 20000	
72	Energiezähler 4	T17		Daten			(32-Bit-Wert) MOD 20000	
73	Energiezähler 1 Kosten	T17		Daten			(32-Bit-Wert) MOD 20000	
74	Energiezähler 2 Kosten	T17		Daten			(32-Bit-Wert) MOD 20000	
75	Energiezähler 3 Kosten	T17		Daten			(32-Bit-Wert) MOD 20000	
76	Energiezähler 4 Kosten	T17		Daten			(32-Bit-Wert) MOD 20000	
77	Energiezähler-Kosten ges.	T17		Daten			(32-Bit-Wert) MOD 20000	
78	Aktiver Tarif	T1		Daten				
79	Innere Temperatur	T17		Daten	-100°	+100°		

Objekt						Ar	nfrag	ge	Antwort	
Objekt- Nummer	Variations- Nummer		Besc	hreibung	Funk Co (d	Funktions- Codes (dec)		Qualifier- odes (hex)	Funktions- Codes (dec)	Qualifier- Codes (hex)
40	0	16-Bit-Analo	gausgan	gs-Status	1	I	(00, 01, 06		
40	2	16-Bit-Analo	gausgan	gs-Status	1	I	(00, 01, 06	129	00, 01
Punkte für Objekt 40										
0	Analogausg	ang 1	T1		Daten	0				
1	Analogausg	ang 2	T1		Daten	0				
2	Analogausg	ang 3	T1		Daten	0				
3	Analogausg	ang 4	T1		Daten	0				
4	Steckplatz A	A – Analogaus.	T1		Daten	0				
5	Steckplatz A	– Analogaus. 2	T1		Daten	0				
6	Steckplatz A	– Analogaus. 3	T1		Daten	0				
7	Steckplatz A	– Analogaus. 4	T1		Daten	0				
8	Steckplatz B	– Analogaus. 1	T1		Daten	0				
9	Steckplatz B	– Analogaus. 2	T1		Daten	0				
10	Steckplatz B	– Analogaus. 3	T1		Daten	0				
11	Steckplatz B	– Analogaus. 4	T1		Daten	0				

Objekt						Ar	nfrage	A	Antwort		
Objekt- Nummer	Variations- Nummer	Beschreibung				tions- des ec)	Qualifier- Codes (hex)	Funktion- Codes (dec)	Qualifier- Codes (hex)		
50	0	Zeit und Datum – Absolute Zeit				2	7				
50	1	Zeit und Dat	um – Absol	ute Zeit	2	2	7	129	7		
	Punkte für Objekt 50										
0	Zeit und Dat	um T_Time		Daten							

		Objekt	Α	nfrage	Antwort	
Objekt- Nummer	Variations- Nummer	Beschreibung	Funktions- Codes (dec) Qualifier- Codes (hex)		Funktions- Codes (dec)	Qualifier- Codes (hex)
60	1	KLASSE 0-DATEN	1	06		
60	2	KLASSE 1-DATEN	1,22*	06		
60	3	KLASSE 2-DATEN	1,22*	06		
60	4	KLASSE 3-DATEN	1,22*	06		

*nur Objekt 30

ANLAGE C: GLEICHUNGEN

Definitionen der Symbole

Nr.	Symbol	Definition
1	M _P	Durchschnittsintervall
2	U _f	Phasenspannung (U_1 , U_2 oder U_3)
3	U _{ff}	Zwischenphasen-Spannung (U_{12} , U_{23} oder U_{31})
4	Ν	Gesamtanzahl der Abtastungen in einer Periode
5	N	Anzahl der Abtastungen (0 ≤ n ≤ N)
6	х, у	Phasennummer (1, 2 or 3)
7	i _n	Aktuelle Abtastung n
8	U _{fn}	Phasenspannungs-Abtastung n
9	U _{fFn}	Zwischenspannungs-Abtastung n
10	φ _f	Leistungswinkel zwischen der aktuellen und Phasenspann. f (ϕ_1 , ϕ_2 oder ϕ_3)
11	Uu	Spannungsunsymmetrie
12	U _c	Vereinbarte Versorgungsspannung
Spannung

$$U_{u} = \sqrt{\frac{1 - \sqrt{3 - 100\%}}{1 + \sqrt{6\beta}}} \cdot 100\%$$
$$\beta = \frac{U_{12fund}^{4} + U_{23fund}^{4} + U_{31fund}^{4}}{\left(U_{12fund}^{2} + U_{23fund}^{2} + U_{31fund}^{2}\right)^{2}}$$

Phasenspannung

N – Abtastungen im Mittelungsintervall

(bis zu 65 Hz)

Zwischenphasen-Spannung

 u_x , u_y – Phasenspannungen (U_f)

N – Die Anzahl der Abtastungen in einem Mittelungsintervall

Spannungsunsymmetrie

U_{fund} – Die erste Oberschwingung der Zwischenphasen-Spannung

Strom

Phasenstrom

N – Abtastungen im Mittelungsintervall (bis zu 65 Hz)

$$I_{n} = \sqrt{\frac{\sum_{n=1}^{N} (i_{1n} + i_{2n} + i_{3n})^{2}}{N}}$$

Neutralstrom

i – n Abtastung des Phasenstroms (1, 2 oder 3)

N – Abtastungen im Mittelungsintervall (bis zu 65 Hz) Leistung

$P_f = \frac{1}{N} \cdot \sum_{n=1}^{N} \left(u_{fn} \cdot i_{fn} \right)$	<i>Wirkleistung nach Phasen</i> N – Anzahl der Perioden n – Index der Abtastungen in der Periode f – Phasenkennzeichnung		
$\mathbf{P}_{\mathrm{t}} = \mathbf{P}_{\mathrm{1}} + \mathbf{P}_{\mathrm{2}} + \mathbf{P}_{\mathrm{3}}$	Gesamtwirkleistung t – Gesamtleistung 1, 2, 3 – Phasenkennzeichnung		
$\operatorname{Sign}_{q} \left(\phi \right)$ $\phi \in \left[0^{\circ} -180^{\circ} \right] \Rightarrow \operatorname{Sign}_{q} \left(\phi \right) = +1$ $\phi \in \left[180^{\circ} -360^{\circ} \right] \Rightarrow \operatorname{Sign}_{q} \left(\phi \right) =$	Blindleistungs-Zeichen Q _f – Blindleistung (nach Phasen) φ – Leistungswinkel		
$S_{f} = U_{f} \cdot I_{f}$	Scheinleistung nach Phasen U _f – Phasenspannung I _f – Phasenstrom		
	Gesamtscheinleistung		
$S_t = S_1 + S_2 + S_3$	S _f – Scheinleistung nach Phasen		
	Wirkleistung nach Phasen		
$Q_{f} = SignQ_{f}$ (ϕ) : $VS_{f}^{2} - P_{f}^{2}$	S _f – Scheinleistung nach Phasen		
	P _f – Wirkleistung nach Phasen		
$Q = \frac{1}{N} \sum_{i=1}^{N} (i_{i} + i_{i})$	<i>Blindleistung nach Phasen (Methode des verzögerten Stroms)</i> N – die Anzahl der Abtastungen in einer Periode		
$\mathcal{Q}_f = \frac{1}{N} \sum_{n=1}^{N} (u_{f_n} \wedge v_{f[n+N/4]})$	n – Anzahl der Abtastungen (0 ≤ n ≤ N) f − Phasenkennzeichnung		
	Gesamtblindleistung		
$Q_t = Q_1 + Q_2 + Q_3$	Q _f – Blindleistung nach Phasen		
$\phi_s = \arctan(P_t, Q_t)$	Gesamtleistungswinkel Pt – Gesamtwirkleistung		
$\phi_s = [-180^\circ, 179,99^\circ]$	Q _t – Gesamtblindleistung		
$PF_t = \frac{P_t}{S}$	Verzerrungsfaktor		
	P _t – Gesamtwirkleistung		
	S _t – Gesamtscheinleistung		
P	Verzerrungsfaktor		
P			
$PF_f = \frac{P_f}{S_f}$	P _t – Phasenwirkleistung		

THD

$$I_{f}THD(\%) = \frac{\sqrt{\sum_{n=2}^{63} I_{n}^{2}}}{I_{1}} \cdot 100$$

$$U_{f}THD(\%) = \frac{\sqrt{\sum_{n=2}^{63} U_{fn}^{2}}}{U_{f1}} \cdot 100$$

$$U_{jj}THD(\%) = \frac{\sqrt{\sum_{n=2}^{63} U_{jjn}^{2}}}{U_{jjn}} \cdot 100$$

Flicker

P _{50S} =	$(P_{30} + P_{50} + P_{80})/3$	
$P_{10S} =$	$(P_6 + P_8 + P_{10} + P_{13} + P_{17})/$	5

$$\begin{split} P_{3S} &= (P_{2,2} + P_3 + P_4)/3 \\ P_{1S} &= (P_{1,7} + P_1 + P_{1,5})/3 \\ P_{st} &= \sqrt{\frac{0,0314P_{0,1} + 00525P_{1S} + 0,0657P_{3S}}{+ 0,28P_{10S} + 0,08P_{50S}}} \\ P_{lt} &= \sqrt{\frac{12}{12}\frac{P_{sti}^3}{12}} \end{split}$$

Strom-THD I1 – Wert der ersten Oberschwingung n – Anzahl der Oberschwingungen Phasenspannungs-THD U1 – Wert der ersten Oberschwingung n – Anzahl der Oberschwingung n – Anzahl der Oberschwingung U1 – Wert der ersten Oberschwingung D1 – Wert der ersten Oberschwingung D1 – Wert der Oberschwingungen Zwischenphasen-Spannungs-THD U1 – Wert der ersten Oberschwingung

n - Anzahl der Oberschwingungen

Pst – Kurzfristige Flimmerintensität

Kurzfristige Flimmerintensität wird in Perioden von 10 Minuten gemessen.

 P_x – Flimmerstufen, die in einer 10-minütigen Periode um x% überschritten werden (z. B. bezeichnet $P_{0,1}$ eine Flimmerstufe, die um 0,1% Abtastungen überschritten ist)

Plt – Langfristige Flimmerintensität

Berechnet aus zwölf nacheinander folgenden Werten kurzfristiger Flimmerintensität in einer 2-stündigen Periode

Energie

Preis in Tarif = Price · 10 ^{Tarif-Preis-Exponent}	Gesamtexponent des Tarifpreises und
	Energiepreises in allen Tarifen

ANLAGE D: XML-DATENFORMAT

Erklärung des XML-Datenformats

Alle Daten, die vorbereitet werden, um während des nächsten Zeitintervalls gesendet zu werden, werden in dem Element *<Daten>* zusammengefasst. Dieses besteht aus *<Wert>-* Elementen, die alle Informationen über jeden Messwert enthalten.

Eigenschaften des Elements < Wert > sind:

- · *logId*: Identifizierungscode des Datenpakets. Wird als Bestätigungsschlüssel verwendet und sollte daher bei jedem Gerät unterschiedlich sein.
- app: Anwendungstyp ??
- storeType: Datentyp ("Messung" oder "Alarm") oder Qualitätsbericht??
- · dataProvider: "xml001" ??
- · controlUnit: Seriennummer des Geräts, das diese Daten sendete
- · part: Recorder ??
- *datetimeUTC*: UTC-Datum und -Zeit des Beginns des aktuellen Zeitintervalls, in dem die Daten gesendet wurden (yyyy-mm-dd hh:mm:ss).
- · ident: ID-Code des konkreten Messwertes
- *tFunc*: Temperaturfunktion (1= AN / 0 = AUS)
- cond: Bedingung (1 = kleiner als; 0 = größer als)
- · condVal: Grenzwert
- · almNum: Alarm-Seriennummer.
- *unit*: Messparameter-Einheit (V, A, VA, W, VAr...)
- *tInterval:* Abtastintervall in Minuten
- *dst:* (Sommerzeit) in Minuten
- tzone: Zeitzone in Minuten

Beispiel eines Alarm-<Daten>-Pakets

Beispiel eines Messwert-<Daten>-Pakets

<data logId="033324218" app="ML" storeType="measurement" dataProvider="xml001"
controlUnit="MC004475" part="B" datetimeUTC="2009-09-16 3:00:00" dst="60" tzone=" 60"
tInterval="015">

<value< td=""><td>ident="U1</td><td>"</td><td>unit="V</td><td>">234,47</td></value<>	ident="U1	"	unit="V	">234,47
<value< td=""><td>ident="U2</td><td>"</td><td>unit="V</td><td>">234,87</td></value<>	ident="U2	"	unit="V	">234,87
<value< td=""><td>ident="U3</td><td>"</td><td>unit="V</td><td>">234,52</td></value<>	ident="U3	"	unit="V	">234,52
<value< td=""><td>ident="I1</td><td>"</td><td>unit="A</td><td>">1,14</td></value<>	ident="I1	"	unit="A	">1,14
<value< td=""><td>ident="I2</td><td>"</td><td>unit="A</td><td>">1,50</td></value<>	ident="I2	"	unit="A	">1,50
<value< td=""><td>ident="I3</td><td>"</td><td>unit="A</td><td>">3,58</td></value<>	ident="I3	"	unit="A	">3,58
<value< td=""><td>ident="P1</td><td>"</td><td>unit="W</td><td>">-0,063e+03</td></value<>	ident="P1	"	unit="W	">-0,063e+03
<value< td=""><td>ident="P2</td><td>"</td><td>unit="W</td><td>">-0,101e+03</td></value<>	ident="P2	"	unit="W	">-0,101e+03
<value< td=""><td>ident="P3</td><td>"</td><td>unit="W</td><td>">0,281e+03</td></value<>	ident="P3	"	unit="W	">0,281e+03
<value< td=""><td>ident="P</td><td>"</td><td>unit="W</td><td>">0,11e+03</td></value<>	ident="P	"	unit="W	">0,11e+03
<value< td=""><td>ident="Q</td><td>"</td><td>unit="va</td><td>ar ">-1,37e+03</td></value<>	ident="Q	"	unit="va	ar ">-1,37e+03
<value< td=""><td>ident="E1</td><td>"</td><td>unit="Wh</td><td>n">19620e+01</td></value<>	ident="E1	"	unit="Wh	n">19620e+01
<value< td=""><td>ident="E2</td><td>"</td><td>unit="va</td><td>arh">6e+01</td></value<>	ident="E2	"	unit="va	arh">6e+01
<value< td=""><td>ident="E3</td><td>"</td><td>unit="Wh</td><td>n">1303391e+01</td></value<>	ident="E3	"	unit="Wh	n">1303391e+01
<value< td=""><td>ident="E4</td><td>"</td><td>unit="va</td><td>arh">2999595e+01</td></value<>	ident="E4	"	unit="va	arh">2999595e+01
<value< td=""><td>ident="ePF</td><td>"</td><td>unit="</td><td>">0,0820</td></value<>	ident="ePF	"	unit="	">0,0820
	>			

Beispiel eines Anerkennungspakets:

<ack logId="033220002" datetimeUTC ="2008-01-31 23:00:50:000"></ack>

Produktsupport

Bitte wenden Sie sich im Bedarfsfall an: GMC-I Messtechnik GmbH Hotline Produktsupport Industrie Telefon +49 911 8602-500 Telefax +49 911 8602-340 E-Mail support.industrie@gossenmetrawatt.com

Reparatur- und Ersatzteil-Service Kalibrierzentrum und Mietgeräteservice

Bitte wenden Sie sich im Bedarfsfall an:

GMC-I Service GmbH Service-Center Beuthener Straße 41 90471 Nürnberg • Germany Telefon +49 911 817718-0 Telefax +49 911 817718-253 E-Mail service@gossenmetrawatt.com www.gmci-service.com

Diese Anschrift gilt nur für Deutschland. Im Ausland stehen unsere jeweiligen Vertretungen oder Niederlassungen zur Verfügung.

Änderungen vorbehalten • Eine PDF- Version finden Sie im Internet

GMC-I Messtechnik GmbH Südwestpark 15 90449 Nürnberg• Germany Telefon .+49 911 8602-111 Telefax .+49 911 8602-777 E-mail info@gossenmetrawatt.com www.gossenmetrawatt.com