

R6000

8-Kanal-Regler Z307A 23/7.13

1	Inbetriebnahme	6
1.1	Sicherheitshinweise	6
1.2	Installation des Reglers	6
1.3	Bedienung des Reglers über Schnittstelle	6
2	Einstellungen des Reglers	7
_ 2.1	Basis-Konfiguration als 2-/3-Punkt-Festwertregler	
2.1.1	Konfiguration der Temperaturmesseingänge	
2.1.2	Konfiguration der Regelkanäle	
2.1.3	Konfiguration der Stellausgänge	
2.7. 0	Konfiguration der Regelausgänge und Stellglieder	
2.2.1	2-Punkt-, 3-Punkt-Regler, Stetigregler, Schrittregler	
2.2.2	Wasserkühlung	
2.2.3	Extra Vorhalt beim Kühlen	
2.2.4	Heißkanalregler	
2.2.5	Ansteuerung von Schützen	
2.2.6	Leistungsbegrenzung	
2.3	Verarbeitung der Soll- und Istwerte	
2.3.1	Sollwertrampen, Tauschsollwert, Sollwertbegrenzung	
2.3.2	Externer Istwert	
2.3.3	Adaptive Messwertkorrektur zur Istwert-Ermittlung	
2.3.4	Unterdrückung periodischer Störungen	
2.3.5	Istwertkorrektur bei Temperaturfühlern	
2.3.6	Skalierung der 20 mA Eingänge	
2.3.7	pH-Linearisierung bei 20 mA Eingang	
2.3.8	Pt100 Linearisierung bei 20 mA Eingang	
2.3.9	Verwendung des Thermoelementeingangs als Linear-Eingang	
2.4	Konfiguration des Regelverhaltens	
2.4.1	Reglertyp	
2.4.2	Reglerarten	
2.5	Steuerung der Regelfunktionen	
2.5.1	Gruppenbildung	
2.5.2	Steuerung der Reglerfunktion mit Binäreingang	
2.5.3	Handbetrieb / Regler aus	
2.5.4	Störgrößenaufschaltung	
2.6	Heißkanalregelung	
2.6.1	Anfahrschaltung	17
2.6.2	Vorübergehende Sollwertanhebung (Boost)	17
2.6.3	Istwertführung, synchrones Hochheizen	18
2.7	Ermittlung der Regelparameter	19
2.7.1	Selbstoptimierung (Adaption)	19
2.7.2	Handoptimierung	20
2.8	Überwachungsfunktionen	22
2.8.1	Übersicht kanalspezifische Alarme	22
2.8.2	Übersicht gerätespezifische Alarme	22
2.8.3	Grenzwertüberwachung	23
2.8.4	Begrenzer	23
2.8.5	Heizkreisüberwachung	23
2.8.6	Heizstromüberwachung	24
2.8.7	Verhalten bei Fühlerfehler	
2.8.8	Überwachung der binären Ausgänge	
2.8.9	Gerätefehler	
2.8.10	Löschen von Fehlerbits	
2.8.11	Ausgabe von kanalspezifischen Alarmen	
2.8.12	Ausgabe von Sammelalarmen, Gruppenalarmen bzw. Selbstoptimierung aktiv	
2.9	Spezialfunktionen	
2.9.1	Datenlogger	
2.9.2	Überprüfung der Zuordnung von Fühler und Heizung (Mapping)	
2.9.3	Alarm-Historie	
2.9.4	Steuerung der binären Ein-, Ausgänge	
295	Steuerung der Stetigausgänge	29

2.10	Parametersätze	30
3	RS-232-Service-Schnittstelle, Protokoll nach EN 60870	32
3.1	Allgemeines	32
3.1.1	Schnittstellendaten	
3.1.2	Kommunikationsprotokoll	
3.1.3	Prinzipielle Funktion	
3.1.4	Zeitverhalten	
3.2	Telegramm-Arten und Aufbau	
3.2.1	Kurzsatz	
3.2.2	Steuersatz	
3.2.3	Langsatz	
3.2.4	Funktion und Wertebereich der Format-Zeichen	
3.2.5	Kriterien für die Gültigkeit eines Anforderungs-Telegramms	
3.2.3 3.3	Telegramminhalte	
3.3.1	Gerät rücksetzen	
3.3.2	Abfrage: Gerät o.k.?	
3.3.3	Zyklus-Daten	
3.3.4	Heizstrom-Daten	
3.3.5	Ereignisdaten	
3.3.6	Daten vom Regler anfordern	
3.3.7	Daten an Regler senden	40
4	Modbus-Schnittstelle	42
4.1	Allgemeines	42
4.1.1	Schnittstellendaten	42
4.1.2	Kommunikationsprotokoll	42
4.1.3	Prinzipielle Funktion	
4.1.4	Zeitverhalten	
4.2	Telegramm-Arten und Aufbau	
4.2.1	Prinzipieller Aufbau	
4.2.2	Wartezeit	
4.2.3	Funktionscode	
4.2.4	Daten	
4.2.5	Error-Check	
4.2.6	Unterstützende Telegramme	
4.2.7	Fehlerbehandlung	
4.2. <i>1</i>	Lesen und Schreiben von Daten	
4.3 4.3.1		
	Adressierung	
4.3.2	Parameter schreiben	
4.3.3	Parameter lesen	
4.3.4	Zyklus-Daten	
4.3.5	Reglerkonfiguration	
4.3.6	Reglerstatus	49
_		
5	HB-THERM-Schnittstelle	
5.1	Allgemeines	
5.1.1	Schnittstellendaten	
5.1.2	Kommunikationsprotokoll	50
5.1.3	Prinzipielle Funktion	50
5.1.4	Zeitverhalten	50
5.2	Telegrammaufbau	51
5.2.1	Prinzipieller Aufbau	
5.2.2	Formate	
5.3	Meldungsinhalte	
5.3.1	Soll- und Istwert, Status (41h)	
5.3.2	Steuerkommandos, Rückmeldungen	
5.3.3	Parameter lesen (51h)	
5.3.4	Parameter schreiben (61h)	
5.3.5	Parameter schreiben und Istwerte lesen (63h)	
0.3.0 5 /	Paigniele	دن

5.4.1 5.4.2	Beispiel für Soll- und Istwerte Beispiel für Parameter schreiben	
6	Profibus-DP-Schnittstelle, Protokoll nach EN 50170	55
6.1	Allgemeines	
6.1.1	Schnittstellendaten	
6.1.2	Kommunikationsprotokoll	
6.1.3	GSD-Datei GMC_059D.gsd	
6.1.4	Datenaustausch	55
6.2	Austausch binärer I/O-Daten	
6.3	Austausch von Messwerten, Parametern und Konfigurationen	
6.3.1	Funktionsfeld	
6.3.2	Blocknummer	
6.3.3	Checksum	
6.3.4	Format des Datenblocks	
6.3.5	Vordefinierte Blöcke	
6.3.6	Übertragung von Parametersätzen	61
7	CAN-Bus, CANopen-Protokoll	
7.1	Allgemeines	
7.1.1	Schnittstellendaten	
7.1.2	Prinzipielle Funktion	
7.1.3	ESD - Datei	
7.2	Service Daten Objekte (SDO)	
7.3	Prozess Daten Objekte (PDO)	
7.3.1	Konfiguration des PDO	
7.3.2	Zeitverhalten der PDOs	
7.3.3	Telegrammaufbau des PDO	
7.3.4 7.3.5	Inhalt der Sende-PDOs Inhalt der Empfangs-PDOs	
7.3.3 7.4	SYNC-Objekt	
7. 4 7.5	Emergency Objekt	
7.6	NMT Objekt	
7.7	Objektverzeichnis	
8	Corëtonaramotor	60
_	GeräteparameterÜbersicht	
8.1		
8.2 8.2.1	Hauptgruppe 0: Temperaturparameter	
8.2.2	Tabelle der Parameterindizes	
8.3	Hauptgruppe 1: Regelparameter	
8.3.1	Tabelle der Parameterindizes	
8.4	Hauptgruppe 2: Steueranweisungen	
8.4.1	Tabelle der Parameterindizes	
8.4.2	Reglerfunktion	
8.4.3	Fehlerstatus	
8.4.4	Reglerkonfiguration	
8.4.5	erweiterte Reglerkonfiguration	
8.4.6	Reglerstatus, Meldewort	
8.4.7	Kanalfehlermaske	
8.4.8	Sammelfehlermaske	
8.4.9	Alarmhistorie	74
8.5	Hauptgruppe 3: Gerätespezifikation	
8.5.1	Tabelle der Parameterindizes	
8.5.2	Gerätebestückung	
8.5.3	Gerätesteuerung	
8.5.4	Grenzwertfunktion und Heizkreisüberwachung	
8.5.5	Ausgangskonfiguration	
8.5.6	Parametersatz-ID	
8.6	Hauptgruppe 6: Heizstromüberwachung	77
8.6.1	Tabelle der Parameterindizes	77

	Inhalt	Seite
8.7	Hauptgruppe 9: Datenlogger	77
8.7.1	Tabelle der Parameterindizes	77
8.8	Hauptgruppe A: Schnittstellen	78
8.8.1	Tabelle der Parameterindizes	78
8.8.2	Schnittstellenkonfiguration	78
8.8.3	CAN-Baudrate	
8.9	Hauptgruppe B: Anzeigewerte	78
8.9.1	Tabelle der Parameterindizes	78
8.10	Hauptgruppe E: Steuerfunktionen	78
9	Stichwortverzeichnis	80
10	Parameterverzeichnis	82
11	Reparatur- und Ersatzteil-Service, Mietgeräteservice	84

Produktsupport84

12

1 Inbetriebnahme

Lesen Sie diese Bedienungsanleitung vor dem Gebrauch Ihres Gerätes sorgfältig und vollständig. Beachten und befolgen Sie diese in allen Punkten.

Hinweis

Im Text sind Parameterbezeichnungen fett dargestellt, Einstellwerte kursiv.

Machen Sie diese Bedienungsanleitung allen Anwendern zugänglich.

1.1 Sicherheitshinweise

Das Gerät ist entsprechend den Sicherheitsbestimmungen IEC 61010-1 / EN 61010-1 / VDE 0411 Teil 1 gebaut und geprüft. Bei bestimmungsgemäßer Verwendung ist die Sicherheit von Anwender und Gerät gewährleistet.

Achtung!

Bevor das Gerät in Betrieb genommen wird, Nennspannung beachten, siehe Gehäusefront.

Überzeugen Sie sich, dass die Anschlussleitungen nicht beschädigt und während der Verdrahtung des Gerätes spannungsfrei sind.

Wenn anzunehmen ist, dass ein gefahrloser Betrieb nicht mehr möglich ist, muss das Gerät außer Betrieb gesetzt werden (ggf. Hilfsspannung abklemmen!). Diese Annahme kann grundsätzlich getroffen werden, wenn das Gerät sichtbare Schäden aufweist.

Eine Wiederinbetriebnahme des Gerätes ist erst nach einer Fehlersuche, Instandsetzung und einer abschließenden Überprüfung in unserem Werk oder durch eine unserer Servicestellen zugelassen.

Arbeiten am geöffneten Gerät unter Spannung dürfen nur durch eine Fachkraft vorgenommen werden, die mit den damit verbundenen Gefahren vertraut ist.

Kondensatoren im Gerät können noch geladen sein, selbst wenn das Gerät von allen Spannungsquellen getrennt wurde.

Bei allen Arbeiten sind die Vorschriften nach VDE 0100 zu beachten.

1.2 Installation des Reglers

Die Installation des Geräts hat nach separater Installationsanleitung zu erfolgen.

Vergewissern Sie sich, dass mit der Identifizierung nach Artikelnummer alle relevanten Kriterien bei der Montage / Vorbereitung / Einbau, elektrischem Anschluss und Inbetriebnahme beachtet wurden.

1.3 Bedienung des Reglers über Schnittstelle

Busschnittstelle

Der komplette Datenaustausch mit dem Regler kann über die Busschnittstelle erfolgen.

Die Beschreibung der Funktionalität, der Schnittstellen und der Datenübertragung finden sich in den nachfolgenden Kapiteln.

Service-Schnittstelle

Unabhängig von der Busschnittstelle besitzt der Regler eine Serviceschnittstelle RS-232 mit EN 60870-Protokoll (siehe Kapitel 3 ab Seite 32), über die mit jedem Gerät einzeln kommuniziert werden kann.

Für diesen Zweck steht die PC-Software R6KONFIG zur Verfügung. Sie kann von der Homepage von GMC-Instruments Deutschland GmbH (http://www.gossenmetrawatt.com) kostenlos geladen werden.

PC-Software R6KONFIG

Mit der PC-Software R6KONFIG können alle Parameter komfortabel bedient werden, Parametersätze im PC gespeichert werden bzw. vorhandene in den Regler geladen werden. Die aktuellen Messwerte (Zyklusdaten) können angezeigt werden.

Zum Verständnis der PC-Software R6KONFIG und des Reglers sollte vorher dazu das Kapitel 2 ab Seite 7 durchgearbeitet werden. Systemvoraussetzungen

IBM-PC oder kompatibler ab Prozessortyp Pentium > 300 MHz Windows 95, 98, Windows NT 4.0 oder Windows 2000

64 MB RAM Windows 95 / 98, 128 MB RAM Windows NT 4.0 / 2000 / XP

ca. 5 MB Festplattenbedarf

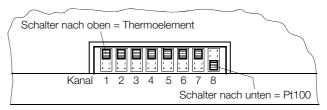
Eine separate Bedienungsanleitung zu dieser Software steht auf der Homepage zur Verfügung.

R6000-6 GMC-I Messtechnik GmbH

2 Einstellungen des Reglers

Nach Abschluss der Installation muss der Regler entsprechend seiner Aufgabe konfiguriert und parametriert werden. Dies kann z. B. mit der Konfigurationssoftware R6KONFIG erfolgen. Im Auslieferzustand ist der Regler als 8-kanaliger 3-Punkt-PDPI-Festwertregler mit Thermoelement Typ J voreingestellt (Standardwerkseinstellung).

2.1 Basis-Konfiguration als 2-/3-Punkt-Festwertregler


2.1.1 Konfiguration der Temperaturmesseingänge

Die 8 Temperaturmesseingänge sind fest mit den 8 Regelkanälen verbunden.

Die Fühlerart ist pro Eingang frei einstellbar.

Einstellung der Fühlerart am DIP-Schalter:

Sie ist mit der Installation des Geräts erfolgt. An der linken Gehäuseseite ist bei der Ausführung mit Temperaturfühler mit dem DIP-Schalter die Fühlerart pro Kanal eingestellt worden. Nicht verwendete Eingänge sind auf Thermoelement gestellt.

Auswahl des Fühlers mit dem Parameter Fühlertyp:

Ausführung Temperaturfühler (Kennung B1)

Parameter Fühlertyp		Mess	anfang	Mess	sende	DIP-
Nr.	Тур	°C	°F	°C	°F	Schalter
0	J	0	32	900	1652	
1	L	0	32	900	1652	
2	K	0	32	1300	2372	
3	В	0	32	1800	3272	
4	S	0	32	1750	3182	
5	R	0	32	1750	3182	Oben
6	N	0	32	1300	2372	
7	E	0	32	700	1292	
8	Т	0	32	400	752	
9	U	0	32	600	1112	
10	Linear ¹⁾	0	mV	50	mV	
11	Pt100	-200	-328	600	1112	
12	Ni100	-50	-58	250	482	
13	Ni120	-50	-58	250	482	Unten
14	_	_	_	_	_	
15	Widerstand	0	Ω	33	0 Ω	
16	С	0	32	2300	3276,7	Oben
17	K	-100	-148	1250	2282	ODEII

Ausführung 20 mA (B2)

Austunrung 20 mA (B2)					
Paramete	Parameter Fühlertyp				
Nr.	Тур				
0, 2	020mA				
1, 3	420mA				
4	020mA ²⁾				
5	420mA ²⁾				

2) Pt100-Linearisierung

In der Standardwerkseinstellung sind alle Temperaturmesseingänge auf Fühlertyp Thermoelement Typ J bzw. 0 ... 20 mAeingestellt.

Die Auswahl, ob die Temperaturwerte in °C oder °F über die (Bus-) Schnittstelle übermittelt werden, erfolgt mit dem Parameter Gerätesteuerung. Geräteintern sind alle Temperaturgrößen in °C abgelegt.

Die Regelparameter, die sich auf die Regelgröße beziehen (Proportionalband Heizen und Kühlen, Totzone und Schalthysterese), sind zur besseren Anschaulichkeit ebenfalls in °C abgelegt und damit unabhängig vom gewählten Fühler.

2.1.2 Konfiguration der Regelkanäle

In der Standardwerkseinstellung sind die Regelkanäle auf die Reglerart Festwertregler und den Reglertyp PDPI-Regler eingestellt. Die Einstellung, ob die Kanäle 2- oder 3-Punkt-Regler, Schritt- oder Stetigregler sind, wird durch die Ausgangskonfiguration bestimmt.

Bei Kanälen, an denen keine Fühler angeschlossen sind, oder bei nicht benötigten Kanälen sollte der **Reglertyp** auf unbenutzt gestellt werden, damit keine unnötigen Fehlermeldungen entstehen.

Im Auslieferzustand sind zunächst keine Reglerfunktionen aktiviert, so dass die Stell-Ausgänge inaktiv sind.

Zur Aktivierung muss das Bit Regler ein pro benutzten Kanal gesetzt werden.

¹⁾ Als Temperatur skalierbar, Kapitel 2.3.9 auf Seite 13 beachten!

2.1.3 Konfiguration der Stellausgänge

Die binären Ein- / Ausgänge und die stetigen Ausgänge sind alle frei den Stellsignalen und sonstigen Ein- / Ausgabefunktionen zuordenbar.

Ein Regelkanal wird dadurch zum 2-Punkt-Regler, indem ein binärer Ausgang als Heizenausgang mit der entsprechenden Kanalnummer konfiguriert wird.

Ein 3-Punkt-Regler entsteht, wenn zusätzlich zum Heizenausgang ein weiterer binärer Ausgang als Kühlenausgang mit der entsprechenden Kanalnummer konfiguriert wird.

Die acht Bits der Ausgangskonfiguration haben im Falle eines binären Stellausgangs folgende Belegung:

Bit-Nummer	Wert	Bedeutung
0	0	Konfiguration als Ausgang
1	1	Einzelkanal
2 4	0 7	Kanalnummer
5	0/1	Heizen / Kühlen
6	0	Modus
7	0	Stellsignal

Die Ausgangskonfiguration nicht benötigter Ausgänge sollte auf 0 gestellt sein.

In der Standardwerkseinstellung sind die **Ausgangskonfigurationen** der binären Ausgänge 1 ... 8 auf Heizenausgänge der Kanäle 1 ... 8 gestellt und die der binären Ausgänge 9 ... 16 auf Kühlenausgänge, wodurch die 8 Regler schaltende 3-Punkt-Regler sind.

2.2 Konfiguration der Regelausgänge und Stellglieder

2.2.1 2-Punkt-, 3-Punkt-Regler, Stetigregler, Schrittregler

Es ist möglich, für die Heizen- und Kühlenfunktion pro Regelkanal unterschiedliche Stellglieder frei zu kombinieren.

Die Ausgabeart des Reglers, wie 2-Punkt, 3-Punkt, Stetig, Schritt oder Kombinationen daraus, wird durch die Zuordnung der Ausgänge mit der Ausgangskonfiguration definiert.

Bit-Nummer	Wert	Bedeutung bei schaltendem Ausgang Bedeutung bei stetigem Ausgang		
0	0	Konfiguration als Ausgang		
1	1	Einzelkanal		
2 4	0 7	Kanalnummer		
5	0/1	Heizen / Kühlen		
6	0/1	Mehr / Weniger Dead / Live zero		
7	0	Stellsignal		

In der Ausgangskonfiguration definieren die Bits 5 und 6 das Stellglied.

in dei Ausgungskonngunduon deimieren die Bite e die e das etenglied.					
Stellglied für Heizen Konfiguration erster Heizen Ausgang		Konfiguration zweiter Heizen Ausgang			
Kein Heizen-Stellglied			_		
SSR, Schütz für schaltende Regelung	Binärer Ausgang	Bit $5 =$ "Heizen" $= 0$ Bit $6 =$ "Mehr" $= 0$	_		
(Stetiges) Proportional-Stellglied	Stetiger Ausgang	Bit 5 = "Heizen" = 0	_		
Motor-Stellglied für Schrittregelung	Binärer Ausgang	Bit 5 = "Heizen" = 0 Bit 6 = "Mehr" = 0	Binärer Ausgang	Bit 5 = "Heizen" = 0 Bit 6 = "Weniger" = 1	

Stellglied für Kühlen	Konfiguration erster Kühlen Ausgang		Konfiguration zweiter Kühlen Ausgang	
Kein Kühlen-Stellglied	_		_	
SSR, Schütz für schaltende Regelung	Binärer Ausgang	Bit 5 = "Kühlen" = 1 Bit 6 = "Mehr" = 0	_	
(Stetiges) Proportional-Stellglied	Stetiger Ausgang	Bit 5 = "Kühlen" = 1	_	
Motor-Stellglied für Schrittregelung	Binärer Ausgang	Bit 5 = "Kühlen" = 1 Bit 6 = "Mehr" = 0	Binärer Ausgang	Bit 5 = "Kühlen" = 1 Bit 6 = "Weniger" = 1

- Die Stellglieder für Heizen und Kühlen werden unabhängig voneinander gewählt. (So ist z. B. die Kombination Schrittregler für Heizen und zusätzlich für Kühlen möglich.)
- Wird eine 2-Punkt-Regelung benötigt, so dürfen für diesen Kanal nicht gleichzeitig Heizen- und Kühlenausgänge konfiguriert sein.
- Zur getrennten Ansteuerung von mehreren Stellgliedern durch einen Reglerausgang können mehrere gleichartige Ausgänge auf den gleichen Reglerausgang konfiguriert werden.
- Wird für Heizen (bzw. Kühlen) gleichzeitig stetige und schaltende Ausgänge konfiguriert, so verhält sich der Kanal wie ein Stetigregler und die schaltenden Ausgänge sind inaktiv.
- Wird für Heizen (bzw. Kühlen) versehentlich nur ein "Weniger"-Ausgang konfiguriert, bleibt dieser inaktiv.
- Wird weder für Heizen noch für Kühlen ein Ausgang konfiguriert, ist der Kanal ein Splitrange-Stetigregler. Die Stellgröße ist auf dem Bus verfügbar (PI = B6h).
- Die Einstellungen sind mit Reglerart und Reglertyp frei kombinierbar.

2.2.2 Wasserkühlung

Durch Setzen des Bits **Wasserkühlung** in der **Reglerkonfiguration** wird die Kühlen-Stellgröße modifiziert ausgegeben, um die stark überproportionale Kühlwirkung, die bei Verdampfung von Wasser entsteht, zu berücksichtigen.

2.2.3 Extra Vorhalt beim Kühlen

Bei Regelstrecken, bei denen die Kühlung einen viel besseren oder schlechteren Wärmekontakt als die Heizung hat, kann durch Setzen des Bit **extra Vorhalt beim Kühlen** in der **erweiterten Reglerkonfiguration** (PI = 23h) das Regelverhalten bei einem Kühlenarbeitspunkt verbessert werden.

Damit ist es möglich, die Verzugszeit der Kühlung (PI = 13) unabhängig einzustellen.

Bei Wasserkühlung wird der halbe Vorhalt für die Kühlung verwendet, wenn extra Vorhalt nicht gesetzt ist.

2.2.4 Heißkanalregler

Durch Setzen des Bits **Heißkanal** in der **Reglerkonfiguration** wird die Heizen-Stellgröße schnell getaktet ausgegeben. Dadurch werden im Anfahrbetrieb lokale Überhitzungen in hygroskopischen Heizpatronen vermieden, bzw. Temperaturschwankungen innerhalb der Heizungen. Weitere Funktionen, die von dieser Einstellung abhängen, sind im eigenen Kapitel 2.6 auf Seite 17 zu finden.

2.2.5 Ansteuerung von Schützen

Ergibt sich bei der Ermittlung der Regelparameter (Hand- oder Selbstoptimierung) eine **Zykluszeit**, die deutlich niedriger ist, als für die Lebensdauer der Schütze sinnvoll, kann durch Setzen des Bits **Schütz** in der **erweiterten Reglerkonfiguration** (PI = 23h) die **Zykluszeit** bis an die Grenze der Regelbarkeit der Strecke erhöht werden. Wird das Bit vor dem Start der Selbstoptimierung gesetzt, wird die Zykluszeit von der Selbstoptimierung auf einen möglichst hohen Wert eingestellt.

2.2.6 Leistungsbegrenzung

Wenn es aus Gründen der Strombelastung nicht erlaubt oder sinnvoll ist, dass die Heizungen aller acht Regelkreise gleichzeitig eingeschaltet sind, kann der Regler mit dem Parameter **Leistungsbegrenzung** (PI = 3Ah) gezwungen werden, nur eine vorgegeben Anzahl von Heizenausgängen pro Gerät gleichzeitig anzusteuern.

Dürfen z. B. nur maximal 5 Heizungen gleichzeitig eingeschaltet sein, wird die Leistungbegrenzung auf 62% (ca. 5/8) gestellt. Die Eingabe von 0% deaktiviert diese Funktion.

Der Regler begrenzt die Stellgrößen der Kanäle, die einen Heizenausgang konfiguriert haben, automatisch passend zur Leistungsbegrenzung. Die Stellausgabe der einzelnen Kanäle wird synchronisiert und die Heizungen versetzt eingeschaltet.

Die tatsächlich fließenden Ströme (falls sie durch die Heizstromüberwachung bekannt wären) werden dabei nicht berücksichtigt.

Diese Funktion ist auch bei der Eingabe von 100% aktiv, so dass beim Anfahren alle acht Kanäle voll heizen, im Arbeitspunkt die Strombelastung aber gleichmäßiger verteilt ist und somit Leistungsspitzen vermieden werden.

Wird die Selbstoptimierung (vgl. Kapitel 2.7.1 auf Seite 19) bei aktiver Leistungsbegrenzung gestartet, so wird die **Stellzykluszeit** nicht von der Selbstoptimierung ermittelt.

Es ist notwendig, vorher eine sinnvolle Stellzykluszeit für die an der Leistungsbegrenzung beteiligten Regelkreise einzustellen oder die Selbstoptimierung ohne Leistungsbegrenzung durchzuführen.

GMC-I Messtechnik GmbH

2.3 Verarbeitung der Soll- und Istwerte

2.3.1 Sollwertrampen, Tauschsollwert, Sollwertbegrenzung

- Die Sollwertrampe wird aktiviert bei:
 - Einschalten der Hilfsspannung / nach Reset
 - Änderung des Sollwertes / Aktivieren des Tauschsollwertes
 - Umschalten vom Auszustand bzw. Handbetrieb auf Automatikbetrieb
- Bei Selbstoptimierung sind die Sollwertrampen inaktiv.
- Relative Grenzwerte beziehen sich auf den Zielsollwert, nicht auf die Rampe.
- Im Reglerstatus sind bei aktiven Sollwertrampen entsprechende Bits gesetzt.

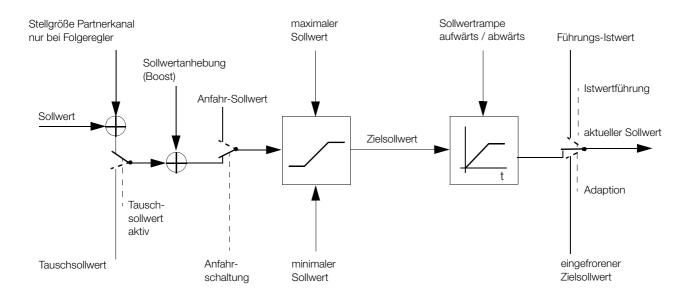


Bild 1 Struktur der Sollwertverarbeitung

2.3.2 Externer Istwert

Durch Setzen des Bits **externer Istwert** in der **erweiterten Reglerkonfiguration** (PI = 23h) wird anstelle des vom Gerät gemessenen Istwerts der über Schnittstelle eingespeiste **externe Istwert** (PI=27h) verwendet. Eine Skalierung bzw. Korrektur mit **Istwert-Faktor** und **Istwert-Korrektur** ist dabei nicht möglich.

2.3.3 Adaptive Messwertkorrektur zur Istwert-Ermittlung

Wenn ein Regelkreis durch eine periodische Störung auf dem Istwert gestört ist, kann die Regelung durch Einschalten der adaptiven Messwertkorrektur verbessert werden. Dabei wird die periodische Störung unterdrückt, ohne dass die Reaktionsfähigkeit auf Regelabweichungen abnimmt. Dies erfolgt, indem die Korrektur adaptiv auf die Schwingungsweite der Störung einstellt und nur den Mittelwert an den Regler weitergibt.

Das Bit 14 in der Reglerkonfiguration aktiviert die adaptive Messwertkorrektur.

Die Anpassung der Korrektur an die Störung (Adaption) erfolgt passend zur Regeldynamik und erfordert keine weiteren Parameter.

Die Voraussetzung für eine Verbesserung der Regelung ist:

- Die Schwingungsweite der Störung ist konstant oder langsam veränderlich,
- Die Periode der Schwingung ist kleiner als die halbe Verzugszeit der Strecke (vergl. PI = 14h)

Da die Korrektur stark in die Istwert-Ermittlung eingreift, kann die Regelung auch verschlechtert werden, z.B. wenn

- die Messwertabweichungen unregelmäßig sind,
- einzelne Messwert-"Ausreißer" auftreten,
- · die Schwankung nicht periodisch ist,
- die Störung rauschförmig ist.

R6000-10 GMC-I Messtechnik GmbH

2.3.4 Unterdrückung periodischer Störungen

Ist der Messwert mit einer starken periodischen Schwingung überlagert, die z. B. durch eine zyklische Entnahme von Energie aus dem Regelkreis entsteht, kann die Stellgröße zwischen ihren Extremwerten schwanken und das Regelergebnis unbefriedigend sein.

Wenn die Periode konstant ist, kann diese Schwingung durch Einstellen der Periode im Parameter **Schwingungs-Sperre** (PI = 25h) ausgefiltert werden. Dies geschieht dadurch, dass der Signalanteil mit der eingestellten Periode schmalbandig herausgefiltert wird und für die Regelung vom Messsignal abgezogen wird. Die Istwerte für die Anzeige werden nicht beeinflusst.

Im Gegensatz zur adaptiven Messwertkorrektur (vergl. Kap. 2.3.3) können hier auch Schwingungen unterdrückt werden, deren Perioden größer als die halbe Verzugszeit sind.

Eingestellt werden können Perioden von 0,3 s bis 25 s. Bei anderen Einstellwerten (0 s ... 0,2 s oder größer 25 s) ist das Filter inaktiv.

Nachdem dieses Sperrfilter die Regeldynamik beeinflusst, ist es notwendig, die Ermittlung der Regelparameter durch Selbst- oder Handoptimierung mit aktivierter Schwingungs-Sperre durchzuführen.

2.3.5 Istwertkorrektur bei Temperaturfühlern

Bei Direktanschluss eines Temperaturfühlers (d. h. Fühlertyp ist nicht auf linear eingestellt) können mit den beiden Parametern Istwert-Korrektur und Istwert-Faktor Abweichungen zwischen gemessener Temperatur und der anzuzeigenden Temperatur korrigiert werden.

Mit dem Istwert-Faktor wird die Temperatur proportional zum gemessenen Wert geändert. Bei Istwert-Faktor = 100,0 % erfolgt keine Veränderung (Standardeinstellung).

Der eingestellte Wert im Parameter **Istwert-Korrektur** wird zum gemessenen (und evtl. mit dem Istwert-Faktor geänderten) Temperaturwert dazu addiert. Damit werden auch die zu großen Messwerte bei Widerstandsthermometer und Zweileiterschaltung korrigiert.

Für die allgemeine Berechnung der Parameter sind zwei Messpunkte erforderlich (Messwert ist die Temperatur vor der Korrektur, Anzeigewert ist die Temperatur nach der Korrektur):

Beispiel:

Bei einer Werkzeugheizung besteht ein Temperaturgefälle zwischen Heizung und Werkzeugoberfläche. Die gemessene Temperatur (in der Heizung) beträgt 375 °C (Messwert 1), die anzuzeigende Temperatur an der Werkzeugoberfläche ist dann 245 °C (Anzeigewert 1). Bei Raumtemperatur (d.h. Werkzeugheizung aus) soll der Messwert nicht verändert werden. (Messwert 2 = Anzeigewert 2 = 23,0 °C.) Lösung:

Istwert-Faktor =
$$\frac{245 \text{ °C} - 23 \text{ °C}}{375 \text{ °C} - 23 \text{ °C}} \bullet 100 \% = 63,1 \%$$

Istwert-Korrektur = 23 °C −
$$\frac{23 °C • 63,1 %}{100 %}$$
 = 8,5 °C

2.3.6 Skalierung der 20 mA Eingänge

Bei der Ausführung der Messeingänge 20 mA erfolgt die Skalierung der Regelgrößen pro Regelkanal mit den Parametern **Istwert-Faktor** und **Istwert-Korrektur**. Der Geräte-Parameter **Dimension** (°C / °F) ist ohne Funktion.

Der Istwert-Faktor ist der Anzeigebereich, der dem Messbereich (0(4)...20 mA) entspricht.

Um eine gute Auflösung der Messwerte zu erhalten, wird der Istwert-Faktor intern in den Bereich 2000 ... 19999 skaliert.

Der eingestellte Wert im Parameter Istwert-Korrektur wird zum Anzeigewert (nach der Multiplikation mit dem Istwert-Faktor) addiert. Für eine allgemeine Berechnung der Parameter sind zwei Messpunkte erforderlich (Messwerte in mA):

Beispiel:

Ein Messumformer für Druck liefert 0 ... 20 mA bei 0 ... 50 bar. Um die Fühlerbruchüberwachung zu nützen ist der Eingang des R6000 auf 4...20 mA konfiguriert. Der Messwert soll mit einer Auflösung von 0,01 bar verarbeitet werden.

Lösung:

Istwert-Faktor =
$$\frac{50,00 \text{ bar} - 0,00 \text{ bar}}{20 \text{ mA} - 0 \text{ mA}} \bullet 16 \text{ mA} = 40 \text{ bar}$$

Der interne Messbereich ist dann 4000 • 0,01 bar.

Auf diese Darstellung beziehen sich alle anderen Größen und Parameter.

Istwert-Korrektur = 0,00 bar - 40,00 bar •
$$\frac{0 \text{ mA} - 4 \text{ mA}}{16 \text{ mA}}$$
 = 10,00 bar = **1000** • 0,01 bar

Achtung:

Die interne Darstellung des R6000 kennt keinen Dezimalpunkt. Im Konfigurationstool wird der Dezimalpunkt passend zum Istwert-Faktor gesetzt.

2.3.7 pH-Linearisierung bei 20 mA Eingang

- Ist das Bit pH-Regelung der erweiterten Reglerkonfiguration (PI = 23h) gesetzt, wird bei der Berechnung der Regelabweichung die Titrationskurve berücksichtigt.
- Die Skalierung muss dem pH-Wert entsprechen. Aufgrund der internen Zahlendarstellung muss die Messspanne (Istwertfaktor) im Bereich 2 pH ... 19.99 pH liegen.
- Bei externem Messwert ist der Zahlenbereich 0 ... 14000, dies entspricht drei Nachkommastellen.

2.3.8 Pt100 Linearisierung bei 20 mA Eingang

- Bei der Einstellung des Fühlertyps auf 4 bzw. 5 wird der Anzeigewert entsprechend der Pt100-Kennlinie linearisiert.
- Der Anzeigewert hat eine Auflösung von 0,1 K, wenn die Messspanne (Istwert-Faktor) 200 ... 1000 K beträgt.
- Eine Umschaltung auf °F ist nicht möglich.

2.3.9 Verwendung des Thermoelementeingangs als Linear-Eingang

Bei Verwendung des linearen Eingangs (Fühlertyp = linear) wird der Thermoelementeingang verwendet, jedoch ohne Berücksichtigung der Vergleichsstelle.

Aufgrund der Fühlerbruchüberwachung ergibt sich bei hochohmigen Quellen eine Beeinflussung des Messwertes:

Verschiebung: ca. + 1,2 mV / k Ω Abschwächung: ca. 0,5 % / k Ω

Die beiden Parameter Istwert-Korrektur und Istwert-Faktor dienen zur Skalierung der Messgröße.

Die skalierte Messgröße wird vom Regler wie eine Temperatur behandelt, da die Dimension der verschiedenen Regler-Parameter (wie z.B. Sollwert oder Proportionalband) in °C bzw. °F angegeben werden. Bei der Regelung oder Überwachung von Nichttemperaturgrößen sollte deshalb nach der Skalierung keine Umschaltung der Dimension der Regelgröße erfolgen, da die Skalierung entsprechend °C / °F umgerechnet wird.

Der **Istwert-Faktor** ist der Anzeigebereich, der dem Eingangsbereich 0 ... 50 mV entspricht. Der Messpunkt 0 mV wird als 0,0 °C bzw. 32,0 °F angezeigt, solange die **Istwert-Korrektur** = 0 ist.

Der eingestellte Wert im Parameter Istwert-Korrektur wird zum Anzeigewert dazu addiert.

Für die allgemeine Berechnung der Parameter sind zwei Messpunkte erforderlich (Messwerte in mV):

Beispiel:

Zusätzlich zur Temperaturregelung in °F soll ein Druck überwacht werden. Bei einem Druck von 100 bar liegen am Eingang 44 mV an, 0 bar entsprechen 0 mV. Über die Schnittstelle soll der Messwert mit einer Auflösung von 0,01 bar übertragen werden. Lösung:

Bei der Interpretation aller Temperaturwerte ist die Auflösung 0,1 °F durch 0,01 bar zu ersetzen.

Istwert-Faktor =
$$\frac{100,00 \text{ bar} - 0,00 \text{ bar}}{44 \text{ mV} - 0 \text{ mV}} \bullet 50 \text{ mV} = 113,64 \text{ bar}$$
 entspricht 1136,4 °F

Istwert-Korrektur = (0,00 bar − 3,20 bar)
$$-\frac{113,64 \text{ bar} \bullet 0 \text{ mV}}{50 \text{ mV}} = -3,20 \text{ bar}$$
 entspricht $-32,0 \text{ °F}$

2.4 Konfiguration des Regelverhaltens

2.4.1 Reglertyp

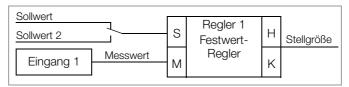
Der Reglertyp bestimmt die Verwendung der Regelabweichung.

Die Art der Stellgrößenausgabe, d. h. die verwendeten Stellglieder sind hiervon unabhängig.

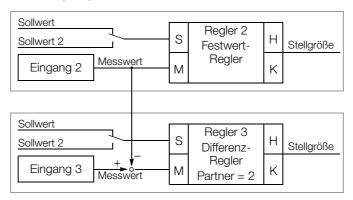
Die Einstellung ist mit allen anderen Konfigurationen kombinierbar.

Reglertyp	Verwendung
Kanal unbenutzt (Reglertyp = 0)	Diese Konfiguration ist für nicht benötigte Kanäle gedacht.
	Es wird nur der Istwert gemessen, es erfolgt keinerlei Überwachung, Fehlermeldung, etc.
Messen (Reglertyp = 1)	Diese Konfiguration ist für eine Temperaturüberwachung gedacht.
	Eine Grenzwertüberwachung kann konfiguriert werden, die Regelabweichung wird nicht weiterverwendet.
Steller (Reglertyp = 2)	Wie Reglertyp = Messen.
	Zusätzlich wird der Steller-Stellgrad mit dem Stellzyklus ausgegeben.
Grenzsignalgeber (Reglertyp = 3)	Der maximale Stellgrad wird ausgegeben, falls Istwert < aktuellem Sollwert.
	Der minimale Stellgrad wird ausgegeben, falls Istwert > (aktuellem Sollwert plus Totzone).
	Eine Schalthysterese ist einstellbar, eine Zustandsänderung ist nach jedem Stellzyklus möglich.
	Die Stellzykluszeit wird als Zeitkonstante für ein zusätzliches Eingangsfilter verwendet.
PDPI-Regler (Reglertyp = 4, 5)	Der PDPI-Regelalgorithmus sorgt für ein schnelles und überschwingungsfreies Ausregeln.
	Der Stellzyklus ist mindestens so lang wie der eingestellte Wert.
	Die Totzone unterdrückt ein Abwechseln von "Heizen" und "Kühlen" ohne bleibende Abweichung.
	Die Auswahl des Reglertyps 4 oder 5 bestimmt der Regler selbst, die Vorgabe ist beliebig; dabei bedeutet 5 reiner PDPI-Schrittregler, 4 alle anderen Stellgliedkombinationen.
Proportionalglied (Reglertyp = 6)	Die Stellgröße ist proportional zur Regelabweichung, eine statische Totzone auf der Kühlen-Seite ist einstellbar.
	Die Stellzykluszeit wird als Zeitkonstante für ein zusätzliches Eingangsfilter verwendet.
	Dieser Reglertyp ist nicht zum Regeln gedacht, da ihm die Dynamik für ein überschwingungsfreies Ausregeln fehlt.

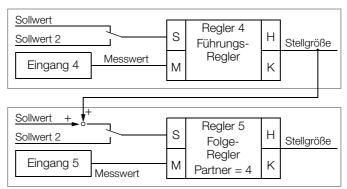
2.4.2 Reglerarten

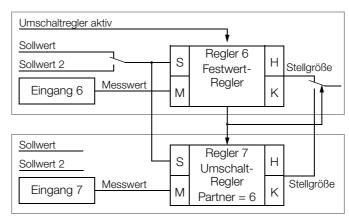

Die Reglerart bestimmt die Verwendung der Eingangsgrößen Istwert und Sollwert.

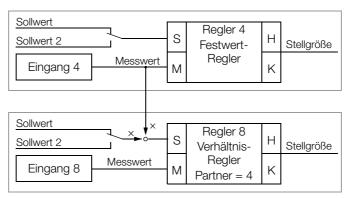
Die Einstellung ist mit allen anderen Konfigurationen kombinierbar.


Reglerart	Verwendung
Festwertregler (Reglerart = 0)	Die Regelabweichung ist Sollwert minus Istwert
Differenzregler	Geregelt wird die Istwert-Differenz = Istwert des Kanals des Differenzreglers minus Istwert des Partnerkanals.
(Reglerart = 1)	Aufgrund der Abtastreihenfolge ist es bei schnellen Strecken sinnvoll, dass der Partnerkanal vor dem Differenzreglerkanal liegt.
	Die Grenzwertüberwachung bezieht sich auf die Istwertdifferenz und nicht auf die beiden Istwerte.
Führungsregler (Reglerart = 2)	Da dem Führungsregler (normalerweise) keine Ausgänge zugeordnet werden, muss er als solcher konfiguriert werden, damit eine zum Folgeregler passend Stellgröße berechnet wird.
	Die Regeldynamik ist gedämpft, damit die als Delta-Sollwert verwendete Stellgröße nicht zu unruhig ist.
	Die Stellzykluszeit wird als Zeitkonstante für ein zusätzliches Eingangsfilter verwendet.
	Die Stellgröße wird vom Folgeregler direkt als Delta-Sollwert addiert.
	1 % Stellgröße entspricht immer 1 °C Delta-Sollwert (unabhängig von der Umschaltung der Dimension °C / °F).
Folgeregler	Zum Sollwert wird die Stellgröße des Partnerkanals addiert, aber nur, wenn der Partnerkanal ein Führungsregler ist.
(Reglerart = 3)	1 % Stellgröße entspricht immer 1 °C Delta-Sollwert.
	Die mögliche Sollwertverschiebung hängt von der Stellgrößenbegrenzung des Führungsreglers ab und beträgt damit maximal \pm 100 °C.
	Beim Umschalten auf Tauschsollwert wird der Kanal zum Festwertregler, zum Tauschsollwert wird dann nichts addiert.
	Alle Funktionen, die die Sollwerte betreffen, wie Sollwertrampen, Sollwertbegrenzung oder Anfahren, werden auf die Sollwertsumme angewendet.
Umschaltregler (Reglerart = 4)	Wenn ein Regelkreis nur ein Stellglied aber zwei Fühler hat, wobei je nach Betriebszustand der eine oder der andere Fühler verwendet werden soll, kann de Umschaltregler zusammen mit einem Festwertregler als Partnerkanal die Regelung durchführen.
	Konfiguration: Der Kanal, an dem der erste Fühler und das Stellglied angeschlossen sind, wird als Festwertregler (Reglerart = 0) konfiguriert. Der Kanal, an dem der zweite Fühler und kein Stellglied angeschlossen sind, wird als Umschaltregler (Reglerart = 4) konfiguriert und der Kanal des ersten Fühlers als Partnerkanal eingestellt. Falls die Umschaltung per Binäreingang erfolgen soll, wird dieser dem Festwertregler zugeordnet mit der Funktionsauswahl = 4 (Umschaltregler aktiv).
	Funktion: Solange das Bit Umschaltregler aktiv in der Reglerfunktion des Festwertreglers nicht gesetzt ist, ist der Festwertregler mit dem ersten Fühler aktiv und der Umschaltregler mit dem zweiten Fühler inaktiv. Ist das Bit Umschaltregler aktiv des Festwertreglers gesetzt, ist der Festwertregler inaktiv. Der Umschaltregler ist dann aktiv und verwendet den Sollwert (inklusive Sollwertgrenzen und Tauschsollwert) des Festwertreglers, sowie dessen Stellausgänge. Die internen Zustände des jeweils inaktiven Reglers werden eingefroren, damit ein stoßfreies Umschalten in beide Richtungen möglich ist. Das Bit Regler ein in der Reglerfunktion des Festwertreglers wird auch für den zugehörigen Umschaltregler verwendet. Damit werden die beiden zusammengehörigen Kanäle immer gemeinsam ein- bzw. ausgeschaltet. Das Bit Regler ein des Umschaltreglers kann nicht verändert werden. Die Grenzwerte 1 werden nur bei dem jeweils aktiven Regler überwacht, die Grenzwerte 2 immer bei beiden.
Verhältnisregler (Reglerart = 5)	Zwei Regelgrößen werden in einem mit dem Sollwert vorgegebenen Verhältnis geregelt. Dazu wird die Führungsgröße aus dem Produkt des Sollwertes in Promille und dem Istwert des Partnerkanals gebildet. Eine aktivierte Sollwertrampe wirkt auf die Führungsgröße. Die Reglerart des Partnerkanals kann unabhängig gewählt werden, z. B. Festwertregelung.

R6000-14 GMC-I Messtechnik GmbH


Festwertregelung


Differenzregelung


Kaskadenregelung

Umschaltregelung

Verhältnisregelung

2.5 Steuerung der Regelfunktionen

Mit dem Byte Reglerfunktion lassen sich acht Funktionen über Schnittstelle oder auch über Binäreingang steuern. Um mehrere Kanäle gleichzeitig steuern zu können, ist eine Gruppenbildung möglich.

2.5.1 Gruppenbildung

Die einzelnen Regelkanäle können einer Gruppe zugeordnet werden, indem die **Gruppe** in der **Reglerkonfiguration** auf eine gültige Gruppennummer (0 ... 3) gesetzt wird. Damit können die Kanäle einer Gruppe an der **Istwertführung**, an der selektiven Änderung der **Reglerfunktion** per Binäreingang (siehe Kapitel 2.5.2 auf Seite 16) bzw. der Zusammenfassung der kanalspezifischen Alarme zu **Gruppenalarmen** (Kapitel 2.8.12 auf Seite 26), teilnehmen.

2.5.2 Steuerung der Reglerfunktion mit Binäreingang

Die Bits in der **Reglerfunktion**, die zur Aktivierung der einzelnen Funktionen per (Bus-) Schnittstelle gesetzt werden, können auch mit Binäreingängen gesetzt werden. Der Binäreingang hat dann Vorrang vor der Schnittstelle. Dabei ist pro Funktion ein Eingang nötig, die Steuerung kann pro Kanal, für eine Gruppe (1 ... 3) oder für alle acht Kanäle erfolgen.

Die Ausgangskonfiguration des Eingangs ist bei Einzelkanalsteuerung:

Bit-Nummer	Wert	Bedeutung
0	1	Konfiguration als Eingang
1	1	Einzelkanalsteuerung
2 4	0 7	Kanalnummer
5 7	0 7	Funktionswahl

Die Ausgangskonfiguration des Eingangs ist bei Gruppensteuerung:

	<u> </u>	3- 3
Bit-Nummer	Wert	Bedeutung
0	1	Konfiguration als Eingang
1	0	Gruppensteuerung
2, 3	0/13	Alle 8 Kanäle / Gruppennummer
4 6	0 7	Funktionswahl
7	0	_

Funktionswahl:

Wert	Bedeutung	Bemerkung
0	Tauschsollwert aktiv	siehe Kap. 2.3.1
1	Anfahrschaltung	siehe Kap. 2.6.1
2	Störgrößenaufschaltung	siehe Kap. 2.5.4
3	Vorübergehende Sollwertanhebung (Boost)	siehe Kap. 2.6.2
4	Umschaltregler aktiv	siehe Kap. 2.4.2
5	Fehler löschen	siehe Kap. 2.7.1
6	Regler ein	siehe Kap. 2.8.1 und 8.4.3
7	Adaption starten	siehe Kap. 2.7.1

2.5.3 Handbetrieb / Regler aus

Das Bit **Regler ein** in der **Reglerfunktion** schaltet den Regelkanal ein (Automatikbetrieb). Dadurch werden die Reglerausgänge entsprechend der Konfiguration des Reglers angesteuert.

Ist der Regelkanal nicht eingeschaltet (**Regler ein** = 0), wird das Verhalten der Ausgänge vom Bit **Hand statt Aus** der **Reglerkonfiguration** bestimmt:

"Hand statt Aus" nicht gesetzt: Ausgänge sind aus. (Auszustand) Beim PDPI-Regler wird der I-Anteil gelöscht, d.h. beim Wieder-

einschalten muss die Temperatur neu einschwingen.

"Hand statt Aus" gesetzt: Die zuletzt aktive Stellgröße wird weiterhin ausgegeben und kann über den Handstellgrad verändert

werden (Handbetrieb). Beim PDPI-Regler wird der I-Anteil nicht gelöscht, sondern mit der letzten (evtl. geänderten) Stellgröße vorbesetzt, so dass beim Wiedereinschalten kein Sprung entsteht. So kann z.B. die Stellgröße vorübergehend eingefroren werden, oder stoßfrei ein anderer Arbeits-

punkt angefahren werden.

Für den Fall, dass die beiden Zustände **Regler aus** und **Handbetrieb** unabhängig voneinander benötigt werden, wir in der **erweiterten Reglerkonfiguration** das Bit **Hand statt Boost** gesetzt, **Hand statt Aus** wird nicht gesetzt.

Die Bits Regler ein und Boost in der Reglerfunktion steuern das Verhalten:

Regler ein nicht gesetzt: Ausgänge aus

Regler ein gesetzt und

Boost nicht gesetzt: Automatikbetrieb **Regler ein** und **Boost** gesetzt: Handbetrieb

R6000-16 GMC-I Messtechnik GmbH

2.5.4 Störgrößenaufschaltung

Bei der Konfiguration als PDPI-Regler kann die Regelqualität bei sprungförmiger Laständerung mit der Störgrößenaufschaltung deutlich verbessert werden:

Beim Setzen des Bits **Störgrößenaufschaltung** in der **Reglerfunktion** wird der Stellgrad (I-Anteil) des Reglers um den Wert **Störgrößen-Stellgrad** erhöht, beim Löschen des Bits **Störgrößenaufschaltung** um den gleichen Wert erniedrigt.

Bei laufender Selbstoptimierung ist die Störgrößenaufschaltung nicht aktiv.

Nach einem Reset des Gerätes ist das Bit Störgrößenaufschaltung nicht (mehr) gesetzt.

Die Störgrößenaufschaltung ist auch bei Hand-Betrieb oder Fühlerfehler aktiv.

Beispiel:

Benötigt eine Heizung in einer Maschine bei Produktion durchschnittlich 70 % Heizleistung, im Stillstand jedoch nur 10 %, so stellt man die Differenz des Störgrößen-Stellgrades = 60 % ein und aktiviert das Bit **Störgrößenaufschaltung** nur bei Produktion.

2.6 Heißkanalregelung

Durch setzen des Bits **Heißkanal** in der **Reglerkonfiguration** wird die Stellgröße schnell getaktet ausgegeben, d.h. die Stellzykluszeit beträgt 0,1 s unabhängig von der Einstellung des Parameters **Stellzykluszeit**.

Die unten beschriebene Anfahrschaltung und vorübergehende Sollwertanhebung funktionieren auch bei nicht gesetztem Bit Heißkanal.

2.6.1 Anfahrschaltung

Durch Setzen des Bits Anfahrschaltung in der Reglerfunktion wird die Anfahrschaltung freigegeben.

Die Anfahrschaltung wird nur beim Reglertyp = PDPI aktiviert, bei anderen Reglertypen erfolgt kein Anfahren.

Durch Löschen des Anfahr-Bits wird ein evtl. aktiver Anfahrvorgang sofort beendet.

Der Anfahrvorgang wird gestartet, wenn nach der Hilfsspannung ein (Reset) oder nach Beendigung des Auszustandes der Istwert

mehr als 2 °C unter dem Anfahr-Sollwert ist,

oder nach beendetem Anfahrvorgang oder in der Verweilzeit der Istwert mehr als 40 °C unter den

Anfahr-Sollwert absinkt.

Das Anfahren dauert an, bis der Istwert den Anfahr-Sollwert abzüglich 2 °C überschreitet.

Dabei wird die Stellgröße auf den Anfahr-Stellgrad begrenzt.

Soll die Stellgröße zudem schnell getaktet ausgegeben werden, muss der Kanal als Heißkanal

konfiguriert werden (Reglerkonfiguration).

Danach beginnt die Verweilzeit, sie wird mit der Verweildauer eingestellt.

Der Regler regelt auf den Anfahrsollwert.

Der Anfahrvorgang ist beendet, wenn die Verweilzeit abgelaufen ist.

Der Regler fährt dann den aktuell gültigen Sollwert an.

Falls der aktuell gültige Sollwert immer soweit unterhalb des Anfahrsollwertes liegt, dass die Bedingung für das Ende des Anfahrens nicht erfüllbar ist, wird der Anfahrvorgang nie beendet. Für dieses Verhalten wäre eine Stellgrößenbegrenzung mit dem **maximalen** Stellgrad sinnvoller.

Im Reglerstatus zeigen entsprechenden Bits, wenn Anfahren bzw. Verweilzeit aktiv sind.

2.6.2 Vorübergehende Sollwertanhebung (Boost)

Die vorübergehende Anhebung des Sollwertes dient z. B. bei Heißkanalregelung zur Befreiung von zugesetzten Werkzeugdüsen von "eingefrorenen" Materialresten.

Ausgelöst wird dieser Vorgang durch das Bit 3 der Reglerfunktion, das per Schnittstelle oder per Binäreingang gesetzt wird. Beendet wird die Anhebung durch Löschen dieses Bits, bzw. automatisch nach Ablauf der maximalen Boost-Dauer.

Der Zustand kann im Reglerstatus Bit10 abgefragt werden.

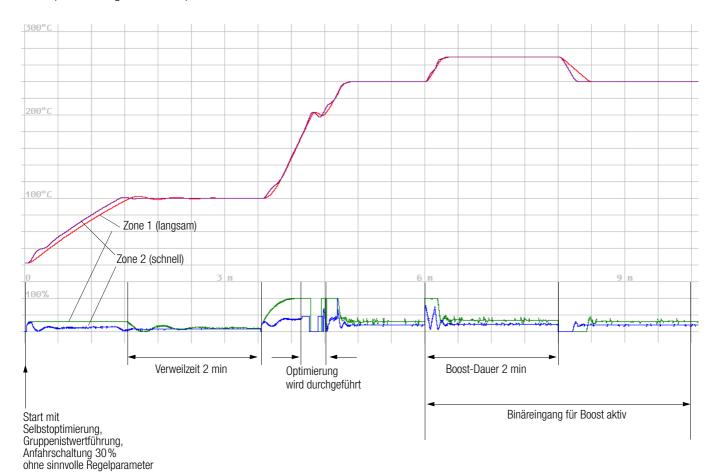
Die relative Anhebung ist pro Kanal im Parameter Sollwertanhebung (PI = 08) gespeichert, die maximale Dauer der Anhebung im Parameter Boost-Dauer (PI = 09).

Die Anhebung wirkt nur auf den Sollwert bzw. Tauschsollwert, nicht auf den Anfahrsollwert oder die Rampenfunktion.

2.6.3 Istwertführung, synchrones Hochheizen

Ziel dabei ist es, thermische Spannungen innerhalb einer Gruppe von Regelkanälen durch Minimierung der dynamischen Istwert-Differenzen zu reduzieren.

Dies wird dadurch erreicht, dass die langsamste Regelstrecke der Gruppe den Sollwertanstieg für die restlichen Regelstrecken der Gruppe vorgibt. Dies ist auch über mehrere Geräte hinweg möglich. Eingestellte Sollwertrampen und die Anfahrschaltung werden dabei berücksichtigt.


Durch Setzen des Bits Istwertführung und der Zuordnung zu einer Gruppe (0 ... 3) in der Reglerkonfiguration nehmen die Kanäle dieser Gruppe an der Istwertführung teil. Dazu muss der Reglertyp der teilnehmenden Kanäle auf PDPI-Regler eingestellt sein und die Regelung eingeschaltet sein, d.h. in der Reglerfunktion muss Regler ein bzw. die Adaption gestartet gesetzt sein. Im Reglerstatus zeigen entsprechende Bits, ob die Istwertführung aktiv ist und welcher Kanal der langsamste ist (vergleiche Kapitel 8.4.6 auf Seite 73).

Es wird der niedrigste Istwert der Gruppe ermittelt, der über den Bus als **Führungs-Istwert** auch anderen Geräten zur Verfügung gestellt werden kann. Falls dem Gerät der Führungs-Istwert der gleichen Gruppe eines anderen Gerätes gesendet wurde, wird dieser mit berücksichtigt. Dadurch lassen sich weit mehr als acht Kanäle synchron hochheizen. Dazu reichen sich alle beteiligten Geräte ihre Führungs-Istwerte im geschlossenen Kreis weiter, d.h. Gerät $1 \rightarrow$ Gerät $2 \rightarrow$ Gerät $3 \rightarrow$ Gerä

Haben alle Kanäle der Gruppe ihren Sollwert erreicht, wird als Zeichen dafür der Führungs-Istwert auf 1800 °C gesetzt.

Das Regelverhalten abhängig vom Führungs-Istwert ist unterschiedlich, je nachdem ob das Bit Heißkanal in der Reglerkonfiguration gesetzt ist oder nicht:

Bei **Heißkanalregelung** bestimmt der Führungs-Istwert die Sollwerte aller Kanäle der Gruppe, so dass die Temperaturdifferenz minimal bleibt. Ist zu Beginn des Anfahrens die Adaption gestartet, z. B. weil ein anderes Werkzeug mit noch unbekannten Regelparametern angefahren wird, so werden die Zonen mit Default-Parametern angefahren und der Adaptionsablauf so beeinflusst, dass auch während der Adaption keine größeren Temperaturdifferenzen entstehen.

Gültig für Version ≤ 5.8

Bei **Zweipunkt-, Dreipunkt- oder Schritt-Regelung** ohne gesetztem Heißkanal-Bit wird der Führungs-Istwert nicht verwendet, sondern aus den Regelparametern eine optimale Rampensteigung für alle Kanäle der Gruppe ermittelt, so dass alle Temperaturen gleich schnell ansteigen. Die Selbstoptimierung nimmt in diesem Fall keine Rücksicht auf die Istwertführung.

Gültig für Version ≥ 6.0

Bei nicht gesetzem Heißkanal-Bit nimmt die Selbstoptimierung keine Rücksicht auf die Istwerführung.

Bei Schrit-Regelung wird der Führungs-Istwert nicht verwendet , sondern aus den Regelparametern eine optimale Rampensteigung für alle Kanäle der Gruppe ermittelt, sa dass alle Temperaturen gleich schnell ansteigen. Die Selbstoptimierung nimmt in diesem Fall keine Rücksicht auf die Istwerführung.

2.7 Ermittlung der Regelparameter

Um eine optimale Regeldynamik zu erhalten, müssen die Parameter Proportionalband Heizen / Kühlen (Xpl / Xpll), die Verzugszeit (Tu) der Strecke und die Stellzykluszeit ermittelt werden.

Reglerintern werden daraus die dazu passenden Werte für die Reglerverstärkung, die Vorhalte- und Nachstellzeit und die Abtasthäufigkeit der Messgröße gebildet.

2.7.1 Selbstoptimierung (Adaption)

Die Selbstoptimierung ermittelt und überschreibt die Parameter Proportionalband Heizen / Kühlen (Xpl / Xpll), Verzugszeit (Tu) und die Stellzykluszeit.

Vorbereitung

- Vor dem Start der Selbstoptimierung muss die vollständige Konfiguration erfolgen.
- Der Sollwert ist auf den nach der Selbstoptimierung benötigten Wert einzustellen.
- Ein eventuell gesetztes Bit Adaptionsfehler im Kanalfehlerstatus muss vorher gelöscht werden.

Start

- Durch Setzen des Bits Adaption ein in der Reglerfunktion wird die Selbstoptimierung gestartet, aber nur, wenn auch das Bit Regler ein gesetzt ist.
- Der Start wird nur angenommen, wenn der Reglertyp auf PDPI-Regler steht,

dem Kanal Ausgänge zugeordnet sind und die Stellgrößenbegrenzung nicht unter 10 % liegt.

Wenn der Start nicht angenommen werden kann, wird das Bit **Start-Fehler** des **Kanalfehlerstatus** des entsprechenden Kanals gesetzt (vergl. **Ereignisdaten**).

Die Selbstoptimierung bleibt gestartet, auch wenn das Bit Adaption ein wieder gelöscht wird.

Ablauf

- Der beim Start aktuelle Sollwert bleibt gültig; eine Änderung wird zunächst nicht wirksam.
 (Folgeregler: ein sich ändernder Delta-Sollwert bleibt ohne Wirkung.)
- Die Aktivierung / Deaktivierung des Tauschsollwertes wird nicht wirksam.
- Eingestellte Sollwertrampen werden nicht berücksichtigt.
- Beim Start im Arbeitspunkt (Istwert ist etwa gleich dem Sollwert) ist ein Überschwingen nicht zu vermeiden.
- Bei 3-Punkt-Regler wird mit dem Ansprechen eines oberen Grenzwertes die Kühlung aktiviert, um eine Überhitzung zu verhindern. Die Selbstoptimierung führt dann einen Schwingversuch um den Sollwert aus.
- Im Reglerstatus zeigen die unteren 4 Bits die Optimierungsphase an.
- Ist die Selbstoptimierung beendet, wird das Bit Adaption ein zurückgesetzt.
- Wird die Selbstoptimierung mittels Binäreingang gestartet, muss der Binäreingang vor Ablauf der Selbstoptimierung wieder inaktiv werden, da sonst die Selbstoptimierung nach ihrem Ende erneut gestartet würde. Über den Binäreingang kann die Selbstoptimierung nicht gestoppt werden.

Abbruch

- Die Selbstoptimierung kann jederzeit abgebrochen werden durch Löschen des Bits Regler ein.
- Tritt w\u00e4hrend der Selbstoptimierung ein Fehler auf, gibt der Regler kein Stellsignal mehr aus und das Bit Adaptionsfehler des
 Kanalfehlerstatus des entsprechenden Kanals wird gesetzt (in Ereignisdaten). Dies ist dann der Fall, wenn ein F\u00fchlerfehler auftritt oder
 die Konfiguration oder Parametrierung f\u00fcr den Kanal so ge\u00e4ndert wird, dass die Selbstoptimierung nicht mehr sinnvoll fortgesetzt
 werden kann.
- Im Fehlerfall muss für eine Wiederaufnahme des Regelbetriebes das Bit Adaptionsfehler des Kanalfehlerstatus gelöscht werden.

2.7.2 Handoptimierung

Mit der Handoptimierung werden die Parameter Proportionalband Heizen, Proportionalband Kühlen, Verzugszeit und Zykluszeit ermittelt. Dazu wird ein Anfahr- bzw. Schwingversuch durchgeführt.

Vorbereitung für Anfahr- oder Schwingversuch

- Die vollständige Konfiguration und Parametrierung muss zuerst für den Einsatz des Reglers erfolgen.
- Durch Regler ein = 0 in der Reglerfunktion sollten die Stellglieder deaktiviert werden.
- Ein Schreiber ist an dem Fühler anzuschließen und passend zur Streckendynamik und zum Sollwert einzustellen. Bei Differenzregler muss die Istwertdifferenz aufgezeichnet werden.
- Bei Dreipunkt-Regler muss die Ein- und Ausschaltdauer des Heizen-Schaltausgangs registriert werden (z. B. mit einem weiteren Schreiberkanal oder mit der Stoppuhr).
- **Reglertyp** = Grenzsignalgeber konfigurieren.
- Die Zykluszeit auf Minimum stellen (0,1 s).
- Wenn möglich eine Stellgradbegrenzung ausschalten.
- Den Sollwert absenken (bzw. anheben) damit die Über- und Unterschwinger keine unerlaubten Werte annehmen.

Durchführung des Anfahrversuches

- Totzone = MbU (Messbereichs-Umfang) bei Dreipunkt-Regler einstellen (Kühlen darf nicht ansprechen).
 Totzone = 0 bei Schrittregler einstellen ("Weniger Ausgang" muss ansprechen)
- Schreiber starten.
- Mit Regler ein = 1 die Stellglieder aktivieren.
- Zwei Überschwinger und zwei Unterschwinger aufzeichnen. Anfahrversuch zu Ende bei Zweipunktregler.
 Bei Dreipunktregler weiter mit:
- Totzone = 0 einstellen um weitere Schwingungen mit aktivem Kühlenausgang herbeizuführen, zwei Über- und Unterschwinger abwarten
- Die Einschaltdauer T_I und Ausschaltdauer T_{II} des Heizenausgangs des letzten Schwingers registrieren.

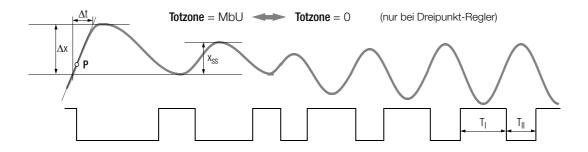


Bild 2 Kurvenverlauf bei Anfahrversuch

Auswertung des Anfahrversuches

- Tangente an die Kurve anlegen im Schnittpunkt P von Istwert mit Sollwert, bzw. Ausschaltpunkt des Ausgangs.
- Zeit ∆t ausmessen.
- Schwingungsweite x_{ss} ausmessen, bei Schrittregler Überschwinger Δx.

Parameter	Parameterwerte				
raiailletei	Zweipunktregler	Dreipunktregler	Stetigregler	Schrittregler 1)	
Verzugszeit (Tu)	1,5 • ∆t			$\Delta t - (Ty / 4)$	
Zykluszeit		Tu / 12 Ty			
Proportionalband Heizen (Xpl)	X _{SS}		2 • X _{SS}	0,5 • ∆x	
Proportionalband Kühlen (XpII)	– Xpl • (T ₁ / T)		-	_	

¹⁾ Ty = Motorstellzeit

Falls eine Stellgradbegrenzung eingestellt war, muss der Proportionalbereich korrigiert werden:

 $\begin{array}{ll} \textbf{Xpl} & \text{multiplizieren mit } 100 \ \% \ / \ \textbf{maximaler Stellgrad} \\ \textbf{Xpll} & \text{multiplizieren mit } -100 \ \% \ / \ \textbf{minimaler Stellgrad} \\ \end{array}$

R6000-20 GMC-I Messtechnik GmbH

Durchführen des Schwingversuches

Falls ein Anfahrversuch nicht möglich ist, z. B. wenn benachbarte Regelkreise den Istwert zu stark beeinflussen, oder wenn eine aktive Kühlung zum Halten des Istwertes nötig ist (Kühlenarbeitspunkt), oder aus bestimmten Gründen direkt auf den Sollwert optimiert werden muss, können die Regelparameter aus einer Dauerschwingung ermittelt werden. Allerdings sind dabei die berechneten Werte für die Verzugszeit unter Umständen zu groß.

Die Durchführung ist ohne Schreiber möglich, wenn der Istwert beobachtet wird und die Zeiten mit einer Stoppuhr gemessen werden.

- Totzone = 0 einstellen.
- Die Stellglieder aktivieren mit Regler ein = 1, evtl. Schreiber starten. Mehrere Schwinger aufzeichnen bis sie gleich groß sind.
- Die Schwingungsweite x_{ss} ausmessen.
- Die Einschaltdauer T_I und Ausschaltdauer T_{II} des Heizenausgangs der Schwinger registrieren.

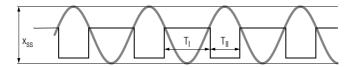


Bild 3 Schwingungsverlauf

Auswertung des Schwingversuches

Parameter	Parameterwerte				
Farameter	Zweipunktregler	Dreipunktregler	Stetigregler	Schrittregler 1)	
Verzugszeit (Tu) ²⁾	0,3 • (T ₁ + T _{II})			0,2 • (T _I + T _{II} − 2 Ty)	
Zykluszeit		Tu / 12			
Proportionalband Heizen (Xpl)	X _{SS}	$\frac{X_{SS} \bullet T_{ }}{(T_{ } + T_{ })}$	2 • X _{SS}	0,5 • x _{ss}	
Proportionalband Kühlen (XpII)	_	XpI • (T _I / T _{II})	_	_	

¹⁾ Ty = Motorstellzeit

Korrektur bei Stellgradbegrenzung:

XpI multiplizieren mit 100 % / maximaler Stellgrad XpII multiplizieren mit -100 % / minimaler Stellgrad

Korrektur bei Schrittregler falls eine der Zeiten T_{\parallel} oder T_{\parallel} kleiner ist als Ty:

 $\textbf{Xpl} \text{ multiplizieren mit } \frac{\textbf{Ty} \bullet \textbf{Ty}}{\textbf{T}_{1} \bullet \textbf{T}_{1}}, \text{ falls } \textbf{T}_{1} \text{ am kleinsten ist, mit } \frac{\textbf{Ty} \bullet \textbf{Ty}}{\textbf{T}_{||} \bullet \textbf{T}_{||}}, \text{ falls } \textbf{T}_{||} \text{ am kleinsten ist.}$

Der Wert für Tu ist in diesem Fall sehr ungenau. Er sollte im Regelbetrieb nachoptimiert werden.

Regelbetrieb

Nach Beendigung der Handoptimierung wird der Regelbetrieb aufgenommen:

- Reglertyp = PDPI einstellen
 - Den Sollwert auf den benötigten Wert stellen.
 - Die Totzone kann bei Dreipunkt- und Schrittregler von Totzone = 0 aus erh\u00f6ht werden, falls die Ansteuerung der Heizen- und K\u00fchlerausg\u00e4nge z. B. Mehr- oder Wenigerausg\u00e4nge durch unruhigen Istwert zu rasch wechselt.

²⁾ Wenn eine der Zeiten T_I oder T_{II} wesentlich größer ist als die andere ergibt sich ein zu großer Wert für Tu.

2.8 Überwachungsfunktionen

Das Ergebnis der einzelnen Überwachungsfunktionen wird in die Bits der **Ereignisdaten** geschrieben, die über die (Bus-) Schnittstelle abgefragt werden können, bzw. selektiv auf binäre Ausgänge geschaltet werden können.

2.8.1 Übersicht kanalspezifische Alarme

Diese Alarme sind im Kanalfehlerstatuswort pro Kanal zusammengefasst.

Bit-Nr.	Bedeutung	Ursache	Maßnahme	Verhalten des Kanals	Bemerkung	
0	Fühlerbruch	Leitungsunterbrechung		Abhängig von Konfiguration,		
1	Verpolung	Thermoelement verpolt oder Pt100 falsch angeschlossen	Verdrahtung und Fühler überprüfen	z. B. Ausgabe des Fühlerfehler- stellgrades	siehe Kap. 2.8.7	
2	2. oberer Grenzwert überschritten	Temperatur zu hoch				
3	1. oberer Grenzwert überschritten	Temperatur zu noon	Stellglieder überprüfen Bei Alarmspeicherung Alarm guittie-	Kein Einfluss auf Regelung, außer bei Konfiguration als Begrenzer	siehe Kap 2.8.3	
4	1. unterer Grenzwert unterschritten	Temperatur zu niedrig	ren	(siehe 2.8.4)	Sielle Nap 2.0.5	
5	2. unterer Grenzwert unterschritten	Temperatur zu meung		,		
6	Parameter unzulässig	Gesendeter Parameterwert außerhalb seiner Grenzen. Wert wurde nicht angenommen	Sinnvollen Parameterwert senden	Kein Einfluss auf Regelung	Alarm quittieren	
7	Heizstrom nicht aus bei abgeschaltetem Stellsignal	Stellglied kurzgeschlossen	Stellglied / Heizstromkreis überprüfen	Kein Einfluss auf Regelung	siehe Kap. 2.8.6	
8	Heizstrom zu klein bei aktivem Stellsignal	Stellglied / Sicherung unterbrochen	Stellglied / Heizstroffikiels aberpfalen	Neill Lilliuss auf Negelung	Sierie Rap. 2.0.0	
9	Heizkreis-Fehler	Fühler misst nicht richtig Heizstromkreis unterbrochen	Fühler / Stellglied / Heizstromkreis überprüfen	Keine Stellgröße bis Fehler quittiert wird	siehe Kap. 2.8.5 Alarm quittieren	
10	Fehler bei Start der Adaption	Regler nicht eingeschaltet Regler falsch konfiguriert Regler nicht adaptierbar		Kein Einfluss auf Regelung	siehe Kap. 2.7.1	
11	Fehler bei Adaption und Abbruch	Fühlerfehler aufgetreten Konfiguration während der Adaption geändert	Regler korrekt konfigurieren	Kanal wird ausgeschaltet. Zwangskühlung bei Überschreitung eines oberen Grenzwertes bis zur Quittierung des Fehlers	Alarm quittieren	
12	Heizstrom zu groß bei aktivem Stellsignal	Nebenschluss am Stellglied Stromnennwert zu klein	Stellglied / Heizstromkreis überprüfen Stromnennwert korrekt einstellen	Kein Einfluss auf Regelung	siehe Kap. 2.8.6	
13	Vergleichsstellen-Fehler	siehe Kap. 2.8.2 Bit Nr. 6				

2.8.2 Übersicht gerätespezifische Alarme

Diese Alarme sind im Gerätefehlerstatuswort zusammengefasst.

Bit-Nr.	Bedeutung	Ursache	Maßnahme	Verhalten des Geräts	Bemerkung
0	Analogteilfehler	Gerät defekt	Reparatur	Alle Kanäle sind ausgeschaltet	Error-LED leuchtet
1	Übersteuerung Heizstrom 1		Anderen Wandler verwenden		
2	Übersteuerung Heizstrom 2	Sekundärer Heizstrom größer 1,2 A Fremdspannung	Wandler muss sekundär potentialf-		
3	Übersteuerung Heizstrom 3	Tromasparinang	rei sein	Kein Einfluss auf Regelung	
4	Übersteuerung Heizspannung	Sekundäre Heizspannung größer 60 V Fremdspannung	Anderen Wandler verwenden Wandler muss sekundär potentialf- rei sein		
6	Vergleichsstellen-Fehler	Verdrahtung der abgesetzten Ver- gleichsstelle unterbrochen oder kurzgeschlossen	Verdrahtung überprüfen	Die Messung wird mit einer angenommenen Vergleichsstellen- temperatur von 30 °C fortgesetzt.	
		Vergleichsstelle defekt	Vergleichsstelle ersetzen	Verhalten wie bei Fühlerfehler	
7	EEPROM-Fehler	Unplausible Parameterwerte im PROM-Fehler Speicher		Alle Ausgänge sind Low	Error-LED leuchtet siehe Kap. 2.10
		Parameterspeicher defekt	Reparatur		Alarm quittieren
8	Sammel-Ausgangsfehler	Inaktiver Ausgang hat High-Signal (> 14 V) oder aktiver Ausgang hat Low-Si- gnal (< 7 V)	Verdrahtungsfehler oder Kurzschluss beheben	Regelung läuft weiter	Error-LED leuchtet
		Defekt des Ausgangs	Reparatur		
9	Mappingfehler Fühler und Heizung gehören zu unterschiedlichen Kanälen		Verdrahung oder Konfiguration an- passen	Alle Stellgrößen aus bis Fehler quittert wird	siehe Kap. 2.9.2 Alarm quittieren
10	Parameterfehler	Programmablauffehler	EMV-Maßnahmen	Parameterwert wird aus Parameter- speicher korrigiert	
13	CRC-Fehler	Fehlerhafter Parametersatz–DB (DB100) von CPU in den Regler übertragen	Parametersatz–DB aus dem Regler oder dem Konfigtool in die CPU laden	Parametersatz wurde vom Regler nicht angenommen	Fehler quittieren

R6000-22 GMC-I Messtechnik GmbH

2.8.3 Grenzwertüberwachung

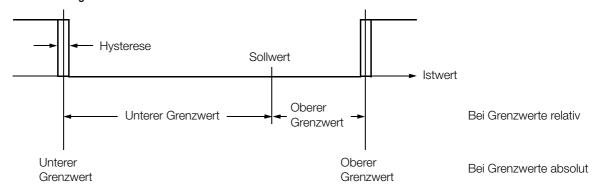


Bild 4 Schematische Darstellung der Grenzwertüberwachung

Anfahrunterdrückung

Die Alarmunterdrückung ist beim Anfahren solange aktiv (Bit **Anfahrunterdrückung** in **Grenzwertkonfiguration**), bis die Temperatur zum ersten Mal den unteren Grenzwert überschritten hat. Beim Abkühlen wirkt die Unterdrückung solange, bis der obere Grenzwert zum ersten Mal unterschritten wurde.

Sie ist wirksam bei: Einschalten der Hilfsspannung, Änderung des aktuellen Sollwertes und Aktivierung des Tauschsollwertes; Umschaltung von Reglertyp = unbenutzt auf einen anderen Reglertyp oder Einschalten der Überwachung durch Grenzwert ungleich Null.

Alarmspeicherung

Ist die Alarmspeicherung aktiv (Bit Alarmspeicherung in Grenzwertkonfiguration gesetzt), bleibt ein gesetztes Bit im Kanalfehlerstatus gesetzt, bis es gelöscht wird.

2.8.4 Begrenzer

Soll ein Regler ausgeschaltet werden, wenn im Regelkreis eine Grenzwertüber- bzw. -unterschreitung auftritt, so ist der Kanal als Begrenzer zu konfigurieren. Dabei benimmt er sich genau so, als wenn das Bit **Regler ein** in der **Reglerfunktion** (PI = 20h) nicht gesetzt wäre. (Kap.2.5.3 Handbetrieb beachten!)

Der Begrenzer kann mit allen Reglertypen und Reglerarten kombiniert werden.

- Zur Aktivierung der Begrenzerfunktion wird im Parameter Grenzwertfunktion (PI = 36h) das Bit Begrenzer gesetzt.
- Der Begrenzer reagiert auf die **zweiten Grenzwerte** (PI = 04h und 05h), die entsprechend einzustellen und zu konfigurieren sind. (Vergl. Kap.2.8.3)
- Sobald eine Verletzung eines zweiten Grenzwertes vorliegt, d. h. wenn eines der Bits 2 oder 5 im Kanalfehlerstatus gesetzt ist, wird der Regler ausgeschaltet. Ist keines der Bits gesetzt, wird der Regler wieder aktiv.
- Soll nach Ansprechen der Grenzwertüberwachung der Regler dauerhaft ausgeschaltet bleiben, so ist das Bit Alarm 2 Speicherung aktiv im Parameter Grenzwertfunktion (PI = 36h) zu setzen.
- Zum Wiedereinschalten des Reglers sind dann die Bits 2 und 5 des Kanalfehlerstatus zu löschen.
- Dies kann auch über die Funktion Fehler löschen mit einem Binäreingang erfolgen (vergl. Kap.2.5.2).

2.8.5 Heizkreisüberwachung

- Die Heizkreisüberwachung wird aktiv mit Bit Heizkreisüberwachung der Grenzwertkonfiguration.
- Der Regler muss als **Reglertyp** = PDPI, schaltend oder stetig heizen mit **maximalem Stellgrad** ≥ 20 % konfiguriert sein.
- Es erfolgt keine Überwachung während der Selbstoptimierung.
- Die Überwachung verwendet die Regelparameter Verzugszeit Tu und Proportionalband Heizen Xpl, weshalb diese korrekt optimiert sein müssen. Bei Handoptimierung oder nachträglicher Anpassung der Regelparameter muss eine untere Grenze für Tu eingehalten werden. Diese ist:

min. Tu = $2 \bullet \text{Xpl} / (\Delta x / \Delta t)$ $\Delta x / \Delta t$ = maximaler Temperaturanstieg beim Anfahren mit ED = 100 %. Bei stetigem Heizen ist die Grenze halb so groß.

- Eine Fehlermeldung erfolgt nach ca. 2-mal Tu, wenn ununterbrochen geheizt wird und die gemessene Temperaturerhöhung zu gering ist, bzw. sofort, wenn die Temperatur so extrem schnell absinkt, wie es normal nicht möglich wäre. Ursache hierfür könnte sein:
 - der Fühler ist verpolt oder kurzgeschlossen
 - der Fühler ist nicht eingebaut, herausgerutscht oder an einer falschen Stelle eingebaut
 - der Heizstromkreis ist unterbrochen oder nicht eingeschaltet
 - das Stellglied ist defekt
- Im Fehlerfall werden die Ausgänge abgeschaltet und das Bit Heizkreis-Fehler des Kanalfehlerstatus gesetzt (vergleiche Ereignisdaten).
- Der Reglerkanal bleibt dabei ausgeschaltet, bis das Bit Heizkreis-Fehler gelöscht wird.

2.8.6 Heizstromüberwachung

Anschluss

- Es können 1 bis 3 gleiche externe Summenstromwandler (für alle 8 Kanäle gleichzeitig) angeschlossen werden.
 Die Stromeingänge des Reglers sind für 1 A/ 50 / 60 Hz ausgelegt.
 Im Parameter Summenstrom-Wandlerverhältnis muss der Strom eingegeben werden, der sekundär 1 A ergibt.
 - Zur Kompensation der Heizspannungsschwankung kann ein Spannungswandler oder Transformator angeschlossen werden.
- Überwacht werden alle Kanäle, deren Ströme durch die Wandler geführt sind.

Parametrierung

- Die Stromwerte (Summen der 1 bis 3 Phasen), die überwacht werden, sind pro überwachtem Kanal in den Parametern Heizstrom-Nennwert einzugeben. Nicht überwachte Kanäle sind auf 0,0 A zu stellen.
- Zur Aktivierung der Kompensation muss im Parameter **Sekundär-Spannung Heizspannungs-Wandler** die Leerlaufspannung eingegeben werden, die bei primärer Nenn-Heizspannung anliegt. Ein Wert kleiner 10,0 V deaktiviert die Kompensation.
- Die automatische Einstellung der Heizstrom-Nennwerte und der sekundären Heizspannung kann durch Setzen des Parameters Gerätesteurung (PI=32h) auf 55h angestoßen werden.

Schreiben		Lesen		Bedeutung	
Bit-Nummer	Code	Bit-Nummer	Wert		
0 7	55h	4 7	5h	Ermittlung Heizstromnennwerte	starten / läuft
	_		0h		beendet

Es werden für alle Kanäle, die einen schaltenden Heizen-Ausgang besitzen, die Heizstrom-Nennwerte ermittelt und dadurch die Überwachung aktiviert.

Wird für die sekundäre Heizspannung kein Wert über 10,0 V gemessen, bleibt der Wert auf 0,0 V und damit die Kompensation inaktiv.

Diese Messung unterbricht für ca. 1 s den regulären Regelbetrieb. Da eine laufende Selbstoptimierung hierdurch gestört würde, wird diese Messung insgesamt nicht durchgeführt, sofern bei mindestens einem Kanal die Selbstoptimierung noch aktiv ist.

Funktion

- Falls mindestens für einen Kanal die Heizstromüberwachung aktiviert ist, führt der Regler zyklisch (in Abhängigkeit von den Parametern Verzugszeit Tu) die Zustände herbei, dass nur die Heizung eines zu überwachenden Kanals eingeschaltet ist (und alle anderen Heizungen aus), sowie den Zustand, dass alle Heizungen aus sind. Damit können mit den Summenstromwandlern die Heizströme einzelner Kanäle gemessen werden. Der Messzyklus ist dabei optimal an die Strecken angepasst, wenn der Parameter Heizstrom-Abtastzyklus auf 0 = Auto eingestellt ist.
- Der Messzyklus kann auch vorgegeben werden, indem der Parameter Heizstrom-Abtastzyklus entsprechend eingestellt wird.
- Ist für die sekundäre Heizspannung ein Wert zwischen 10.0 V und 50.0 V eingestellt, werden die Strommesswerte kompensiert:

Überwachter Strom =

gemessener Strom • sekundäre Heizspannung
gemessene Spannung

Damit ist eine genauere Überwachung z.B. bei parallelgeschalteten Heizungen möglich.

• Die Überwachung und ggf. eine Fehlermeldung erfolgt bezüglich der Zustände:

Keine Heizung ein und Strom fließt ightharpoonup Fehler: Heizstrom nicht aus Heizung ein und Strom zu gering ightharpoonup Fehler: Heizstrom zu groß Fehler: Heizstrom zu groß

- Heizstrom zu klein wird dann gemeldet, wenn bei nicht aktiver Heizspannungskompensation der Heizstrom-Nennwert mehr als 20 % unterschritten wird, bzw. bei aktiver Heizspannungskompensation der Heizstrom-Nennwert mehr als 5 % unterschritten wird. Bei Heizstrom zu groß gelten die gleichen Schranken.
- Wird der Parameter Überwachungsschwelle ungleich null eingestellt, so gilt statt 20% bzw. 5% der eingestellte Wert.

R6000-24 GMC-I Messtechnik GmbH

Überwachung von 16/24 Kanälen

- Bis zu 3 Geräte können über binäre Ein- und Ausgänge so zusammengeschaltet werden, dass alle Heizströme dieser 3 Geräte über die Heizstromerfassung des 1. Geräts überwacht werden. Dies ist z. B. dann sinnvoll, wenn nur wenige Heizströme pro Gerät zu überwachen sind.
- Zur Synchronisation der Messung werden die Geräte über entsprechend konfigurierte binäre Ein- und Ausgänge verbunden:

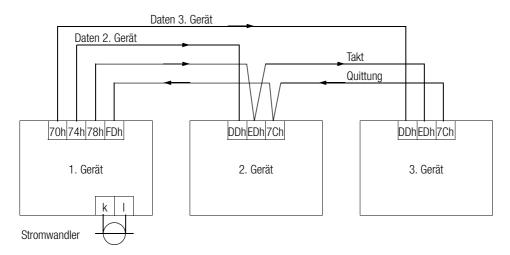


Bild 5 Anschlussbild mit Werten der Ausgangskonfiguration

- Die Parametrierung der Heizstrom-Nennwerte aller 3 Geräte erfolgt am 1. Gerät. Die automatische Ermittlung (siehe oben) erfolgt für alle 3 Geräte, wenn die binären Ein- und Ausgänge richtig konfiguriert und verbunden sind. Eine evtl. Parametrierung der Heizströme am 2. und 3. Gerät hat keine Wirkung.
- Zusätzlich muss am 1. Gerät der Heizstrom-Abtastzyklus eingestellt werden. Der optimale Wert für eine schnelle Fehlererkennung ist etwa die Hälfte der Verzugszeit Tu, so dass der Heizstrom-Abtastzyklus auf den kleinsten Wert der halben Verzugszeit aller überwachten Kanäle einzustellen ist.
- Die Fehlermeldung erfolgt im Fehlerstatus des jeweiligen Kanals des jeweiligen Gerätes.

Nachteile der Überwachung von 16/24 Kanälen

- Der Überwachungsfunktion sind messtechnisch Grenzen gesetzt, wenn der kleinste Heizstrom keinen nennenswerten Anteil (ca. 2%) am Wandler-Primärstrom besitzt. Da der Summenstrom für 16/24 Kanäle höher ist als für 8 Kanäle, ist das leicht möglich
- Die Heizstrom-Nennwerte sind für das 2. und 3. Gerät auf 25 % des Summenstrom-Wandlerverhältnisses begrenzt.
- Der Fehler Heizstrom zu groß wird für das 2. und 3. Gerät nicht erfasst.
- Die automatische Einstellung der Heizstrom-Nennwerte für das 2. und 3. Gerät erfolgt nur dann, wenn alle Kanäle zu diesem Zeitpunkt heizen.

2.8.7 Verhalten bei Fühlerfehler

Bei Fühlerbruch bzw. bei Verpolung des Thermoelementes / Kurzschluss des Pt100 wird das Bit **Fühlerbruch** bzw. das Bit **Verpolung** des **Kanalfehlerstatus** gesetzt.

Die Reglerausgänge verhalten sich folgendermaßen:

- bei Reglertyp gleich Aus, Messen und Steller gibt es keine Fehlerreaktionen.
- bei Reglertyp gleich Grenzsignalgeber, PDPI-Schrittregler (Reglertyp = 5) oder Proportionalglied wird im Automatikbetrieb der Fühlerfehler-Stellgrad ausgegeben.
- bei Reglertyp gleich PDPI-Regler (=4) hängt das Verhalten vom eingestellten Fühlerfehler-Stellgrad ab:
 - Fühlerfehler-Stellgrad = 0% oder minimaler (-100%) oder maximaler (100%) Stellgrad:
 Fühlerfehler-Stellgrad wird ausgegeben.
 - Fühlerfehler-Stellgrad = anderer Wert:

Wenn der Regelkreis eingeschwungen ist, wird ein "plausibler" Stellgrad ausgegeben, der die Temperatur möglichst auf dem Sollwert halten soll.

Wenn der Regelkreis noch nicht eingeschwungen ist (beim Anfahren, nach Reset), wird der Fühlerfehler-Stellgrad ausgegeben. Wenn der Regler als Heißkanalregler konfiguriert ist, wird der "plausible" Stellgrad gemittelt, damit die Schwankungen durch den Spritzzyklus ausgemittelt werden.

2.8.8 Überwachung der binären Ausgänge

Alle binären Ausgänge, die nicht als Eingang konfiguriert sind, werden auf Kurzschluss und fehlerhafte Ansteuerung überwacht. Es existieren 2-mal 24 Bits im **Ausgangsfehler**, die gesetzt werden, wenn entweder der Ausgang aktiv ist und kein Signal an der Klemme ansteht (Kurzschluss), oder wenn der Ausgang inaktiv ist und ein Signal an der Klemme ansteht, d. h. der Ausgang durch einen Fehler in der Verdrahtung etc. angesteuert wird. Von dieser Ausgangsüberwachung sind nur die **Sammelfehlerausgänge Arbeitsstrom** ausgenommen, damit sie über mehrere Geräte parallel geschaltet werden können.

2.8.9 Gerätefehler

Im Gerätefehlerstatus werden entsprechende Bits gesetzt und die Error-LED an der Gehäusefront leuchtet, wenn:

- · die Messwerterfassung defekt ist,
- ein Fehler in der digitalen Hardware erkannt wurde,
- ein Fehler im Parameterspeicher entdeckt wurde, oder
- bei der Ausgangsüberwachung ein Fehler aufgetreten ist.

Weiter werden entsprechende Bits gesetzt, wenn:

- die Eingänge der Heizstromüberwachung übersteuert sind, oder
- die Vergleichsstelle unterbrochen oder kurzgeschlossen ist.

2.8.10 Löschen von Fehlerbits

Von den Fehlerbits im **Kanalfehlerstatus** und im **Gerätefehlerstatus** müssen einige quittiert werden, da sie vom Regler (außer bei Reset) nie gelöscht werden. Dies kann durch Überschreiben der Fehlerstatuswörter über die Schnittstelle erfolgen, wie im Kapitel 8.4.3 beschrieben.

Folgende Bits im **Kanalfehlerstatus** können auch über einen Binäreingang gelöscht werden, in dem die Funktionswahl bei der Steuerung der Reglerfunktion (vergl. Kap.2.5.2) auf Fehler löschen gesetzt wird:

- Grenzwertfehler bei Alarmspeicherung
- Heizkreis-Fehler
- Fehler beim Start der Adaption
- Fehler bei Adaption

Dabei werden neu aufgetretene Fehler nicht unterdrückt.

Das Signal am Binäreingang muss mindestens 100 ms lang anliegen.

2.8.11 Ausgabe von kanalspezifischen Alarmen

Für jeden Kanal gibt es eine **Kanalfehlermaske**, mit der aus dem **Kanalfehlerstatus** die Fehler ausgewählt werden, die auf einen Binärausgang ausgegeben werden sollen. (Details zu den Fehlerbits siehe Kapitel 8.4.7 auf Seite 74).

Für die Ausgabe wird die Ausgangskonfiguration des gewünschten Ausgangs folgendermaßen eingestellt:

Bit-Nummer	Wert	Bedeutung	
0	0	Konfiguration als Ausgang	
1	1	Einzelkanal	
2 4	0 7	Kanalnummer	
5	0	_	
6	0/1	Arbeitsstrom / Ruhestrom	
7	1	Konfiguration als Alarm-Ausgang	

2.8.12 Ausgabe von Sammelalarmen, Gruppenalarmen bzw. Selbstoptimierung aktiv

Es können acht **Sammelfehlermasken** programmiert werden, mit denen aus dem Sammelfehler diejenigen ausgewählt werden, die auf einen Binärausgang ausgegeben werden sollen. (Details zu den Fehlerbits siehe Kapitel 8.4.8 auf Seite 74).

Die **Gruppenalarme** werden aus den kanalspezifischen Alarmen gebildet, indem die Alarme aller Kanäle, die zur gleichen Gruppe gehören, über "oder"-Funktionen verknüpft werden (vergleiche auch Kapitel 2.5.1 auf Seite 16).

Für die Ausgabe der Sammel-, Gruppenalarme bzw. des Zustands, dass die Selbstoptimierung irgendeines Kanals noch aktiv oder fehlerhaft ist, wird die **Ausgangskonfiguration** des gewünschten Ausgangs folgendermaßen eingestellt:

Bit-Nummer	Wert	Bedeutung
0	0	Konfiguration als Ausgang
1	0	Sammelfehler
2 6	1 8 9 10 13	Sammelfehler 0 7, Adaption läuft oder Adaptions-Fehler Gruppenfehler 0 3
7	0/1	Arbeitsstrom / Ruhestrom

2.9 Spezialfunktionen

2.9.1 Datenlogger

Der Datenlogger fasst je 3600 Abtastwerte der Istwerte und der Stellwerte für alle 8 Kanäle.

Die Aufzeichnung beginnt nach jedem Reset des Gerätes von Neuem, die Daten gehen bei einer Unterbrechung der Hilfsspannung verloren.

Ist der Speicher mit 3600 Abtastungen gefüllt, gehen durch die Aufzeichnung die ältesten Werte verloren.

Konfiguriert werden kann der **Logger-Abtastzyklus** (PI = 92h) im Bereich von 0,1 bis 300,0 Sekunden. Damit ergibt sich eine Aufzeichnungsdauer von 0,1 bis 300 Stunden (6 Minuten bis 12 Tage).

Die Aufzeichnung kann per Binäreingang (Ausgangskonfiguration = CDh) oder über Schnittstelle (Logger-Steuerung (PI = 93h) = 1) angehalten werden, damit eine aktuelle Aufzeichnung nicht überschrieben wird.

Mit der Logger-Steuerung (PI = 93h) = 2 wird die Aufzeichnung gestoppt, wenn 3600 Abtastungen im Speicher sind.

Um einen kurzen Zeitabschnitt gezielt auszulesen, besteht auch die Möglichkeit, den Speicher vor einer gezielten Aufzeichnung komplett zu löschen (Logger-Steuerung = 128). Damit vereinfacht sich der Auslesevorgang.

Die Anzahl der Abtastungen, die ausgelesen werden können, kann mit PI = 98h abgefragt werden.

Das Auslesen der Abtastwerte geschieht getrennt für Istwerte und Stellwerte und wird mit den Werten **Leseanfang Abtastwerte** gesteuert (für Istwerte PI = 94h, für Stellwerte PI = 95h).

Die Leseanfänge kann man sich als Markierungen einer Istwert- bzw. Stellwert-Abtastung vorstellen, ab der beim nächsten Lesen der Abtastwerte ausgelesen wird. Nach einem Reset wird die allererste Abtastung markiert.

Der jeweilige Leseanfang gibt an, wieviele Abtastungen aus der jüngsten Vergangenheit bis zum aktuellen Zeitpunkt gelesen werden können. Die Leseanfänge erhöhen sich mit jeder neu abgespeicherten Abtastung.

Der Wert kann nicht größer als die Anzahl der Abtastungen (PI = 98h) sein.

Die **Abtastwerte** werden mit PI = 96h für die Istwerte bzw. PI = 97h für die Stellwerte ausgelesen. Der Inhalt des Speichers wird durch das Auslesen nicht verändert.

Beim Auslesen der Abtastwerte mit der Service-Schnittstelle bzw. über den RS-485-Bus (EN60870- bzw. Modbus-Protokoll) wird der jeweilige Leseanfang nach jedem Lesezugriff automatisch so reduziert, dass die nächste Leseanforderung die nächsten Abtastwerte liefert.

Werden die Leseanfänge nicht über die Schnittstelle manipuliert, können somit alle Abtastwerte durch regelmäßiges Auslesen (bevor alte Werte überschrieben werden) fortlaufend und lückenlos abgeholt werden. Es können maximal 120 Werte (15 Abtastungen x 8 Kanäle) bzw. 8 x "Leseanfang" Werte angefordert werden.

Bei CANopen werden maximal 8 Worte auf einmal gelesen, der Leseanfang wird nicht automatisch reduziert, sondern indem der Wert -1 auf den Leseanfang geschrieben wird.

Das Auslesen der Werte über Profibus DP ist im Kap. 6.3.5 beschrieben.

Die Abtastwerte können auch mit PI = 9Ah ausgelesen werden. Gelesen werden dabei 8 Istabtastwerte, die zugehörigen 8 Stellabtastwerte sowie 1 zugehöriges Meldewort. Steuerung über Leseanfang Istabtastwerte (nicht bei Profibus DP und CANopen).

Der Zeitpunkt der letzten Abtastung kann mit PI = 99h abgefragt werden.

Beispiel:

- Der Logger-Abtastzyklus sei auf 10 Sekunden eingestellt (PI = 92h: 100). Damit ist die Gesamtaufzeichnungsdauer 10 Stunden.
- Die Hilfsspannung des Geräts sei vor ca. 3 Stunden eingeschaltet worden und es seien noch keine Abtastwerte abgefragt worden. Die Abfrage der Größen "Leseanfang Istabtastwerte" (PI = 94h), "Leseanfang Stellabtastwerte" (PI = 95h) und "Anzahl Abtastungen" (PI = 98h) ergibt dann jeweils ca. 1080 = 3 x 60 x 60 / 10.
- Es sollen nun die Abtastungen der 8 Istwerte der letzten 15 Minuten ausgelesen werden. Dazu muss der "Leseanfang Istabtastwerte" (PI = 94h) auf 90 = 15 x 60 / 10 gesetzt werden.
- Die 90 x 8 Istabtastwerte k\u00f6nnen nun mit PI = 96h abgeholt werden.
- Der "Leseanfang Istabtastwerte" (PI = 94h) steht danach auf null.
- Der "Leseanfang Stellabtastwerte" (PI = 95h) hat sich dabei nicht verändert.

2.9.2 Überprüfung der Zuordnung von Fühler und Heizung (Mapping)

Diese Funktion dient zur Überprüfung der richtigen Verdrahtung der Heizung bzw. der Fühler.

Eine evtl. vorhandene Kühlung wird dabei nicht berücksichtigt, da diese Funktion typischerweise vor dem ersten Hochheizen aktiviert wird und die Zonen deshalb kalt sind.

Bitte beachten: Diese Funktion ist eine Testhilfe und kann Schäden durch Überhitzung aufgrund falscher Verdrahtung nicht verhindern. Eine unabhängige Überwachung der tatsächlichen Temperaturen ist u.U. notwendig.

Vorbereitung:

- Bei den Regelkreisen, die überprüft werden sollen, muss der **Reglertyp** auf PDPI-Regler eingestellt werden. Bei anders eingestellten Kanälen wird die Zuordnung nicht geprüft.
- Die Zeitdauer der Überprüfung der einzelnen Kanäle ist abhängig vom Parameter **Verzugszeit**. Falls bereits eine Optimierung der Regelparameter erfolgt ist, braucht der Wert für die Verzugszeit nicht geändert werden, weil dann der Wert schon optimal ist. Andernfalls sollte die Verzugszeit auf etwa die Zeit eingestellt werden, in der die Temperatur dieser Zone nach Einschalten der Heizung um einige Grad ansteigt.
- Aus der Verzugszeit wird für jeden Kanal eine Prüfzeit berechnet. Sie ist das Doppelte der Verzugszeit, jedoch mindestens 10 Sekunden und höchstens 5 Minuten.

Achtung! Falls die Prüfzeit zu groß ist, kann es zur Überhitzung der Heizung kommen, wenn kein Fühler zugeordnet werden kann. Dies ist z.B. dann der Fall, wenn der Fühler kurzgeschlossen ist, oder an einem anderen Gerät angeschlossen ist.

Ablauf:

• Die Überprüfung der Zuordnung von Fühler und Heizung kann von jedem Zustand aus gestartet werden, indem der Code AAh zum Parameter Gerätesteuerung (PI = 32h) gesendet wird.

Schreiben		Lesen		Bedeutung	
0 7	AAh	4 7	Ah	Überprüfung Zuordnung Fühler/Heizung starten / läuft	
	AAh		0h	stoppen / beende	t

- In der ersten Phase (Beruhigungsphase) erfolgt der Test, ob die Temperaturen nicht steigen, wenn alle Ausgänge der zu überprüfenden Kanäle inaktiv sind. Die Beruhigungsphase dauert solange wie der Maximalwert der Prüfzeiten ist.
- In der zweiten Phase wird die Überprüfung der Zuordnung für die Kanäle einzeln und nacheinander durchgeführt. Dazu wird die Heizung des gerade zu überprüfenden Kanals eingeschaltet und alle Temperatur-Messwerte beobachtet, wo sich eine Änderung von mehr als 5 Grad ergibt. Eine Stellgradbegrenzung bzw. die Anfahrschaltung wird berücksichtigt.
- Spätestens nach der Prüfzeit wird die Heizung wieder ausgeschaltet und zum nächsten Kanal übergegangen.
- Falls kein Fehler erkannt wurde, nimmt der Regler nach Abschluss der Überprüfung seinen eingestellten Betrieb wieder auf.
- Falls ein Fehler erkannt wurde, ist das Bit **Mapping-Fehler** im **Gerätefehlerstatus** gesetzt und alle Heizen- und Kühlen-Ausgänge aller Kanäle bleiben ausgeschaltet, bis das Mapping-Fehler-Bit quittiert wird.

Abbruch:

- Die Überprüfung kann jederzeit abgebrochen werden, indem der Code AAh zum Parameter Gerätesteuerung gesendet wird.
- Die Überprüfung wird vorzeitig beendet und das Bit **Mapping-Fehler** im Gerätefehlerstatus wird gesetzt, wenn der Temperatur-Messwert irgendeines Kanals unerwartet stark ansteigt. Die Schwelle dabei ist während der Beruhigungsphase 20 Grad und während der zweiten Phase 50 Grad. Die nachfolgenden Kanäle werden dann nicht mehr getestet.
- Das Gleiche gilt, wenn aufgrund eines verpolten Fühlers der Messbereich nach unten verlassen wird.

Auswertung:

Das Ergebnis der Überprüfung ist im Reglerstatus und im Kanalfehlerstatus zu sehen:

• Die Mapping-Adresse im Reglerstatus gibt die Adresse des Fühlers an, der auf die Heizung reagiert hat. Die Mappingadresse ist nur dann gültig, wenn das Bit Mapping fertig im Reglerstatus gesetzt ist. (Vergl. Kapitel 8.4.6 auf Seite 73)

Das Bit Mapping-Fehler im Gerätefehlerstatus ist in folgenden Fehlerfällen gesetzt:

- Die **Mappingadresse** stimmt nicht mit der Kanalnummer überein. Ursache: Fühler bzw. Heizung vertauscht oder sehr starke thermische Verkopplung.
- Ist das Bit Mapping fertig im Reglerstatus nicht gesetzt, obwohl der Kanal überprüft wurde, so konnte keine Temperaturänderung vor dem Ende der Prüfzeit erkannt werden.
 - Ursache: Die Prüfzeit war zu kurz, d.h die Verzugszeit ist zu klein eingestellt oder die Heizung ist nicht aktiv oder Fühler ist kurgeschlossen oder Fühler bzw. Heizung an einem anderen Gerät angeschlossen.
- Wurde eine negative Temperaturänderung erkannt, so ist das Bit Verpolung im Kanalfehlerstatus des Kanals mit der negativen Temperaturänderung gesetzt.
 Ursache: Fühler verpolt.
- Wurde die Überprüfung vorzeitig beendet, weil ein unerwarteter Temperaturanstieg erfolgte, so ist das Bit Fühlerbruch im Kanalfehlerstatus des Kanals mit dem Temperaturanstieg gesetzt.
 - Ursache: Fühler gehört zu einem anderen Gerät oder Heizung wird von einem anderen Gerät angesteuert oder es besteht eine starke thermische Kopplung zu einer Heizung eines anderen Geräts.
- Die Bits Fühlerbruch bzw. Verpolung bleiben so lange gesetzt, bis der Mappingfehler quittiert wird.

R6000-28 GMC-I Messtechnik GmbH

2.9.3 Alarm-Historie

Die Alarmhistorie fasst 100 Einträge des Fehlerstatus mit zugehörigem Zeitstempel.

Immer dann, wenn sich mindestens ein Bit des gesamten Fehlerstatus (vergl. PI = 21h bzw. Ereignisdaten) ändert, wird der komplette Fehlerstatus zusammen mit dem aktuellen Zeitstempel abgespeichert.

Die Aufzeichnung beginnt nach jedem Reset des Gerätes von Neuem, die Daten gehen bei einer Unterbrechung der Hilfsspannung verloren.

Ist der Speicher mit 100 Einträgen gefüllt, gehen durch die Aufzeichnung die ältesten Einträge verloren.

Die Anzahl der Einträge in der Alarmhistorie kann mit PI = 2Fh abgefragt werden.

Das Auslesen der Einträge wird mit dem Wert Leseanfang Alarmhistorie gesteuert (PI = 2Dh).

Der Wert des Leseanfangs gibt an, wieviele Einträge aus der Vergangenheit bis zum aktuellen Zeitpunkt gelesen werden können. Der Wert kann nicht größer als die Anzahl der Einträge (PI = 2Fh) sein.

Den Leseanfang kann man sich als Markierung des Eintrags vorstellen, der bei der nächsten Leseanforderung ausgelesen wird. Nach einem Reset wird der allererste Eintrag markiert. Der Wert des Leseanfangs erhöht sich mit jedem neu abgespeicherten Eintrag.

Der **Zeitstempel** stammt von einem einfachen Zeitzähler und nicht von einer Echtzeituhr, d.h. nach einem Reset des Geräts beginnt die Zeitzähler wieder am 1. Januar 00, 0:00:00 Uhr. Um einen Bezug zur Echtzeit herzustellen, kann der aktuelle Stand des Zeitzählers mit PI = 90h auf die momentane Uhrzeit und das Datum gesetzt werden.

Die Einträge der Alarmhistorie werden mit PI = 2Eh ausgelesen. Der Inhalt des Speichers wird durch das Auslesen nicht verändert. Das Format der Einträge ist im Kapitel 8.4.9 auf Seite 74 beschrieben.

Beim Auslesen der Einträge mit der Service-Schnittstelle bzw. über den RS-485-Bus (EN60870- bzw. Modbus-Protokoll) wird der Leseanfang nach jedem Lesezugriff automatisch reduziert, so dass die nächste Leseanforderung den nächsten Eintrag liefert.

Achtung: Dies geschieht auch, wenn nicht alle 15 Worte auf einmal angefordert werden.

Wird der Leseanfang nicht über die Schnittstelle manipuliert, können somit alle Einträge durch regelmäßiges Auslesen (bevor alte Werte überschrieben werden) fortlaufend und lückenlos abgeholt werden.

Da bei CANopen nicht alle 15 Worte auf einmal gelesen werden können, wird der Leseanfang nicht automatisch reduziert, sondern indem der Wert -1 auf den Leseanfang geschrieben wird.

Das Auslesen der Werte über Profibus DP ist im Kap. 6.3.5 beschrieben.

2.9.4 Steuerung der binären Ein-, Ausgänge

Der aktuelle **Zustand der binären Ein- und Ausgänge** kann jederzeit eingelesen werden mit PI = E0h (Siehe Kapitel 8.10 auf Seite 78). Je nach Konfiguration der Ein- und Ausgänge kann sich der Zustand alle 10ms ändern.

Werden binäre Ausgänge nicht für eine Reglerfunktion benötigt, können sie als freie Ein- oder Ausgänge konfiguriert werden, und stehen damit für unabhängige Steuerfunktionen zur Verfügung.

Für einen **freien Eingang** ist die Ausgangskonfiguration (PI = 37h) auf den Wert 81h zu setzen, damit kein I/O-Fehler gemeldet wird. Für einen **freien Ausgang** ist die Ausgangskonfiguration (PI = 37h) auf den Wert 40h zu setzen, damit der Ausgang mit Schreiben auf PI = E0h gesetzt werden kann. (Siehe Kapitel 8.10 auf Seite 78). Dabei werden nur die Zustände übernommen, die zu freien Ausgangen gehören.

Falls nur maximal acht freie binäre Eingänge benötigt werden, können sie auch als Meldeeingänge konfiguriert werden (vergl. Kapitel 8.5.5 auf Seite 76). Die Zustände können dann im **Meldewort** als **Reglerstatus** (PI = 24h) vom Kanal 9 abgefragt werden.

2.9.5 Steuerung der Stetigausgänge

Der aktuelle Zustand der Stetigausgänge kann jederzeit eingelesen werden mit PI = E1h (Siehe Kapitel 8.10 auf Seite 78). Der Wertebereich von 0 ... 1000 entspricht 0 ... 20 mA bzw. 0 ... 10 V.

Werden einzelne Stetigausgänge nicht für eine Reglerfunktion benötigt, können sie als freie Ausgänge konfiguriert werden, und stehen damit zur unabhängigen Ausgabe zur Verfügung.

Dafür ist die Ausgangskonfiguration (PI = 37h) auf den Wert 40h zu setzen, damit der Ausgang mit Schreiben auf PI = E1h gesetzt werden kann. (Siehe Kapitel 8.10 auf Seite 78). Dabei werden nur die Zustände übernommen, die zu freien Ausgängen gehören.

2.10 Parametersätze

Es gibt drei Parametersätze im nichtflüchtigen Speicher.

Mit dem aktuellen Parametersatz arbeitet das Gerät, Änderungen einzelner Parameter betreffen nur diesen.

Die zwei Parametersätze im Hintergrund können mit dem aktuellen überschrieben werden und auch wieder in den aktuellen geladen werden. Damit ist eine einfache Umschaltung zwischen zwei Anwendungen möglich, oder Zwischenstände während Testphasen können gesichert werden.

Der Parametersatz der Standardwerkseinstellung ist in der Firmeware hinterlegt, so dass der aktuelle Parametersatz jederzeit vom Auslieferzustand überschrieben werden kann.

Mit dem Parameter Gerätesteuerung (PI = 32h) wird das Umkopieren gesteuert.

Bit-Nummer	Wert	Bedeutung	Bemerkung
0 7	0Fh	Standardwerkseinstellung in aktuellen Parametersatz laden	nicht rücklesbar
	1Eh	Aktuellen Parametersatz in Parametersatz 1 speichern	
	1Fh	Parametersatz 1 in aktuellen Parametersatz laden	
	2Eh	Aktuellen Parametersatz in Parametersatz 2 speichern	
	2Fh	Parametersatz 2 in aktuellen Parametersatz laden	

Der Umspeichervorgang betrifft alle Parameter und Konfigurationen, die in der Tabelle auf Seite 31 aufgeführt sind, mit Ausnahme der Schnittstellenkonfigurationen (PI = A0h und A1h).

Übersicht aller Parameter und Konfigurationen

Die unten aufgeführten Parameter werden netzausfallsicher in einem EEPROM gespeichert. Weitere Größen sind entweder nur flüchtig im RAM oder fest programmiert. Die vollständige Liste aller Parameterindizes (PI) ist im Kapitel 8.1 auf Seite 68 zu finden.

PI	Parameterbezeichnung	Einheit	Format	Einstellbereich	S	tandard	Bemerkung
emper	aturparameter						
00h	Sollwert	0,1°	± 15 Bit	minimaler maximaler Sollwert		0,0 °C	
				0,0 ° = off, -MbU +MbU *)			Bei Grenzwert relativ
01h	Erster oberer Grenzwert	0,1°	\pm 15 Bit	0,0 ° = off, -MbU +MbU		0,0 °	Bei GW absolut und Differenzregler
				0,0 °C bzw. 32,0 °F = off, MbA	MbE		Bei GW absolut und Absolutwertregl
02h	Erster unterer Grenzwert	0,1°	± 15 Bit	Wie erster oberer Grenzwert		0,0 °	
03h	Tauschsollwert	0,1°	± 15 Bit	Wie Sollwert		0,0 °C	
04h	Zweiter oberer Grenzwert	0,1°	± 15 Bit	Wie erster oberer Grenzwert		0,0 °	
05h	Zweiter unterer Grenzwert	0,1°	± 15 Bit	Wie erster oberer Grenzwert		0,0 °	
06h	Minimaler Sollwert	0,1°	± 15 Bit	MbA maximaler Sollwert	*)	0,0 °C	Bei Absolutwertregler
0011	Willimage Soliwert	0,1	± 10 Dit	-MbU maximaler Sollwert		0,0 0	Bei Differenzregler
07h	Maximaler Sollwert	0,1°	± 15 Bit	Minimaler Sollwert MbE	*) 6	00,0 °C	Bei Absolutwertregler
0711		,	± 10 Dit	Minimaler Sollwert MbU			Bei Differenzregler
08h	Sollwertanhebung (Boost)	0,1°	± 15 Bit	-MbU +MbU		0,0 °	siehe Kapitel 2.5.3 auf Seite 16
09h	Boost-Dauer	0,1 s	± 15 Bit	0,0 3000,0 s		0,0 s	Sierie Rapitei 2.3.3 auf Geite 10
0Ah	Anfahr-Sollwert	0,1°	± 15 Bit	Wie Sollwert		0,0 °C	Siehe Kapitel 2.6.1 auf Seite 17
0Bh	Verweildauer	0,1 s	± 15 Bit	0,0 3000,0 s		0,0 s	Olone Napiter 2.0.1 aur ocite 17
0Ch	Istwert-Korrektur	0,1°	± 15 Bit	-MbU +MbU	*)	0,0 °	Siehe Kapitel 2.6.3 auf Seite 18
0Dh	Istwert-Faktor	‰ / 0,1°	± 15 Bit	10,0 1800,0 ‰ / °C		00,0 %	und Kapitel 2.3.5 auf Seite 11
0Eh	Sollwertrampe aufwärts	0,1° / min	± 15 Bit	0,0 ° = aus, 0,1 ° MbU	")	0,0	Siehe Kapitel 2.3.1 auf Seite 10
0Fh	Sollwertrampe abwärts	0,1° / min	± 15 Bit	0,0 ° = aus, 0,1 ° MbU	*)	0,0	Ciono Napitor 2.0.1 dar cono 10
	arameter						
10h	Proportionalband Heizen	0,1°	± 15 Bit	0,0 ° MbU		50,0°	Siehe Kapitel 2.7 auf Seite 19
11h	Proportionalband Kühlen	0,1°	± 15 Bit	0,0 ° MbU		50,0°	<u>'</u>
12h	Totzone	0,1°	± 15 Bit	0,0 ° MbU		0,0 °	Nicht für 2-Punkt-Regler
13h	Verzugszeit der Kühlung	0,1 s	± 15 Bit	0,0 3000,0 s		50,0 s	
14h	Strecken-Verzugszeit	0,1 s	± 15 Bit	0,0 3000,0 s		50,0 s	Siehe Kapitel 2.7 auf Seite 19
15h	Stellzykluszeit	0,1 s	± 15 Bit	0,1 300,0 s		1,0 s	
16h	Steller-Stellgrad	%	± 7 Bit	Min max. Stellgrad		0 %	
17h	Anfahr-Stellgrad	%	± 7 Bit	Min max. Stellgrad		100 %	Siehe Kapitel 2.6.1 auf Seite 17
18h	Motorstellzeit	0,1 s	\pm 15 Bit	1,0600,0 s		60,0 s	Bei Schrittregler
19h	Störgrößen-Stellgrad	%	± 7 Bit	Min max. Stellgrad		0 %	Siehe Kapitel 2.5.4 auf Seite 17
1Ch	Minimaler Stellgrad	%	± 7 Bit	-100 0 %		-100 %	Nicht bei Schrittregler
1Dh	Maximaler Stellgrad	%	± 7 Bit	0 +100 %		100 %	Nicht bei Schrittregler
1Eh	Fühlerfehler-Stellgrad	%	± 7 Bit	Min max. Stellgrad		0 %	Siehe Kapitel 2.8.7 auf Seite 25
1Fh	Schalthysterese	0,1°	± 15 Bit	0,0 ° MbU	^)	4,0 °	Für Grenzwert-Überw. und Grenzsignalgeb
	nweisungen (weitere PI in Kapitel 8.4 auf Seite 7	,					
20h	Reglerfunktion	Bit	8 Bit	Siehe Kapitel 8.4.2 auf Seite 71		0 = aus	
22h	Reglerkonfiguration	Bit	16 Bit	Siehe Kapitel 8.4.4 auf Seite 73	1	= PDPI	
23h	erweiterte Reglerkonfiguration	Bit	8 Bit	Siehe Kapitel 8.4.5 auf Seite 73		0	
25h	Schwingungs-Sperre	0,1 s	8 Bit	0,0 = aus, 0,3 25,0 s		0,0 s	Siehe Kapitel 2.3.4
29h	Kanalfehlermaske	Bit	16 Bit	Siehe Kapitel 8.4.7 auf Seite 74			Siehe Kapitel 2.8.11 auf Seite 26
2Ah	Sammelfehlermaske	Bit	16 Bit	Siehe Kapitel 8.4.8 auf Seite 74	0	= keine	Siehe Kapitel 2.8.12 auf Seite 26
	pezifikation (weitere PI in Kapitel 8.5 auf Seite 75			1011111111111			0.1.1/.0.1
32h	Gerätesteuerung	Bit	8 Bit	Siehe Kapitel 8.5.3 auf Seite 75		0 = °C	Siehe Kapitel 2.10 auf Seite 30
33h	Fühlertyp		8 Bit	Siehe Kapitel 8.5.2 auf Seite 75		= Typ J	Siehe Kapitel 2.1.1 auf Seite 7
36h	Grenzwertkonfiguration	Bit	8 Bit	Siehe Kapitel 8.5.4 auf Seite 75		= keine	Siehe Kapitel 2.8.3 auf Seite 23
37h	Ausgangskonfiguration I/O 1 16	Bit	8 Bit	Siehe Kapitel 8.5.5 auf Seite 76	8-1	Kanal 3-Pkt	
0.41-	stetig 1 4	0/	1 7 0 11	0 .100 %		0	Cioba Kanital C.C.C
3Ah	Leistungsbegrenzung	%	± 7 Bit	0 +100 %		0 = aus	Siehe Kapitel 2.2.6
	omüberwachung	011	⊥ 15 Di+	0.0 010 0.1 1000 0.4		2 0112	
60h	Heizstrom-Nennwert 2 Regler	0,1 A	± 15 Bit	0,0 = aus, 0,1 1000,0 A		0 = aus	
61h	Heizstrom-Nennwert 2. Regler	0,1 A	± 15 Bit	0,0 = aus, 0,1 250,0 A		0 = aus	
62h	Heizstrom-Nennwert 3. Regler	0,1 A	± 15 Bit	0,0 = aus, 0,1 250,0 A		0 = aus	Sigha Kanital 2.9.6 auf Saita 2.4
64h	Summenstrom-Wandlerverhältnis	0,1 A	± 15 Bit	0,0 1000,0 A		100,0 A	Siehe Kapitel 2.8.6 auf Seite 24
67h	Heizstrom-Abtastzyklus	0,1 s	± 15 Bit	0,0 = auto, 0,1 3000,0 s) = Auto	
68h	Überwachungsschwelle	%	± 15 Bit	0 = default, 1100		=default	
69h	Sekundäre Heizspannung	0,1 V	± 15 Bit	0,0 = aus, 10,0 50,0 V	(O = aus	
	gger (weitere PI in Kapitel 8.7 auf Seite 77)	0.1	. 45 50	0.4 000.0 -	-	1.0 -	
92h	Logger-Abtastzyklus	0,1 s	± 15 Bit	0,1 300,0 s		1,0 s	
	stellen (nicht über Profibus)	5"	0.5	0.1 1/ 1/ 2000 100	+ -	100:-	
A0h	Schnittstellenkonfiguration	Bit	8 Bit	Siehe Kapitel 8.8.2 auf Seite 78		=19,2kB	D.
A1h	CAN-Baudrate	Bit	8 Bit	Siehe Kapitel 8.8.3 auf Seite 78	4	=125 kB	even P.

MbA = Messbereichs-Anfang, MbE = Messbereichs-Ende, MbU = Messbereichs-Umfang

3 RS-232-Service-Schnittstelle, Protokoll nach EN 60870

3.1 Allgemeines

Der Schnittstellenanschluss ist in separater Installationsanleitung beschrieben.

3.1.1 Schnittstellendaten

Der Regler ist mit einer seriellen Schnittstelle mit folgenden Daten ausgerüstet:

Pegelarten RS-232 und RS-485, (2-Draht)

Baudrate 19200 Bd

Zeichenformat 8 Datenbit, 1 Paritätsbit, 1 Stopbit

Parität even

Die Einstellung der Teilnehmeradresse (0 ... 254) für RS-485-Busbetrieb erfolgt über einen frontseitigen DIP-Schalter. Eine Änderung der Teilnehmeradresse wird erst nach Neueinschalten des Gerätes wirksam.

3.1.2 Kommunikationsprotokoll

Verwendet wird das Übertragungsprotokoll nach EN 60870 zur Kommunikation zwischen Feldleit-Ebene und Geräte-Ebene. Im Regler wird nur eine Untermenge der darin definierten Funktionen benutzt.

3.1.3 Prinzipielle Funktion

Es handelt sich um ein Master / Slave-Protokoll mit einem fest zugeordnetem Master (Leitrechner) und bis zu 255 Slaves (Geräte). Die Kommunikation erfolgt im Halbduplexbetrieb, d. h. ein an den Leitrechner angeschlossenes Gerät wird nur dann aktiv (antwortet),

- es ein an sich adressiertes, gültiges Telegramm empfängt
- die spezifizierte minimale Antwort-Verzugszeit abgelaufen (t av) ist, um dem Leitrechner Zeit zu geben um empfangsbereit zu werden

Der Leitrechner darf danach erst dann wieder aktiv werden, wenn

- er ein gültiges Antwort-Telegramm vom angesprochenen Gerät erhält und die spezifizierte Wartezeit nach Ende eines Antwort-Telegramms (t aw) abgelaufen ist
- die spezifizierte maximale Antwort-Verzugszeit (t av) abgelaufen ist
- die spezifizierte Zeichen-Verzugszeit (t zvs = Pause zwischen 2 Zeichenübertragungen) abgelaufen ist. Diese Wartezeit kommt auch beim Empfang von ungültigen und unvollständigen Antworten zum tragen!

3.1.4 Zeitverhalten

Sende / Empfangsbereitschaft nach Einschalten t ber ca. 5 s
Zeichen-Verzugszeit (Gerät) t zvs < 3 ms
Zeichen-Verzugszeit (Master) t zvm < 100 ms
Antwort-Verzugszeit (Gerät) t av 10 ... 100 ms
Anforderungs-Wartezeit nach Antwort (Master) t aw > 10 ms

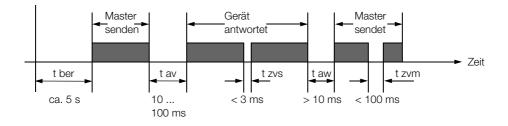


Bild 6 Prinzipielles Zeitverhalten

R6000–32 GMC-I Messtechnik GmbH

3.2 Telegramm-Arten und Aufbau

Alle Telegramme bestehen sowohl in Aufruf- als auch in Antwortrichtung aus einem von 3 Sätzen, die sich in ihrer prinzipiellen Struktur unterscheiden. Ihre Verwendung ist für jede verfügbare Schnittstellenfunktion festgelegt und wird nachfolgend beschrieben.

3.2.1 Kurzsatz

Kurzsätze werden verwendet

aufrufseitig

- zur Übermittlung von Kurzbefehlen an die Geräte (z. B. "Reset", ...)
- zum verkürzten Abruf wichtiger Daten von den Geräten (z. B. Ereignisdaten, ...)

antwortseitig

• zur Quittierung bei Aufrufen, die keine Antwort-Daten erfordern.

Prinzipieller Aufbau Kurzsatz

Zeichen-Nr.	Inhalt	Bedeutung		Bemerkung
1	10h	Startzeichen	(SZK)	
2		Funktionsfeld	(FF)	Siehe Kapitel 3.2.4 auf Seite 34
3		Geräteadresse	(GA)	
4		Prüfsumme	(PS)	Siehe Kapitel 3.2.4 auf Seite 34
5	16h	Endzeichen	(EZ)	

3.2.2 Steuersatz

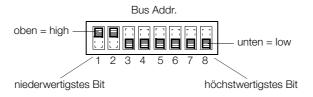
Steuersätze werden nur aufrufseitig verwendet. Sie dienen zum Abruf aller Gerätedaten, die nicht über Kurzsatz abgerufen werden können, weil für sie eine ausführlichere Spezifikation notwendig ist.

Prinzipieller Aufbau Steuersatz

Zeichen-Nr.	Inhalt	Bedeutung		Bemerkung
1	68h	Startzeichen	(SZ1)	
2		Länge	(L1)	Anzahl der Zeichen von Funktionsfeld bis ausschließlich Prüfsumme
3		Länge (Wiederholung)	(L2)	Alizani dei zeichen von Funktionsield dis ausschliedlich Fruisumme
4	68h	Startzeichen (Wiederholung)	(SZ2)	
5		Funktionsfeld	(FF)	Siehe Kapitel 3.2.4 auf Seite 34
6		Geräteadresse	(GA)	
7		Parameterindex	(PI)	Siehe Kapitel 3.2.4 auf Seite 34
8		Von Kanal	(vK)	0:1.1/.:110.04.10.11.04
9		Bis Kanal	(bK)	Siehe Kapitel 3.2.4 auf Seite 34 Bei einigen Parameterindizes aus der Hauptgruppe 3 entfallen diese Zeichen
10	00h	Rezeptur-Nummer	(RN)	257 Stringstri aramstermates add der madpigrappe e entitation diese Zeienien
8 oder 11		Prüfsumme	(PS)	Siehe Kapitel 3.2.4 auf Seite 34
9 oder 12	16h	Endzeichen	(EZ)	

3.2.3 Langsatz

Langsätze werden verwendet:


- zur Übergabe von Kommandos und Parametern an das Gerät
- zur Übernahme von Daten und Parametern vom Gerät

Prinzipieller Aufbau Langsatz

Zeichen-Nr.	Inhalt	Bedeutung		Bemerkung	
1	68h	Startzeichen	(SZ1)		
2		Länge ohne SZ1, L1, L2, SZ2, PS, EZ	(L1)	Anzahl der Zeichen von Funktionsfeld bis ausschließlich Prüfsumme	
3		Länge (Wiederholung)	(L2)	Alizani dei Zeichen vorr dirktionsteid dis adsschiledlich Fruisdinine	
4	68h	Startzeichen (Wiederholung)	(SZ2)		
5		Funktionsfeld	(FF)	Siehe Kapitel 3.2.4 auf Seite 34	
6		Geräteadresse	(GA)		
7		Parameterindex	(PI)	Siehe Kapitel 3.2.4 auf Seite 34	Entfällt bei
8		Von Kanal	(vK)	Siehe Kapitel 3.2.4 auf Seite 34	Antwort Zyklus- Daten und
9		Bis Kanal	(bK)	Bei einigen Parameterindizes aus der Hauptgruppe 3 entfallen diese	
10	00h	Rezeptur-Nummer	(RN)	Zeichen	Ereignis-Daten
		n Zeichen Anwenderdaten		Sigha Vanital 2.2.4 auf Saita 24	
L1 + 5		Prüfsumme	(PS)	Siehe Kapitel 3.2.4 auf Seite 34	
L1 + 6	16h	Endzeichen	(EZ)		

3.2.4 Funktion und Wertebereich der Format-Zeichen

Geräteadresse (GA)

Bild 7 Beispiel Bus-Adresse = 3

- 0 ... 254 Bereich für indivduelle Geräteadressen, mittels DIP-Schalter binär an der Gehäusefront einzustellen.
- 255 unter dieser Adresse k\u00f6nnen alle an einem Bus angeschlossenen Ger\u00e4te gleichzeitig angesprochen werden. Die mit
 dieser Adresse \u00fcbergebenen Daten und Befehle werden von allen Ger\u00e4ten \u00fcbernommen, es erfolgt keine Quittierung an
 den Master.

Länge (L1, L2)

Die Längenangaben L1 = L2 beziehen sich auf die Anzahl der Zeichen von Funktionsfewld (FF) bis ausschließlich Prüfsumme (PS) und werden nur bei Steuer- und Langsätzen gebraucht. L1, L2 sind abhängig von der Verwendung von vK, bK, RN und der Anzahl (n) der Anwenderdatenzeichen.

Abhängig davon haben L1 und L2 bei

- Steuersätzen den Wert 3 oder 6
- Langsätzen den Wert n + 3 oder n + 6

Funktionsfeld (FF)

Das Funktionsfeld beinhaltet

- beim Kurzsatz die eigentliche Anwenderinformation, seine Funktion ist bitweise vordefiniert und in Aufruf- bzw. Antwortrichtung verschieden.
- beim Steuer- und Langsatz die Richtungs- und Steuerinformationen für die übertragenen Anwenderdaten.

Funktionscodierung des Funktionsfeldes in Aufruf-Richtung

Aufruf-Kontrolle	Code	Satz	Bemerkung
Verbindungsschicht normieren	40h		
Gerät zurücksetzen	44h	- Maranata	
Abfrage "Gerät o.k.?"	49h		Nur die angegebenen Codes werden ausgewertet; ungültige werden mit einer Fehlerquittierung beantwortet.
Ereignisdaten anfordern	7Ah	Kurzsatz	
Zyklusdaten anfordern	7Bh		
Heizströme anfordern	7Eh		
Daten an Regler senden	73h	Languatz	
Daten vom Regler anfordern	7Bh	Langsatz	

Funktionscodierung des Funktiosfeldes in Antwort-Richtung

Bit-Nr.	Funktion	Wert	Bedeutung			
0 3	Antwort	0 1 B	ACK: positive Quittung NACK: negative Quittung; Nachricht nicht angenommen Antwort auf "Gerät o.k.?"	Kurzsatz		
		8	Senden von Daten	Langsatz		
4	Auftrags-Quittung	0 1	Auftrag ausgeführt; Gerät bereit Gerät nicht bereit für diesen Auftrag; Auftrag ggf. wiederholen			
5	Bedien-Anforderung	0	Kein Fehler aufgetreten Fehler aufgetreten (Ereignisdaten abfragen)			
6	Richtungs-Bit	0				
7		0				

R6000-34 GMC-I Messtechnik GmbH

Parameterindex (PI)

Über den Parameterindex wird die Art der zu übertragenden Daten festgelegt. Das Zeichen "Pl" wird wie folgt interpretiert:

Bit 7 4	Bit 3 0
0 Fh	0 Fh
Auswahlnummer für Parameter- Hauptgruppe	Auswahlnummer für spezielle Parameter

In den Parameter-Hauptgruppen sind funktionell verwandte Daten bzw. Einstellparameter eines Gerätes zusammengefasst. Es sind nur die in Kapitel 8 auf Seite 68 dokumentierten Parameterindizes ansprechbar, alle anderen werden mit einer Fehlermeldung quittiert.

Kanal- und Rezepturauswahl (vK, bK, RN)

Da es sich beim Regler um ein mehrkanaliges Gerät handelt, werden in den Angaben

"von Kanal" vK "bis Kanal" bK

festgelegt, welche Kanäle der angeforderten Werte übertragen werden sollen. Die Angabe vK = 0 und bK = 0 gibt an, dass alle Kanäle angefordert werden.

Mit der Rezepturnummer RN könnten Daten verschiedener Parametersätze angefordert werden. Im Regler existiert nur die Rezeptur RN = 0.

Prüfsumme (PS)

Die Prüfsumme wird bei allen Satzarten durch byteweise Summation ohne Überlaufsummierung über alle Zeichen von Funktionsfeld (FF) bis ausschließlich Prüfsumme (PS) gebildet.

Beispiel: Kurzsatz: PS = FF + GA

Länge und Struktur des Anwender-Datenblocks

Die Länge und Struktur sind variabel und abhängig von PI, vK, bK.

Die übertragenen Werte können byte- oder wordstrukturiert sein, folgende Formate werden verwendet:

±7 Bit	2er Komplement Darstellung	Zahl mit Vorzeichen
± 15 Bit	LS-Byte zuerst, 2er Komplement Darstellung	Zahl mit Vorzeichen
8 / 16 Bit	LS-Byte zuerst	Bitfeld

3.2.5 Kriterien für die Gültigkeit eines Anforderungs-Telegramms

Bei Erfüllung antwortet der Regler mit den angeforderten Daten:

- Keine Paritätsfehler im Anforderungs-Telegramm bzw. in den Antwort-Telegrammen anderer Busteilnehmer.
- Bei Kurzsatz:

Zeichen	Inhalt	Bedeutung	Bemerkung
1	10h	SZK	
2	40h 44h 49h 7Ah 7Bh 7Eh	FF	Gültige Funktionscodierung: Verbindungsschicht normieren Reset Gerät o.k.? Ereignis Zyklus Heizströme
3	0 255	GA	
4	(GA) + (FF)	PS	
5	16h	EZ	

• Bei Steuer- und Langsatz:

Zeichen	Inhalt	Bedeutung	Bemerkung
1	68h	SZ1	
2		L1	
3	L1	L2	
4	68h	SZ2	
5	73h 7Bh	FF	Schreiben Lesen
6	0 255	GA	Schnittstellenadresse
7		PI	Gültiger Wert
		Daten	
L1 + 5. Zeichen		PS	Summe von FF bis inkl. Daten
L1 + 6. Zeichen	16h	EZ	

Ausnahmen, keine Antwort bei:

- Reset-Kurzsatz
- GA = 255 (Rundrufadresse)

Werden vom Leitrechner falsche Werte für FF, PI oder PS empfangen, so antwortet der Regler mit einem Kurzsatz mit negativer Quittierung NACK.

Ist im Regler ein Fehler aufgetreten (irgend ein Bit gesetzt im Gerätefehler oder Kanalfehler), so antwortet der Regler mit einem Kurzsatz mit gesetztem Bedienungsanforderungs-Bit.

3.3 Telegramminhalte

3.3.1 Gerät rücksetzen

Das angesprochene Gerät führt einen Hardware-Reset durch, wie bei kurzer Unterbrechung der Hilfsspannung.

Beispiel: Geräteadresse = 2

Aufruf (Kurzsatz):

Zeichen-Nr.	Inhalt	Bedeutung
1	10h	SZK
2	44h	FF (Gerät zurücksetzen)
3	02h	GA
4	46h	PS
5	16h	EZ

Antwort:

3.3.2 Abfrage: Gerät o.k.?

Das angesprochene Gerät liefert nur das Funktionsfeld.

Beispiel: Geräteadresse = 3

Aufruf (Kurzsatz):

Zeichen-Nr.	Inhalt	Bedeutung
1	10h	SZK
2	49h	FF (Gerät o.k.?)
3	03h	GA
4	4Ch	PS
5	16h	EZ

Antwort (Kurzsatz):

Zeichen-Nr.	Inhalt	Bedeutung
1	10h	SZK
2	0Bh	FF (z. B. kein Fehler aufgetreten)
3	03h	GA
4	0Eh	PS
5	16h	EZ

3.3.3 Zyklus-Daten

Sie enthalten die wichtigsten Mess- und Ausgabewerte des Reglers in einem Datenpaket. Zyklische Abfragen dieser Werte werden so in kompakter Form (Kurzsatz-Aufruf) möglich.

Beispiel: Geräteadresse 3

Aufruf (Kurzsatz):

Zeichen-Nr.	Inhalt	Bedeutung
1	10h	SZ
2	7Bh	FF
3	03h	GA
4	7Eh	PS
5	16h	EZ

Antwort (Langsatz):

Zeichen-Nr.	Inhalt	Bedeutung	Einheit	Format	Bemerkung
1	69h	SZ1			
2	2Ch	L1			Zeichenzahl von Zeichen 5 48
3	2Ch	L2			
4	68h	SZ2			
5	08h	FF			(z. B. kein Fehler)
6	03h	GA			
7, 8			0,1 °	± 15 Bit	Aktuelle Regelgröße Kanal 1
			0,1 °		
21, 22			0,1 °	± 15 Bit	Aktuelle Regelgröße Kanal 8
23			%	± 7 Bit	Aktuelle Stellgröße Kanal 1
			%		
30			%	± 7 Bit	Aktuelle Stellgröße Kanal 8
31, 32			0,1 A	± 15 Bit	Aktueller Heizstrom Kanal 1
			0,1 A		
45, 46			0,1 A	± 15 Bit	Aktueller Heizstrom Kanal 8
47, 48			0,1 V	± 15 Bit	Aktuelle Heizspannung
49		PS			
50	16h	EZ			

3.3.4 Heizstrom-Daten

Sie enthalten die Heizströme des 2. und 3. Reglers in einem Datenpaket. (Vergleiche Kapitel 2.8.6 auf Seite 24, Überwachung von 16/24 Kanälen)

Beispiel: Geräteadresse 3

Aufruf (Kurzsatz):

Zeichen-Nr.	Inhalt	Bedeutung
1	10h	SZ
2	7Eh	FF
3	03h	GA
4	81h	PS
5	16h	EZ

Antwort (Langsatz):

Zeichen-Nr.	Inhalt	Bedeutung	Einheit	Format	Bemerkung
1	69h	SZ1			
2	22h	L1			Zeichenzahl von Zeichen 5 38
3	22h	L2			
4	68h	SZ2			
5	08h	FF			(z.B. kein Fehler)
6	03h	GA			
7, 8			0,1 A	± 15 Bit	Aktueller Heizstrom Kanal 1, 2. Regler
			0,1 A		
21, 22			0,1 A	± 15 Bit	Aktueller Heizstrom Kanal 8, 2. Regler
23, 24			0,1 A	± 15 Bit	Aktueller Heizstrom Kanal 1, 3. Regler
			0,1 A		
37, 38			0,1 A	± 15 Bit	Aktueller Heizstrom Kanal 8, 3. Regler
39		PS			
40	16h	EZ			

3.3.5 Ereignisdaten

Die Ereignisdaten enthalten alle Fehlermeldungen und Alarme des Gerätes. Sie können zur Identifizierung eines speziellen Fehlers oder Alarms per Kurzsatz abgerufen werden, z. B. wenn zuvor im Funktionsfeld (FF) eines beliebigen Antwort-Telegramms das BA-Bit (= Sammelfehler) gesetzt war.

Beispiel: Geräteadresse 3:

Aufruf (Kurzsatz)

Zeichen-Nr.	Inhalt	Bedeutung
1	10h	SZ
2	7Ah	FF
3	03h	GA
4	7Dh	PS
5	16h	EZ

Antwort (Langsatz):

Zeichen-Nr.	Inhalt	Bedeutung	Einheit	Format	Bemerkung
1	68h	SZ1			
2	1Ah	L1			Zeichenzahl von Zeichen 5 30
3	1Ah	L2			
4	68h	SZ2			
5	28h	FF			(z.B. Bit 6 = 1 ein oder mehrere Fehler)
6	03h	GA			
7, 8			Bit	16 Bit	Fehlerstatus Kanal 1
			Bit		
21. 22			Bit	16 Bit	Fehlerstatus Kanal 8
23, 24			Bit	16 Bit	Fehlerstatus Gerät
25			Bit	8 Bit	Ausgangsfehler 1
			Bit		
30			Bit	8 Bit	Ausgangsfehler 6
31		PS			
32	16h	EZ			

Die Bitbelegung der Fehlerstatusworte und der Ausgangsfehler ist in Kapitel 8.4.3 auf Seite 72 beschrieben.

3.3.6 Daten vom Regler anfordern

Mit dieser Kommunikation können alle Werte, Parameter, Konfigurationen, Zustände, Gerätekennungen usw. abgefragt werden. Dabei werden die Daten einzeln per Parameterindex angesprochen. Die vollständige Liste über alle Parameterindizes ist im Kapitel 8 auf Seite 68 enthalten.

Anforderung einer Gerätespezifikation

Der Parameterindex liegt in der Hauptgruppe 3. Damit entfallen für einige Parameterindizes die Zeichen "von / bis Kanal" und "Rezeptur-Nummer" im Steuer- und Langsatz.

Beispiel: Gerätemerkmal vom Gerät Nr. 3 lesen

Anforderung (Steuersatz ohne vK, bK, RN):

Zeichen-Nr.	Inhalt	Bedeutung
1	68h	SZ1
2	03h	L1
3	03h	L2
4	68h	SZ2
5	7Bh	FF (z.B. = 7Bh: Daten lesen)
6	03h	GA (z.B. = 3)
7	31h	PI (z.B. = 31h: Gerätemerkmal)
8	AFh	PS
9	16h	EZ

Antwort (Langsatz ohne vK, bK, RN):

Zeichen-Nr.	Inhalt	Bedeutung
1	68h	SZ1
2	04h	L1
3	04h	L2
4	68h	SZ2
5	08h	FF (z.B. = 08h: Kein Fehler aufgetreten)
6	03h	GA
7	31h	PI
8	08h	Gerätemerkmal = 08h
9	44h	PS
10	16h	EZ

Anforderung z. B. eines Regelparameters

Der Parameterindex ist nicht aus der Hauptgruppe 3, damit sind die Zeichen "von / bis Kanal" und "Rezeptur-Nummer" im Steuer- und Langsatz enthalten.

Beispiel: Fühlerfehler-Stellgrad vom Gerät Nr. 3 Kanal 1 lesen, Wert = 20 %

Aufruf (Steuersatz):

Zeichen-Nr.	Inhalt	Bedeutung
1	68h	SZ1
2	06h	L1
3	06h	L2
4	68h	SZ2
5	7Bh	FF (z.B. = 7Bh: Lesen)
6	03h	GA (z.B. = 3)
7	1Eh	PI (z.B. = 1Eh: Stellgrad bei Fühlerfehler)
8	01h	vK
9	01h	bK
10	00h	RN
11	9Eh	PS
12	16h	EZ

Antwort (Langsatz):

Zeichen-Nr.	Inhalt	Bedeutung
1	68h	SZ1
2	07h	L1
3	07h	L2
4	68h	SZ2
5	08h	FF (z. B. = 08h: = kein Fehler)
6	03h	GA (z. B. = 3)
7	1Eh	PI (z. B. = 1Eh: Stellgrad bei Fühlerfehler)
8	01h	vK
9	01h	bK
10	00h	RN
11	14h	Informationsfeld mit $n = 1$ Zeichen
12	3Fh	PS
13	16h	EZ

3.3.7 Daten an Regler senden

Mit dieser Kommunikation können alle Parameter, Konfigurationen und Betriebszustände eingestellt werden. Dabei werden die Daten einzeln per Parameterindex angesprochen.

Die vollständige Liste über alle Parameterindizes ist im Kapitel 8 auf Seite 68 enthalten.

Der gesendete Wert wird vom Regler auf seinen Einstellbereich überprüft. Falls er außerhalb seines zulässigen Bereiches liegt, wird er nicht abgespeichert. Im Fehlerstatus wird das Bit "Parameterfehler" gesetzt, und im Quittierungs-Kurzsatz ist im Funktionsfeld das "Bedienanforderungs"-Bit gesetzt.

Es ist zu beachten, dass zuerst eine vollständige Konfiguration durchzuführen ist, bevor Parameter eingestellt werden, da die Konfiguration die Verwendung und den Einstellbereich einzelner "Temperaturparameter" beeinflusst.

Senden einer Gerätespezifikation

Der Parameterindex liegt in der Hauptgruppe 3. Damit entfallen für einige Parameterindizes die Zeichen "von / bis Kanal" und "Rezeptur-Nummer" im Langsatz.

Beispiel: Dimension der Regelgröße vom Gerät Nr. 3 auf °F stellen

Aufruf (Langsatz):

Zeichen-Nr.	Inhalt	Bedeutung
1	68h	SZ1
2	04h	L1
3	04h	L2
4	68h	SZ2
5	73h	FF (Daten lesen)
6	03h	GA (= 3)
7	32h	PI
8	01h	Wert
9	A9h	PS
10	16h	EZ

Antwort (Kurzsatz):

Zeichen-Nr.	Inhalt	Bedeutung
1	10h	SZK
2	00h	FF (Kein Fehler aufgetreten)
3	03h	GA
4	03h	PS
5	16h	EZ

Senden z.B. eines Temperaturparameters

Der Parameterindex (PI) ist nicht aus der Hauptgruppe 3, damit sind die Zeichen "von / bis Kanal" und "Rezeptur-Nummer" im Langsatz enthalten.

Beispiel: Sollwert = 25,0° an Gerät Nr. 3 Kanal 3 übertragen

Aufruf (Langsatz):

Zeichen-Nr.	Inhalt	Bedeutung
1	68h	SZ1
2	08h	L1
3	08h	L2
4	68h	SZ2
5	73h	FF (z.B. = 73h: Daten senden)
6	03h	GA (z. B. = 3)
7	00h	PI (z. B. = 00h: Sollwert)
8	03h	vK
9	03h	bK
10	00h	RN
11, 12	FAh, 00h	Informationsfeld mit n = 2 Zeichen, Format ± 15 Bit LSB zuerst
13	72h	PS
14	16h	EZ

Antwort (Kurzsatz):

Zeichen-Nr.	Inhalt	Bedeutung
1	10h	SZ
2	10h	FF (z. B. Gerät nicht bereit für Auftrag)
3	03h	GA
4	13h	PS
5	16h	EZ

4 Modbus-Schnittstelle

4.1 Allgemeines

Der Schnittstellenanschluss ist in separater Installationsanleitung beschrieben.

4.1.1 Schnittstellendaten

Der Regler ist mit einer seriellen Schnittstelle mit folgenden Daten ausgerüstet:

Pegelarten RS-232 und RS-485, (2-Draht)

Baudrate 19200 bd

Zeichenformat 8 Datenbit, 1 Paritätsbit, 1 Stopbit

Parität even

Die Einstellung der Teilnehmeradresse (1 ... 255) für RS-485-Busbetrieb erfolgt über einen frontseitigen DIP-Schalter. Eine Änderung der Teilnehmeradresse wird erst nach Neueinschalten des Gerätes wirksam.

4.1.2 Kommunikationsprotokoll

Verwendet wird das Modbus-Protokoll zur Kommunikation zwischen Feldleit-Ebene und Geräte-Ebene. Es wird der RTU-Mode und die Konformitäts-Klasse 0 (Worte lesen und schreiben) benutzt.

4.1.3 Prinzipielle Funktion

Es handelt sich um ein Master / Slave-Protokoll mit einem fest zugeordnetem Master (Leitrechner) und bis zu 255 Slaves (Geräte). Die Kommunikation erfolgt im Halbduplexbetrieb, d. h. ein an den Leitrechner angeschlossenes Gerät wird nur dann aktiv (antwortet),

- es ein an sich adressiertes, gültiges Telegramm empfängt
- die spezifizierte minimale Antwort-Verzugszeit abgelaufen (t av) ist, um dem Leitrechner Zeit zu geben um empfangsbereit zu werden.

Der Leitrechner darf danach erst dann wieder aktiv werden, wenn

- er ein gültiges Antwort-Telegramm vom angesprochenen Gerät erhält und die spezifizierte Wartezeit nach Ende eines Antwort-Telegramms (t aw) abgelaufen ist
- die spezifizierte maximale Antwort-Verzugszeit (t av) abgelaufen ist
- die spezifizierte Zeichen-Verzugszeit (t zvs = Pause zwischen 2 Zeichenübertragungen) abgelaufen ist. Diese Wartezeit kommt auch beim Empfang von ungültigen und unvollständigen Antworten zum tragen!

4.1.4 Zeitverhalten

Sende / Empfangsbereitschaft nach Einschalten t ber ca. 5 s

Zeichen-Verzugszeit (Gerät) t zvs < 3,5 t z (2 ms bei 19,2 kbd)
Zeichen-Verzugszeit (Master) t zvm < 3,5 t z (2 ms bei 19,2 kbd)

Antwort-Verzugszeit (Gerät) t av 10 ... 100 ms Anforderungs-Wartezeit nach Antwort (Master) t aw > 10 ms

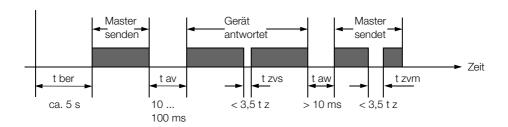


Bild 8 Prinzipielles Zeitverhalten

Zeichen-Zeit = Zeit zur Übertragung eines Zeichens tz 0,57 ms bei 19,2 kbd

R6000-42 GMC-I Messtechnik GmbH

4.2 Telegramm-Arten und Aufbau

4.2.1 Prinzipieller Aufbau

Zeichen- Anzahl	Bedeutung	Bemerkung
1	Slave-Adresse (0 255)	Geräteadresse (nicht 0) 0 = an Alle (nur bei Funktionscode = 5, 16)
1	Funktionscode	Siehe Kapitel 4.2.3 auf Seite 43
n	Daten	Siehe Kapitel 4.2.4 auf Seite 43 und Kapitel 4.2.6 auf Seite 44
1	Error-Check (CRC-16) Low-Byte)	Siehe Kapitel 4.2.5 auf Seite 43
1	Error-Check (CRC-16) High-Byte)	
(4)	Wartezeit, es werden keine Zeichen gesendet	Siehe Kapitel 4.2.2 auf Seite 43

4.2.2 Wartezeit

- Die Wartezeit dauert so lange, wie vier Zeichen zur Übertragung benötigen würden.
- Die Wartezeit dient als Anfang- und Ende-Erkennung des Telegramms, da keine explizite Längenangabe im Telegramm enthalten ist.
- Ein Telegramm gilt dann als beendet, wenn die Wartezeit abgelaufen ist.
- Wird aus einem beliebigen Grund die Übertragung eines Telegramms um länger als die Wartezeit unterbrochen, gilt das Telegramm als beendet. Das erste Zeichen nach der Unterbrechung wird als erstes Zeichen eines neuen Telegramms angesehen. (Damit werden die beiden Telegrammteile wegen fehlerhaftem Error-Check nicht angenommen).

4.2.3 Funktionscode

Es werden folgende Funktionscodes (FC) unterstützt:

Funktionscode	Bedeutung	Verwendung
3	Worte lesen	Lesen von Werten und Parametern
5	Einzelbit schreiben	Nur für Reset des Geräts
7	Status lesen	Abfrage "Gerät o.k."
16	Worte schreiben	Schreiben von Parametern

4.2.4 Daten

Details über das Datenfeld im Telegramm Kapitel 4.2.6 auf Seite 44 und Kapitel 4.3 auf Seite 47.

- Die Daten beim Modbus sind grundsätzlich 16-Bit Worte.
 Die Übertragung geschieht mit dem High-Byte zuerst.
- Die Darstellung von Zahlenwerten erfolgt im 2-er-Komplement.
- Größen, die ± 7 Bit Format haben, werden auf ±15 Bit vorzeichenerweitert.
- Bitfelder im 8-Bit Format werden mit einem High-Byte = 0 ergänzt.

4.2.5 Error-Check

Die korrekte Übertragung des Telegramms wird durch die Prüfung des CRC-16 Cyclical Redundancy Checks sichergestellt. Die beiden Zeichen des CRC-16 werden aus allen Zeichen des Telegramms (Slave-Adresse bis letztes Daten-Byte) wie folgt erzeugt:

- 1 Vorbesetzen eines 16-Bit-Registers (CRC-16-Register) mit FFFFh.
- 2 Exclusive-Oder-Verknüpfung des Low-Bytes des CRC-16-Registers mit dem Zeichen des Telegramms. Ergebnis im CRC-16-Register.
- 3 Rechts-Shift des CRC-16-Registers um ein Bit. Eine 0 wird nachgeschoben, das rausgeschobene niederwertigste Bit (LSB) wird aufgehoben.
- 4 Wenn LSB = 0 ist, weiter mit Schritt 5. Wenn LSB = 1 ist, Exclusive-Oder-Verknüpfung des CRC-16-Registers mit A001h.
- 5 Die Schritte 3 und 4 wiederholen, bis insgesamt 8 Rechts-Shifts erfolgten. Danach ist ein Zeichen des Telegramms abgearbeitet.
- 6 Schritt 2 bis 5 für jedes weitere Zeichen des Telegramms durchführen.
- 7 Wenn alle Zeichen des Telegramms abgearbeitet sind, wird der Inhalt des CRC-16-Registers mit dem Low-Byte voran ans Telegramm angehängt.

Eine Programmierung in der Sprache C würde z. B. folgenden Code ergeben:

```
/* -----
                      calculate the crc_16 error check field
crc_16()
Input parameters: buffer: string to calculate CRC
               length: bytes number of the string
Return value:
                      CRC value.
*/
unsigned int crc_16 (unsigned char *buffer, unsigned int length) {
  unsigned int i, j, lsb, tmp, crc = 0xFFFF;
  for ( i = 0; i < length; i++ ) {
    tmp = (unsigned char) *buffer++;
    crc ^= tmp;
    for ( j = 0; j < 8; j++ ) {
      lsb = crc \& 0x0001;
      crc >>= 1;
      if ( lsb != 0 ) crc ^= 0xA001;
  }
  return (crc);
```

4.2.6 Unterstützende Telegramme

Worte lesen (FC = 3)

Frage vom Master:

Zeichen-Nr.	Bedeutung
1	Slave-Adresse (nicht 0)
2	FC = 3
3	Wort-Adresse (High-Byte)
4	Wort-Adresse (Low-Byte)
5	Anzahl Worte (High-Byte)
6	Anzahl Worte (Low-Byte)
7	CRC-16 (Low-Byte)
8	CRC-16 (High-Byte)

Antwort vom Slave:

Zeichen-Nr.	Bedeutung
1	Slave-Adresse
2	FC = 3
3	Anzahl Zeichen (n)
4	Wort-Daten (n/2 Worte)
	jeweils High-Byte zuerst
4 + n	CRC-16 (Low-Byte)
5 + n	CRC-16 (High-Byte)

Falls die Wort-Adresse im Regler nicht existiert bzw. wenn die Anzahl der Worte so groß ist, sendet der Regler eine "Fehler-Antwort" mit entsprechendem Fehlercode (vergleiche Kapitel 4.2.7 auf Seite 46).

Reset (FC = 5)

Frage vom Master:

Zeichen-Nr.	Bedeutung
1	Slave-Adresse
2	FC = 5
3	Bit-Adresse (High-Byte) = 0
4	Bit-Adresse (Low-Byte) = 0
5	Bit-Daten (High-Byte) = 0
6	Bit-Daten (Low-Byte) = 0
7	CRC-16 (Low-Byte)
8	CRC-16 (High-Byte)

Antwort vom Slave:

Keine möglich

Auftrag an Alle (Slave-Adresse = 0) ist möglich.

Die Funktion Einzelbit schreiben wird ausschließlich für das Neustarten des Geräts verwendet.

Falls die Bit-Adresse nicht 0 ist bzw. das Bit nicht gelöscht wird, sendet der Regler eine "Fehler-Antwort" mit entsprechendem Fehlercode (vergleiche Kapitel 4.2.7 auf Seite 46).

Abfrage "Gerät o.k.?" (FC = 7)

Frage vom Master:

Zeichen-Nr.	Bedeutung
1	Slave-Adresse (nicht 0)
2	FC = 7
3	CRC-16 (Low-Byte)
4	CRC-16 (High-Byte)

Antwort vom Slave:

Zeichen-Nr.	Bedeutung
1	Slave-Adresse
2	FC = 7
3	Status
4	CRC-16 (Low-Byte)
5	CRC-16 (High-Byte)

Im Status ist Bit 4 gesetzt, wenn z. Zt. kein Schreibauftrag (FC = 16) möglich ist,
Bit 5 gesetzt, wenn ein Fehler aufgetreten ist (Bedienanforderung, Fehlerstatus lesen),
sonstige Bits sind 0.

Worte schreiben (FC = 16)

Auftrag vom Master:

Zeichen-Nr.	Bedeutung
1	Slave-Adresse
2	FC = 16
3	Wort-Adresse (High-Byte)
4	Wort-Adresse (Low-Byte)
5	Anzahl Worte (High-Byte)
6	Anzahl Worte (Low-Byte)
7	Anzahl Zeichen (n)
8	Wort-Daten (n/2 Worte)
	jeweils High-Byte zuerst
8 + n	CRC-16 (Low-Byte)
9 + n	CRC-16 (High-Byte)

Antwort vom Slave:

Zeichen-Nr.	Bedeutung
1	Slave-Adresse (nicht 0)
2	FC = 16
3	Wort-Adresse (High-Byte)
4	Wort-Adresse (Low-Byte)
5	Anzahl Worte (High-Byte)
6	Anzahl Worte (Low-Byte)
7	CRC-16 (Low-Byte)
8	CRC-16 (High-Byte)

Auftrag an Alle (Slave-Adresse = 0) ist möglich, es erfolgt dann keine Antwort von den Slaves.

Falls die Wort-Adresse im Regler nicht existiert, die Anzahl der Worte so groß ist, bzw. der Dateninhalt nicht zulässig ist, sendet der Regler eine "Fehler-Antwort" mit entsprechendem Fehlercode (vergleiche Kapitel 4.2.7 auf Seite 46).

4.2.7 Fehlerbehandlung

Falls die Slave-Adresse nicht zutreffend ist, ein Paritätsfehler aufgetreten ist, der Error-Check nicht erfolgreich war (CRC-16 falsch), oder der Funktionscode nicht unterstützt wird sendet der Slave keine Antwort.

Ist das Telegramm formal korrekt, kann der Regler die Anforderung jedoch nicht ausführen, reagiert er mit einer Fehlerantwort, bei der im Fehlercode (Zeichen 3) der Grund für die Nichtausführung angegeben ist.

Die Fehlerantwort ist am zurückgesendeten Funktionscode zu erkennen, bei dem das höchstwertigste Bit gesetzt ist.

Fehlerantwort

Zeichen-Nr.	Bedeutung
1	Slave-Adresse (nicht 0)
2	FC + 80h
3	Fehlercode
4	CRC-16 (Low-Byte)
5	CRC-16 (High-Byte)

Fehlercode

Wert	Bedeutung
2	Unzulässige Adresse
3	Unzulässiger Dateninhalt
6	Z. Zt. kein Schreibauftrag möglich
9	Anzahl Worte zu groß
10	Kein Schreiben erlaubt

R6000-46 GMC-I Messtechnik GmbH

4.3 Lesen und Schreiben von Daten

4.3.1 Adressierung

Alle Einstellparameter und Daten des Regler sind nach funktioneller Zusammengehörigkeit in Parametergruppen einsortiert. Zusammen mit den Zyklusdaten (Messwerte) und Ereignisdaten (Fehler und Alarme) ist damit die komplette Bedienung des Reglers über die Busschnittstelle möglich.

Die Parametergruppen werden über einen Parameterindex adressiert, der als High-Byte der Wort-Adresse verwendet wird. Die vollständige Liste über alle Parameterindizes ist im Kapitel "Geräteparameter" Seite 68.

Pro Parameterindex sind meist mehrere Größen vorhanden (in der Regel die der 8 Kanäle). Die Auswahl geschieht mit dem Low-Byte der Wort-Adresse.

4.3.2 Parameter schreiben

Beispiel:

Die Anfahrstellgrade der ersten 3 Kanäle des Geräts mit der Adresse 3 auf 20 % einstellen.

Auftrag vom Master (die \pm 7 Bit Größen werden auf \pm 15 Bit ergänzt):

Zeichen-Nr.	Wert	Bedeutung	
1	03h	Geräte-Adresse	
2	10h	Funktionscode = Worte schreiben	
3	17h	Wort-Adresse (High-Byte) = Parameterindex	
4	00h	Wort-Adresse (Low-Byte) = 1. Kanal	
5	00h		
6	03h	Anzahl Worte = 3	
7	06h	Anzahl Zeichen = 2 mal 3	
8	00h		
9	14h	Anfahrstellgrad Kanal 1	
10	00h		
11	14h	Anfahrstellgrad Kanal 2	
12	00h		
13	14h	Anfahrstellgrad Kanal 3	
16	DFh		
17	7Eh	CRC-16	

Antwort des Slave (kein Fehler aufgetreten):

Zeichen-Nr.	Wert	Bedeutung	
1	03h	Geräte-Adresse	
2	10h	Funktionscode = Worte schreiben	
3	17h	Wort-Adresse (High-Byte) = Parameterindex	
4	00h	Wort-Adresse (Low-Byte) = 1. Kanal	
5	00h		
6	03h	Anzahl Worte = 3	
7	84h		
8	5Eh	CRC-16	

4.3.3 Parameter lesen

Beispiel:

Ausgangskonfiguration der 4 Stetigausgänge des Geräts mit der Adresse 3 einlesen.

Anfrage vom Master:

Zeichen-Nr.	Wert	Bedeutung	
1	03h	Geräte-Adresse	
2	03h	Funktionscode = Worte lesen	
3	37h	Wort-Adresse (High-Byte) = Parameterindex	
4	10h	Wort-Adresse (Low-Byte) = AO Nr. 17	
5	00h		
6	04h	Anzahl Worte = 4	
7	4Ah		
8	5Ah	CRC-16	

Antwort vom Slave (kein Fehler aufgetreten):

Zeichen-Nr.	Wert	Bedeutung		
1	03h	Geräte-Adresse		
2	03h	Funktionscode = Worte lesen		
3	08h	Anzahl Zeichen = 2 mal 4		
4	00h			
5	42h	Ausgangskonfiguration AO Nr. 17 = Heizen Kanal 1 live zero		
6	00h			
7	46h	Ausgangskonfiguration AO Nr. 18 = Heizen Kanal 2 live zero		
8	00h			
9	4Ah	Ausgangskonfiguration AO Nr. 19 = Heizen Kanal 3 live zero		
10	00h			
11	4Eh	Ausgangskonfiguration AO Nr. 20 = Heizen Kanal 4 live zero		
12	D4h			
13	46h	CRC-16		

4.3.4 Zyklus-Daten

Sie enthalten die wichtigsten Mess- und Ausgabewerte des Reglers in einem Datenpaket. Eine zyklische Abfrage dieser Werte wird durch die fortlaufende Adressierung in kompakter Form möglich. Diese Werte können nur gelesen werden.

Adresse	Einheit	Wert	Bemerkung
0008h	0,1 °	Aktuelle Regelgröße Kanal 1	vergleiche PI = B1h
000Fh	0,1 °	Aktuelle Regelgröße Kanal 8	
0010h	%	Aktuelle Stellgröße Kanal 1	vergleiche PI = B7h
0017h	%	Aktuelle Stellgröße Kanal 8	
0018h	0,1 A	Aktueller Heizstrom Kanal 1	vergleiche PI = 6Ch
001Fh	0,1 A	Aktueller Heizstrom Kanal 8	
0020h	0,1 V	Aktuelle Heizspannung	vergleiche PI = 6Fh
0021h	0,1 A	Aktueller Heizstrom Kanal 1, 2. Regler	vergleiche PI = 6Dh
0028h	0,1 A	Aktueller Heizstrom Kanal 8, 2. Regler	
0029h	0,1 A	Aktueller Heizstrom Kanal 1, 3. Regler	vergleiche PI = 6Eh
0030h	0,1 A	Aktueller Heizstrom Kanal 8, 3. Regler	

4.3.5 Reglerkonfiguration

Für die einfachere Programmierung von Terminals sind die Bitgruppen in der Reglerkonfiguration (PI = 22h) zusätzlich über Wortzugriffe les- und schreibbar

Adresse	Wert	Wert		Bemerkung
2200h	Bitfeld	Reglerkonfiguration	Kanal 1	vergleiche PI = 22h Kapitel 8.4.4 auf Seite 73
2207h	Bitfeld		Kanal 8	
2208h	07	Reglertyp	Kanal 1	vergleiche PI = 22h, Bit 0 2
220Fh	0 7		Kanal 8	
2210h	0 7	Reglerart	Kanal 1	vergleiche PI = 22h, Bit 3 5
2217h	0 7		Kanal 8	
2218h	07	Partnerkanal	Kanal 1	vergleiche PI = 22h, Bit 6 8
221Fh	0 7		Kanal 8	
2220h	0 3	Gruppennummer	Kanal 1	vergleiche PI = 22h, Bit 9 ,10
2227h	0 3		Kanal 8	
2228h	Bitfeld	Konfigurationsbits	Kanal 1	vergleiche PI = 22h, Bit 11 15
				und PI = 23h, Bit 0 7

Konfigurationsbits

Bitfeld

222Fh

Bit-Nummer	Wert	Bedeutung		Bemerkung
0	0/1	interner / externer Istwe	ert	
1	0/1	Stellausgang normal / s	speziell für Schütze	
2	0/1	Hand statt Boost aus /	ein	vgl. Kap. 2.5.3
3	0/1	PDPI- / PI-Regler		
4	0/1	- / pH-Regelung		
5	0/1	normal / kein Kühlen be	ei Tauschsollwert	
6	0/1	halber Vorhalt beim Kül	nlen	
7 10				nicht verwendet
11	0/1	Istwertführung	aus / ein	
12	0/1	Heißkanal	aus / ein	
13	0/1	Wasserkühlung	aus / ein	
14	0/1	adaptive Messwertkorrektur	aus / ein	
15	0/1	Hand statt Aus	aus / ein	

Kanal 8

4.3.6 Reglerstatus

Die Bitgruppe Optimierungsphase ist separat lesbar:

Adresse	Wert	Wert		Bemerkung
2400h	Bitfeld	Reglerstatus	Kanal 1	vergleiche PI = 24h Kapitel 8.4.6 auf Seite 73
2407h	Bitfeld		Kanal 8	
2408h	Bitfeld	Meldewort		vergleiche PI = 24h, Kanal 9
2409h	0 15	Optimierungsphase	Kanal 1	vergleiche PI = 24h, Bit 0 3
2410h	0 15		Kanal 8	

5 HB-THERM-Schnittstelle

Mit Erweiterungen gegenüber den Dokument O8099-D0105 von HB-THERM®.

5.1 Allgemeines

Der Schnittstellenanschluss ist in separater Installationsanleitung beschrieben.

5.1.1 Schnittstellendaten

Der Regler ist mit einer seriellen Schnittstelle mit folgenden Daten ausgerüstet:

Pegelarten RS-232 und RS-485, (2-Draht)

Baudrate 19200 bd

• Zeichenformat 8 Datenbit, 1 Paritätsbit, 1 Stopbit

Parität even

Die Einstellung der Teilnehmeradresse (1 ... 9) für RS-485-Busbetrieb erfolgt über einen frontseitigen DIP-Schalter. Eine Änderung der Teilnehmeradresse wird erst nach Neueinschalten des Gerätes wirksam.

5.1.2 Kommunikationsprotokoll

Verwendet wird das HB-THERM-Protokoll zur Kommunikation zwischen Feldleit-Ebene und Geräte-Ebene. Das Protokoll ist bezüglich der Meldungsarten erweitert.

5.1.3 Prinzipielle Funktion

Es handelt sich um ein Master / Slave-Protokoll mit einem fest zugeordnetem Master (Leitrechner) und bis zu 15 Slaves (Geräte). Die Kommunikation erfolgt im Halbduplexbetrieb, d. h. ein an den Leitrechner angeschlossenes Gerät wird nur dann aktiv (antwortet), wenn

- es ein an sich adressiertes, gültiges Telegramm empfängt
- die spezifizierte minimale Antwort-Verzugszeit abgelaufen (t av) ist, um dem Leitrechner Zeit zu geben um empfangsbereit zu werden.

Der Leitrechner darf danach erst dann wieder aktiv werden, wenn

- er ein gültiges Antwort-Telegramm vom angesprochenen Gerät erhält und die spezifizierte Wartezeit nach Ende eines Antwort-Telegramms (t aw) abgelaufen ist
- die spezifizierte maximale Antwort-Verzugszeit (t av) abgelaufen ist
- die spezifizierte Zeichen-Verzugszeit (t zvs = Pause zwischen 2 Zeichenübertragungen) abgelaufen ist. Diese Wartezeit kommt auch beim Empfang von ungültigen und unvollständigen Antworten zum tragen!

5.1.4 Zeitverhalten

Sende / Empfangsbereitschaft nach Einschaltent berca. 5 sZeichen-Verzugszeit (Gerät)t zvs< 3 ms</td>Zeichen-Verzugszeit (Master)t zvm< 50 ms</td>Antwort-Verzugszeit (Gerät)t av10 ... 100 msAnforderungs-Wartezeit nach Antwort (Master)t aw> 10 ms

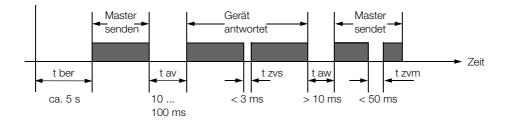


Bild 9 Prinzipielles Zeitverhalten

R6000-50 GMC-I Messtechnik GmbH

5.2 Telegrammaufbau

5.2.1 Prinzipieller Aufbau

Zeichen-Nr.	Inhalt	Bemerkung	Format	Wertebereich
1	Adresse (einkanalige Geräte)	Kanaladresse Die unteren 3 Bits sind die Kanaladresse (0 7), in den oberen 5 Bits ist die Geräteadresse (1 9)	30h + Adresse Highbit gesetzt als Telegrammkennung Maschine → Gerät	B8h FFh 38h 7Fh
2 4	Blocklänge	Binäre Anzahl Bytes des gesamten Telegramms	3-stellig Pseudo-ASCII	3 x 30h 3Fh
5	Meldungsart	Soll-, Istdaten, kanaladressiert siehe Kap. 5.3.1	binär	41h
		Reset auslösen, Gerät macht Neuanlauf Meldung leer	binär	44h
		Alle Fehler löschen, gespeicherte Kanal- und Gerätefehler werden gelöscht Meldungen leer	binär	49h
		Parameter lesen siehe Kap. 5.3.3	binär	51h
		Parameter schreiben siehe Kap. 5.3.4	binär	61h
		Parameter schreiben und Istwerte lesen, siehe Kap. 5.3.5	binär	63h
		Parameter schreiben nicht möglich, Antwort wenn unzulässiger Wert oder EEPROM aktiv Meldung leer	binär	69h
		Meldung nicht verstanden, Antwort wenn Blocklänge, Meldungsart oder Prüfsumme falsch Meldung leer	binär	7Fh
6 n	Meldung	Sollwert, Istwert, Stellgröße Status Parameter-Index Parameter oder leer	4-stellig BCD binär 2-stellig Pseudo-ASCII 4-stellig Pseudo-ASCII	2Dh, 30h 39h 00h 7Fh 2 x 30h 3Fh 4 x 30h 3Fh
n+1, n+2	Prüfsumme	Lowbyte der Summe aller Zeichen	2-stellig Pseudo-ASCII	2 x 30h 3Fh

5.2.2 Formate

Pseudo-ASCII

Für die Übertragung der Blocklänge, der Prüfsumme und der Parameter wird eine hexadezimale Basis benutzt. Die hexadezimalen Ziffern werden in ASCII umgewandelt, wobei alle über 9 liegenden Ziffern (A ... F) als 3Ah ... 3Fh dargestellt werden. Negative Größen werden im 2-er-Komplement dargestellt. (z. B. −100 → 3Fh, 3Fh, 39h, 3Ch)

BCD

Temperatursoll- und -lstwerte und die Stellgrößen werden in der Meldung 41h im BCD-Format übertragen. Negativen Größen wird ein Minuszeichen vorangestellt. (z. B. −100 → 2Dh, 31h, 30h, 30h)

5.3 Meldungsinhalte

5.3.1 Soll- und Istwert, Status (41h)

Master-Sendung (Maschine → Gerät, Blocklänge 14)

Zeichen-Nr.	Inhalt	Bemerkung	Wert
6 9	Sollwert in 0,1 °C	-99.9 °C 999.9 °C	2Dh, 39h, 39h, 39h 39h, 39h, 39h
10	Reserve		60h
11	Steuerkommando	siehe Kap. 5.3.2	'B' 't' (42h 74h)
12	Reserve		20h

Slave-Antwort (Gerät → Maschine, Blocklänge 19)

Zeichen-Nr.	Inhalt	Bemerkung	Wert
6 9	Istwert in 0,1 °C	-99,9 °C 999,9 °C	2Dh, 39h, 39h, 39h 39h, 39h, 39h, 39h
10 13	Stellgröße in %	-100 100	2Dh, 31h, 30h, 30h 30h, 31h, 30h, 30h
14	Statuswort	Bit 0 Remote = Maschine Bit 1 Fühler = intern Bit 2 Unzulässiger Sollwert erhalten Bit 3 Reserve Bit 4 Sammelalarm (ohne Kanalalarme)1) Bit 5,6,7 Fester Code	0 1 0/1 0 0/1 1,1,0
15	Alarm 1	Lowbyte Kanalfehlerstatus (PI = 21h) 1)	
16	Alarm 2	Highbyte Kanalfehlerstatus (PI = 21h) 1)	
17	Rückmeldung	Steuerkommando siehe Kap. 5.3.2 1)	'B' 't' (42h 74h)

¹⁾ abweichend vom Originalprotokoll, bzw. erweitert

5.3.2 Steuerkommandos, Rückmeldungen

Im HB-THERM-Protokoll sind die Zustände (Rückmeldung) der Regler eindeutig und werden durch die Steuerkommandos eindeutig umgeschaltet.

Der R6000 kann mehrere Zustände gleichzeitig haben, deren Kombinationen sinnvoll oder notwendig sind (z. B. Regler ein + Anfahren + Selbstoptimierung).

Für die Heißkanalregelung werden fünf Zustände (Bits der Reglerfunktion, PI = 20h) kombiniert:

Regler ein, Adaption gestartet, Anfahren aktiviert, Absenkung (Sollwerttausch) und Boost.

Darüber hinaus wird zwischen "Regler aus" und "Handbetrieb" unterschieden.

Steuerkommando / Rückmeldung	p	m	r	0	t	b	R	0	T	В
Regler ein	_	_	Х	Х	Х	Х	Х	Х	Х	Х
Handbetrieb bei Regler aus	_	Х	?	?	?	?	?	?	?	?
Anfahren	?	?	_	_	_	_	Х	Х	Х	Х
Adaption	_	_	_	Х	_	_	_	Х	_	_
Absenken (Sollwerttausch)	?	?	_	_	Х	_	_	_	Х	_
Boost	?	?	_	_	_	х	_	_	_	х

- x gesetzt
- nicht gesetzt
- ? beliebig

Ist in der **Gerätesteuerung** (PI = 32h) das Bit 3 (Reglerfunktion nicht speichern) gesetzt, wird das Steuerkommando nicht dauerhaft gespeichert.

5.3.3 Parameter lesen (51h)

Im R6000 werden die Parameter eines Typs für alle 8 Kanäle (oder 20 I/Os oder 4 Gruppen ...) zusammen übertragen. D. h. die Übertragung ist nicht kanalspezifisch zusammengefasst, sondern gerätespezifisch. Dies spiegelt sich in der Verwendung der Parameterindizes wider.

In der Adresse werden deshalb die unteren 3 Bits (Kanaladresse) nicht berücksichtigt und das Gerät adressiert.

Master-Sendung (Maschine → Gerät, Blocklänge 9)

Zeichen-Nr.	Inhalt	Bemerkung	Wert
6 7	Parameterindex	siehe Kap. 8	30h, 30h 3Eh, 32h

Slave-Antwort (Gerät → Maschine, Blocklänge 13...89)

Zeichen-Nr.	Inhalt	Bemerkung	Wert
6 7	Parameterindex	siehe Kap. 8	30h, 30h 3Eh, 32h
8 7 + 4 x n	n Parameter	n mal 4-stellig Pseudo-ASCII	n-mal 30h, 30h, 30h, 30h 3Fh, 3Fh, 3Fh, 3Fh

5.3.4 Parameter schreiben (61h)

Adressierung und Inhalte siehe Kapitel 5.3.3 auf Seite 53

Master-Sendung (Maschine → Gerät, Blocklänge 13...89)

Zeichen-Nr.	Inhalt	Bemerkung	Wert
6 7	Parameterindex	siehe Kap. 8	30h, 30h 3Eh, 32h
8 7 + 4 x n	n Parameter	n mal 4-stellig Pseudo-ASCII	n-mal 30h, 30h, 30h, 30h 3Fh, 3Fh, 3Fh, 3Fh

Slave-Antwort (Gerät → Maschine, Blocklänge 7)

- Wenn die Parameter akzeptiert wurden, antwortet das Gerät mit 61h und leerer Meldung.
- Wenn ein Parameterwert unzulässig ist, oder ein Speicherzugriff momentan nicht möglich ist, antwortet das Gerät mit 69h und leerer Meldung.

5.3.5 Parameter schreiben und Istwerte lesen (63h)

Die Meldung der Master-Sendung ist identisch zur Meldungsart 61h (siehe oben).

Die Slave-Antwort entspricht der Meldungsart 61h, nur dass die Meldung nicht leer ist, sondern die Istwerte enthält:

Slave-Antwort (Gerät \rightarrow Maschine, Blocklänge 41)

Zeichen-Nr.	Inhalt	Bemerkung	Wert
6 7	Parameterindex	siehe Kap. 8	30h, 30h 3Eh, 32h
8 39	8 Istwerte	8 mal 4-stellig Pseudo-ASCII	8-mal 30h, 30h, 30h, 30h 3Fh, 3Fh, 3Fh, 3Fh

5.4 Beispiele

5.4.1 Beispiel für Soll- und Istwerte

Datenaustausch 1. Kanal von Gerät 1

Solldaten: Sollwert 95 °C Istdaten: Istwert 95 °C

Kommando regeln Stellgröße 23%

Störung keine

Rückmeldung regeln

Sendung Maschine:

B8h	Kanaladresse = B0h + 1 x 8 + 0 (Gerät 1, Kanal 0)
30h, 30h, 3Eh	Blocklänge = 14
41h	Kennung Sollwert, Kommando
30h, 39h, 35h, 30h	Sollwert 95,0 °C
60h	Reserve
72h	regeln
20h	Reserve
35h, 37h	Prüfsumme = (3)57h

Antwort Gerät:

38h	Kanaladresse = 30h + 1 x 8 + 0 (Gerät 1, Kanal 0)
30h, 31h, 33h	Blocklänge = 19
41h	Kennung Istwerte, Status
30h, 39h, 35h, 30h	Istwert 95,0 °C
30h, 30h, 32h, 33h	Stellgröße 23 %
62h	Status
00h, 00h	keine Kanalalarme
72h	regeln
37h, 34h	Prüfsumme = (3)74h

5.4.2 Beispiel für Parameter schreiben

Die oberen Grenzwerte 1 der acht Kanäle des R6000 mit der Geräteadresse 3 werden auf 10 $^{\circ}$ C gesetzt.

Sendung Maschine:

C8h (CFh)	Kanaladresse = B0h + 3×8 (+ 0 7), Gerät wird adressiert
30h, 32h, 39h	Blocklänge = 41
61h	Kennung = Parameter schreiben
30h, 31h	Parameterindex = 01h
30h, 30h, 36h, 34h,	Kanal 1: 0064h = 100 entspricht 10,0°
30h, 30h, 36h, 34h,	
30h, 30h, 36h, 34h	Kanal 8
37h, 35h (37h, 3Ch)	Prüfsumme = 875h 87Ch

Antwort Gerät:

48h (4Fh)	Kanaladresse = 30h + 3 x 8 (+ 0 7), Gerät wird adressiert
30h, 30h, 37h	Blocklänge = 7
61h	Kennung = Parameter schreiben, Auftrag ausgeführt
34h, 30h (34h, 37h)	Prüfsumme = 140h 147h

R6000-54 GMC-I Messtechnik GmbH

6 Profibus-DP-Schnittstelle, Protokoll nach EN 50170

6.1 Allgemeines

Der Schnittstellenanschluss ist in separater Installationsanleitung beschrieben.

6.1.1 Schnittstellendaten

Zur Kommunikation mit einem Leitrechner, einer SPS, usw. ist der R6000 mit einer seriellen Schnittstelle RS-485 nach EN 50170 (Profibus-DP) ausgerüstet. Baudraten bis 12 MBit/s werden unterstützt.

Die Einstellung der Teilnehmeradresse für den Profibus-Betrieb erfolgt über den DIP-Schalter an der Gehäusefront. Eine Änderung der Teilnehmeradresse wird erst nach Neueinschalten des Gerätes wirksam.

Die Adresseinstellung über Profibus (SetSlaveAdress) wird nicht unterstützt.

6.1.2 Kommunikationsprotokoll

Verwendet wird das Übertragungsprotokoll nach EN 50170 zur Kommunukation zwischen Feldleit-Ebene und Geräte-Ebene.

6.1.3 GSD-Datei GMC_059D.gsd

Die zur Konfiguration des Profibus-DP benötigte Datei "GSD Mehrkanalregler PROFIBUS-DP" kann von der Homepage von GMC-I Messtechnik GmbH (http://www.gossenmetrawatt.com) kostenlos geladen werden.

6.1.4 Datenaustausch

Für den nachfolgend beschriebenen Datenaustausch existieren für die Steuerung S7 von Siemens fertige Hantierungsbausteine, so dass der Programmieraufwand minimal ist, diese können von der Homepage von GMC-I Messtechnik GmbH (http://www.gossenmetrawatt.com) kostenlos geladen werden.

Prinzipieller Aufbau der Ausgangsdaten im Data Exchange Sendetelegramm (Profibus Master → R6000)

AdrOffset	Inhalt	Format	Inhalt
0	FF	8 Bit	Funktionsfeld
1	BL	8 Bit	Blocknummer
2, 3	CS	16 Bit	Checksum
4 11			Daten
12 13		8 Bit	Sollzustände binäre I/Os 1 16
14 27			unbenutzt

Prinzipieller Aufbau der Eingangsdaten im Data_Exchange Antworttelegramm (R6000 → Profibus Master)

AdrOffset	Inhalt	Format	Inhalt	
0	FF	8 Bit	Funktionsfeld	
1	BL	8 Bit	Blocknummer	
2, 3	CS	16 Bit	Checksum	
4 11			Daten	
12 13		8 Bit	Bit Istzustände binäre I/Os 1 16	
14 27			unbenutzt	

6.2 Austausch binärer I/O-Daten

- Der Austausch der binären I/Os erfolgt ständig, die Zustände werden alle 10 ms (interner Zyklus des R6000) übernommen bzw.
- Beim Reglermodul mit I/Os ist damit das Rücklesen der tatsächlichen I/O-Zustände möglich und das Steuern freier Ausgange.
- Beim Reglermodul ohne I/Os werden damit die binären Stellsignale zum Weiterleiten an die Stellglieder gelesen und das Steuern von Regelfunktionen ist möglich.

Steuerung der freien I/Os Profibus Master \rightarrow R6000

AdrOffset	Einheit	Format	Inhalt	
12	Bit	8 Bit	Sollzustand binäre I/Os	1 8
13	Bit	8 Bit	Sollzustand binäre I/Os	9 16

Die Sollzustände werden nur dann übernommen, wenn die Ausgänge als freie Ausgänge (PI = 37h: Wert = 40h) konfiguriert sind.

Lesen der I/O-Zustände R6000 → Profibus Master

AdrOffset	Einheit	Format	Inhalt	
12	Bit	8 Bit	Istzustand binäre I/Os 1 8	
13	Bit	8 Bit	Istzustand binäre I/Os 9 16	

Es werden die tatsächlichen I/O-Zustände übertragen.

Die binären I/Os können nur dann als freie Eingänge verwendet werden, wenn sie entsprechend konfiguriert sind (PI = 37h: Wert = 81h), andernfalls würde I/O-Fehler gemeldet.

6.3 Austausch von Messwerten, Parametern und Konfigurationen

Um die Vielzahl der Daten für die 8 Regelkanäle und das Reglermodul gezielt auszutauschen werden die ersten beiden Adressen (Funktionsfeld und Blocknummer) zur Steuerung der Übertragung benutzt.

Die Daten werden nur dann übernommen bzw. geliefert, wenn die Schreib- bzw. Leseaufforderung (Toggelbits) geschrieben wird.

Datenaustausch Profibus Master → R6000

AdrOffset	Inhalt	Format	Inhalt
0	FF	8 Bit	Funktionsfeld
1	BL	8 Bit	Blocknummer
2, 3	CS	16 Bit	Wort-Checksum über AdrOffset 0, 4 10
4 11			zu schreibende Daten

Datenaustausch R6000 → Profibus Master

AdrOffset	Inhalt	Format	Inhalt
0	FF	8 Bit	Funktionsfeld
1	BL	8 Bit	Blocknummer
2, 3	CS	16 Bit	Wort-Checksum über AdrOffset 0, 4 10
4 11			gelesene Daten

Allgemeines

- Die Größen werden per Blocknummer angewählt.
 - Pro Block sind 4 Größen eines Kanals (bzw. des Gerätes) zusammengefasst.
 - Die Größen sind (abgesehen von Ausnahmen) im 16-Bit-Format, 8-Bit-Größen sind passend erweitert.
- Beim Lesevorgang bietet der R6000 die neuesten zu lesenden Daten-Blöcke an.
- Das Rücklesen von zu schreibenden Daten geschieht wie beim Schreibvorgang, wobei im Funktionsfeld die Leseanforderung gesetzt ist (Bit 2 = 1).
- Mit Schreiben auf den Block FFh wird die Kommunikation initiiert. Geschrieben wird die Uhrzeit, welche Kanäle kommunizieren sollen und ein Befehlsbyte.
 - Der Regler sendet daraufhin die Parametersatz-ID und die Geräteausführung (Block FFh).
 - Beim Befehlsbyte = 1 folgen danach alle Parameter der Kanäle, die kommunizieren dürfen, damit die Datenbausteine die Einstellungen des Reglers erhalten.
- Das Schreiben und Lesen von Parametersätzen wird mit den Blöcken FEh und FDh gesteuert. Dabei wird die komplette Konfiguration und Parametrierung einer Baugruppe übertragen.

R6000–56 GMC-I Messtechnik GmbH

6.3.1 Funktionsfeld

Das Funktionsfeld steuert den Lese- und Schreibvorgang. Nur in dem Moment, in dem sich das Lese- oder Schreib-Toggelbit ändert, reagiert der R6000. Dies bedeutet, dass immer zuerst die Blocknummer und die Daten zu schreiben sind und als letztes das Funktionsfeld.

Funktionsfeld (Adr.-Offset 0)

Profibus Master → R6000

Bit	Funktion	Wert	Bedeutung
0, 1	FC Functionscode	0 1 2, 3	keine Funktion Datenaustausch reserviert
2	Anforderung	0/1	1 = Leseanforderung statt Schreibanforderung
3	_	0/1	nicht verwendet
4	Acknowledge	0/1	1 = zu lesende Daten akzeptiert
5	_	0/1	nicht verwendet
6	S-Toggel	0/1	Wenn sich der Zustand ändert, liegen neue zu schreibende Daten an.
7	L-Toggel-Quittung	0/1	Wenn gleicher Zustand wie im Peripherieeingang und Acknowledge-Bit gesetzt wurden die Lesedaten akzeptiert. Dies ist gleichzeitig die Aufforderung, dass der R6000 neue zu lesende Daten anlegt.

Funktionsfeld (Adr.-Offset 0)

R6000 → Profibus Master

Bit	Funktion	Wert	Bedeutung
0, 1	FC Functionscode	0 1 2, 3	keine Funktion Datenaustausch reserviert
2	Anforderung	0/1	Wert wie Profibus Master -> R6000
3	_	0/1	nicht verwendet
4	Acknowledge	0/1	1 = zu schreibende Daten akzeptiert 0 = zu schreibende Daten nicht akzeptiert, keine S-Toggel-Quittung
5	_	0/1	nicht verwendet
6	S-Toggel-Quittung	0/1	Wenn gleicher Zustand wie im Peripherieausgang, wurden die Daten vom R6000 übernommen.
7	L-Toggel	0/1	Wenn sich der Zustand ändert, liegen neue vom R6000 zu lesende Daten an.

6.3.2 Blocknummer

- Der Inhalt der zu schreibenden Blöcke kann vom Anwender selbst vorgegeben werden, in Form je einer Tabelle von 52 Parameterindizes für die Kanalblöcke und 44 für die Geräteblöcke. Der Parameterindex PI = FFh an erster Stelle eines Blocks definiert das
 Ende der Blöcke, an zweiter bis vierter Stelle ein Leerwort.
- Beim Schreiben auf Blöcken, deren Inhalt durch Parameterindizes definiert ist, werden die Parameter auf ihre Einstellgrenzen überwacht. Falls ein Parameter nicht akzeptiert wird, wird das Fehlerbit "Parameter unzulässig" gesetzt. Dieses Bit muss im Fehlerstatus quittiert werden.
- Der Inhalt der zu lesenden Blöcke und der Blöcke, die zur Steuerung des Ablaufs bestimmt sind (Block-Nr. FXh), ist fest vorgegeben.

6.3.3 Checksum

Zur Absicherung der Übertragung wird im Peripherieword mit Offset 2 die Wortchecksum (Exor-Verknüpfung) der Peripherieworte 0, 4, 6, 8 und 10 eingefügt. Ist die Checksum nicht korrekt, wird von der jeweils empfangenden Seite das Acknowledge-Bit gelöscht, ohne dass das Toggelbit geändert wird.

6.3.4 Format des Datenblocks

Die zu übertragenden Größen werden jeweils in einem Wort (16 Bit) übertragen. Die Anordnung hängt vom jeweiligen Parameterindex (PI) ab.

Format	Interpretation	Wertebereich	MSB
8 Bit	Bitfeld, positive Zahl	0 255	0
±7 Bit	Zahl	-128 127	vorzeichenerweitert
16 Bit	Bitfeld	(0 65535)	_
±15 Bit	Zahl	-32768 32767	_
BCD	2 BCD-Zahlen	2-mal 0 99	_

6.3.5 Vordefinierte Blöcke

Kanalblöcke

- Die oberen 4 Bits der Blocknummer sind die Kanalnummer.
- Die Blöcke X0 und X1 werden nur gelesen. Der Block X0 wird pro Kanal alle 100 ms aktualisiert. Der Block X1 wird nur aktualisiert, wenn sich der Inhalt ändert, bzw. beim Start der Kommunikation.
- Auf die mit "fix" gekennzeichneten Blockinhalte können keine anderen Größen gemappt werden.
- Der Block X4 wird nach Abschluss der Selbstoptimierung selbständig gesendet. Die Hantierungsbausteine sollten dies berücksichtigen, damit die ermittelten Werte nicht überschrieben werden.
- Gleiches gilt für den Block der den Heizstrom-Nennwert enthält (z. B. X7) nach Auslösen der automatischen Ermittlung der Heizstromnennwerte.

Block	Adresse	fix	PI	Wert
1X8X				nur lesen
X0	10	Χ	B1	Aktueller Istwert
	12		B7	Aktueller Stellgrad
	14	Χ	21	Fehlerstatus (Ist)
	16	Χ	24	Reglerstatus
X1	18	Χ	20	Reglerfunktion (Ist)
	20		В0	Aktueller Sollwert
	22	Χ	6C	Heizstrom-Istwert
	24		B6	Stetigstellgröße
				schreiben
X2	26	Χ	20	Reglerfunktion (Soll)
	28	Χ	00	Sollwert
	30	Χ	21	Fehlerstatus (Quittierung)
	32		03	Tauschsollwert
Х3	34		28	Handstellgrad
	36		27	Externer Istwert
	38		07	Maximaler Sollwert
	40		06	Minimaler Sollwert
X4	42	Χ	10	Proportionalband Heizen (Xpl)
<u> </u>	44	X	11	Proportionalband Kühlen (XpII)
	46	X	14	Strecken-Verzugszeit (Tu)
	48	X	15	Zykluszeit
X5	50	Λ	01	Erster oberer Grenzwert
λυ	52		02	Erster unterer Grenzwert
	54		04	Zweiter oberer Grenzwert
	56		05	Zweiter unterer Grenzwert
Х6	58		05 0E	Sollwertrampe aufwärts
Λυ	60		0F	Sollwertrampe abwärts
	62		12	Totzone
	64		1F	Schalthysterese
X7	66		1D	Maximaler Stellgrad
ΛI	68		1C	Minimaler Stellgrad
	70		18	Motorstellzeit
	70			Heizstrom-Nennwert
X8	74		60	Steller-Stellgrad
۸٥			16	-
	76		17	Anfahr-Stellgrad
	78		19	Störgrößen-Stellgrad
VO.	80		1E	Fühlerfehler-Stellgrad
Х9	82		08	Sollwertanhebung (Boost)
	84		09	Boost-Dauer
	86		OA	Anfahr-Sollwert
\/A	88		OB	Verweildauer beim Anfahren
XA	90		33	Fühlertyp
	92		00	Istwert-Korrektur
	94		OD	Istwert-Faktor
	96		25	Schwingungs-Sperre
XB	98		22	Reglerkonfiguration
	100		23	Erweiterte Reglerkonfiguration
	102		29	Kanalfehlermaske
	104		36	Grenzwertkonfiguration

R6000–58 GMC-I Messtechnik GmbH

Geräteblöcke

- Beim Remappen der Geräteblöcke ist zu beachten, dass Parameterindizes mit mehreren Worten immer ab dem Anfang eines Blokkes stehen und den Block fortlaufend füllen.
- Die Ausgangskonfiguration ist standardmäßig nicht bei den Blöcken enthalten.
- Die Zeit setzen erfolgt mit dem Block FFh.
- Die Leseblöcke 90 und 91 werden nur aktualisiert, wenn sich der Inhalt ändert, bzw. beim Start der Kommunikation.
- Auf die mit "fix" gekennzeichneten Blockinhalte können keine anderen Größen gemappt werden.

Block	Adresse	fix	PI	Wert	
				nur lesen	
90	10	Х	21	Geräte-Fehlerstatus (Ist)	
	12	Χ	21	I/O-Fehler	
	14	Χ	21	I/O-Fehler	
	16	Χ	21	I/O-Fehler	
91	18	Χ	26	Führungs-Istwert	Gruppe 0
	20	Χ	26		Gruppe 1
	22	Χ	6F	Heizspannungs-Istwert	
	24	Χ	В3	Vergleichsstellentemperatur	
				schreiben	
92	26	Χ	21	Geräte-Fehlerstatus (Quittun	g)
	28	Χ	32	Gerätesteuerung (nur Befehl	e)
	30	Χ	32	Gerätesteuerung (nur Einstel	lungen)
	32		FF	_	
93	34	Χ	3F	Parametersatz-ID in BCD	s, min
	36	Χ	3F		h, d
	38	Χ	3F		mon, y
	40	Χ	31/35	Gerätemerkmal / Firmwareve	ersion
94	42		30	Gerätekennung	
	44		35	Firmware-Version	
	46		92	Logger-Abtastzyklus	
	48		93	Logger-Steuerung	
95	50		64	Summenstrom-Wandlerverh	ältnis
	52		69	Sekundäre Heizspannung	
	54		67	Heizstrom-Abtastzyklus	
	56		3A	Leistungsbegrenzung	
96	58		2A	Sammelfehlermaske	A
	60		2A		В
	62		2A		С
	64		2A		D
97	66		2A	Sammelfehlermaske	Е
	68		2A		F
	70		2A		G
	72		2A		Н
98	74		26	Führungs-Istwert	Gruppe 0
	76		26		Gruppe 1
	78		FF	_	
	80		FF	_	
99	82		FF	_	
	84		FF	_	
	86		FF	_	
	88		FF	_	

Block	Adresse	fix	PI	Wert
				schreiben und lesen
9A	90	Х	_	Adresse
	92	Χ	_	Steuerkommandos
	94	Χ	_	Reserve
	96	Χ	— / 9A	— / Daten Logger
				nur lesen
9B	98	Х	2F/98	Anzahl Einträge
	100	Χ	2C/99	Zeitstempel s/min
	102	Χ	2C/99	Zeitstempel h/d
	104	Χ	2C/99	Zeitstempel mon/y
9C	106	Χ	2E/9A	Daten Alarmhistorie / Logger
	108	Χ	2E/9A	Daten Alarmhistorie / Logger
	110	Χ	2E/9A	Daten Alarmhistorie / Logger
	112	Χ	2E/9A	Daten Alarmhistorie / Logger
9D	114	Χ	2E/9A	Daten Alarmhistorie / Logger
	116	Χ	2E/9A	Daten Alarmhistorie / Logger
	118	Χ	2E/9A	Daten Alarmhistorie / Logger
	120	Χ	2E/9A	Daten Alarmhistorie / Logger
9E	122	Χ	2E/9A	Daten Alarmhistorie / Logger
	124	Χ	2E/9A	Daten Alarmhistorie / Logger
	126	Χ	2E/9A	Daten Alarmhistorie / Logger
	128	Χ	2E/9A	Daten Alarmhistorie / Logger
9F	130	Χ	— / 9A	— / Daten Logger
	132	Χ	— / 9A	— / Daten Logger
	134	Χ	— / 9A	— / Daten Logger
	136	Χ	— / 9A	— / Daten Logger

Die Blöcke 9Ah bis 9Fh dienen zur Übertragung größerer Datenmengen. Momentan zum Auslesen der Alarmhistorie (bis zu 3 kB) und des Datenloggers (bis zu 120 kB).

Die Auswahl der zu lesenden Daten erfolgt mit dem 1. Wort des Blocks 9Ah (vergleiche auch Kap. 2.9.1 und Kap. 2.9.3, Leseanfang).

3600	1 -1	zu lesender Loggereintrag folgender Loggereintrag	
4196	4097 4095	zu lesende Alarmhistorie folgender Eintrag	(100 1 +4096) (-1 +4096)

Die Steuerung des Lesevorgangs erfolgt mit den Bits 0 ... 3 des 2. Wortes des Blocks 9Ah.

Bit	Funktion	Profibus Master → R6000	R6000 → Profibus Master		
0	Leseanforderung	1 = Leseanforderung	0 = Leseanforderung bearbeitet		
1	Lesebestätigung	0 = Quittierung für Leseanforderung	1 = Angeforderte Daten gesendet		
2	Kein Eintrag	0 = Quittierung für Leseanforderung	1 = keine Daten zum Senden		
3	falsche Adresse	0 = Quittierung für Leseanforderung	1 = falsche Adresse		

R6000-60 GMC-I Messtechnik GmbH

Startblock

- Zum Initiieren der Kommunikation wird der Block FFh geschrieben.
 Die "aktuelle Zeit" (PI = 90h) kann dabei gesetzt werden.
- Das Bitmuster in der Kanalfreigabe (Byte 6) legt die Kanäle fest, die gelesen werden sollen.
 Ist kein Kanal freigegeben (Byte 6 = 0), so werden die Kanäle gelesen, die nicht als Reglertyp = "unbenutzt" konfiguriert sind.
- Der Leseblock liefert die Parametersatz-ID und das Gerätemerkmal zurück, damit der Austausch eines Regelmoduls erkannt wird.
- Beim Befehlscode = 1 (Byte 7) werden alle freigegebenen Parameterblöcke gelesen, damit die Datenbausteine die Einstellungen des Reglers erhalten können.

Block	Wort	fix	PI	Wert	
				nur lesen	
FF	0	Χ	3F	Parametersatz-ID in BCD	s, min
	1	Χ	3F		h, d
	2	Χ	3F		mon, y
	3	Χ	31 / 35	Gerätemerkmal / Firmwar	reversion
				nur schreiben	
FF	0	Χ	90	aktuelle Zeit in BCD	s, min
	1	Χ	90		h, d
	2	Χ	90		mon, y
	3	X			oe .ese-Blöcke werden gesendet Schreib-Blöcke werden gesendet

6.3.6 Übertragung von Parametersätzen

- Ein kompletter Parametersatz umfasst 768 (300h) Bytes.
 - Die ersten 640 (280h) Bytes beinhalten die komplette Konfiguration und Parametrierung einer Baugruppe, wobei die letzten 2 Bytes die CRC16-Absicherung ist.
 - Die folgenden 44 Bytes enthalten die definierten Geräteblöcke, die folgenden 52 Bytes enthalten die definierten Kanalblöcke. Die letzten 32 Bytes sind reserviert.
- Das Schreiben in den R6000 kann in beliebiger Reihenfolge erfolgen.
 - Aktiviert und in das baugruppeninterne EEPROM übernommen wird die geschriebene Konfiguration und Parametrierung (Bytes 0 ... 639) sobald das 639. Byte geschrieben wurde und die CRC16-Überprüfung in Ordnung war. Die enthaltenen Parameter werden nicht auf ihre Einstellgrenzen überprüft. Als Sicherheit dient die CRC16-Überprüfung, da damit sichergestellt ist, dass der Parametersatz aus einem Regler stammt oder aus dem Konfigurationstool.
- Die Definition der Geräte- und Kanalblöcke (Bytes 640 ... 767) wird mit dem Schreiben des letzten Bytes übernommen.
- Das Auslesen des Parametersatzes wird mit dem Schreiben auf den Block FDh angestoßen.
 - Um die aktuellen Einstellungen zu erhalten, muss ab Adresse 0 gelesen werden.
 - Der R6000 liefert daraufhin 128 Blöcke (768 Bytes) des aktiven Parametersatzes.

Block	Wort	fix	PI	Wert
				nur schreiben
FD	0	X	<u> </u>	Anfangsdatenadresse (normal = 0)
	1	X		nicht benutzt
	2	X		nicht benutzt
	3	X		nicht benutzt
				lesen und schreiben
FE	0	X		Datenadresse
	1	X		Parametersatzinhalt
	2	X		Parametersatzinhalt
	3	Χ		Parametersatzinhalt

7 CAN-Bus, CANopen-Protokoll

7.1 Allgemeines

Der Schnittstellenanschluss ist in der separaten Installationsanleitung beschrieben. Details zum Betrieb der CAN-Schnittstelle sind der CAN-/CANopen-Norm zu entnehmen.

7.1.1 Schnittstellendaten

Anschluss
 Anzuschließen sind nur die beiden Signalleitungen und der Ground. Die optionale externe positive Versorgung ist

nicht vorgesehen.

Baudrate: Die von CANopen festgelegten Baudraten von 10 kBit/s bis 1 MBit/s werden unterstützt. Diese können über die

Service-Schnittstelle eingestellt werden (PI = A1h)

Node-ID: Die Knoten-Adresse wird mit den Schaltern 1 bis 7 des DIP-Schalters "Bus Addr." an der Gehäusefront einge-

stellt.

7.1.2 Prinzipielle Funktion

Datenaustausch

 Gemäß CANopen geschieht der Datenaustausch mit SDOs (Service Daten Objekte) und PDOs (Prozess Daten Objekte). Die Beschreibung findet sich in den Kapiteln 7.2 und 7.3.

- Mit den SDOs kann der Busmaster auf alle Parameter, Konfigurationen und Daten der Busteilnehmer (Knoten) zugreifen. Die Kommunikation geschieht im Master-Slave-Prinzip, d. h. der Knoten antwortet auf jede Anforderung.
- Die PDOs dienen dem laufenden Datenaustausch unter der Busteilnehmern. Sie müssen nach einem Reset des R6000 vom Master mittels SDO konfiguriert werden und werden erst dann aktiv, wenn der R6000 in den "Operational Mode" gesetzt wird. Die Sendungen werden nicht beantwortet.

Netzwerkmanagement

CANopen legt eine Vielzahl von Objekten fest, um einen reibungslosen Netzwerkbetrieb zu unterstützen. Für Details sei auf die CANopen-Norm verwiesen, R6000-Spezifisches ist ab Kapitel 7.4 aufgeführt.

Telegrammaufbau

Der Telegrammaufbau wird von der Hardware vorgenommen. Hier wird nur der generelle Aufbau erwähnt:

- Als erstes wird das Arbitrierungsfeld gesendet. Darin ist die COB-ID (Nachrichten-Identifier, 11 Bit) enthalten.
 Je niedriger die COB-ID desto h\u00f6her die Priorit\u00e4t der Nachricht.
- Danach kommt ein Steuerfeld. Darin ist die Anzahl der übertragenen Datenbytes enthalten (LEN, 4 Bit). Die Anzahl kann zwischen 0
 und 8 liegen.
- Im anschließenden Datenfeld sind maximal 8 Datenbytes enthalten, die je nach Telegramm unterschiedliche Funktion haben.
- Zum Abschluss kommt das CRC- und Acknowledge-Feld. (In den weiteren Kapiteln nicht mehr erwähnt)

7.1.3 ESD - Datei

Die zur Projektierung notwendige ESD-Datei kann aus dem Internet unter der Adresse www.gossenmetrawatt.com geladen werden.

7.2 Service Daten Objekte (SDO)

Mit den SDOs kann der Busmaster jederzeit auf alle Parameter, Konfigurationen und Daten des R6000 zugreifen. Auch ein Zugriff auf die Daten, die mit den PDOs übertragen werden, ist möglich.

Telegrammaufbau

	Byte	Wert	Bedeutung			
COB-ID		600h + Node-ID	Anforderung vom Master			
		580h + Node-ID	wort vom Slave			
LEN		8	ner 8 Datenbyte			
Command	1		ut der Übertragung			
Index	2, 3		Auswahl des Parameters (siehe Objektverzeichnis Kapitel 7.7 auf Seite 67)			
Subindex	4	1 n 0	wenn Objekt mehr als einen Wert hat (z. B. Kanalnummer) wenn Objekt nur einen Wert hat bzw. wenn die Anzahl der Werte des Objekts gefragt wird			
Netto-Daten	5 8	1 4 Byte Daten 0	bei Schreiben vom Master bzw. Antwort auf Anfrage bei Anfrage vom Master bzw. Antwort auf Schreiben			

Beispiel Schreiben: Setzen des Sollwerts von 195,0 °C von Kanal 3 des R6000 mit der Busadresse 5

195,0 °C => 1950 = 079Eh Sollwert hat Index 2000h

	COB-ID	LEN	Com	Inc	dex	Subindex	Daten			
Master:	605h	8	2Bh	00h	20h	03h	9Eh	07h	00h	00h
R6000:	585h	8	60h	00h	20h	03h	00h	00h	00h	00h

R6000–62 GMC-I Messtechnik GmbH

Beispiel Lesen: Le

Lesen der Ausgangskonfiguration des 2. Stetigausgangs des R6000 mit der Busadresse 11

2. Stetigausgang = Ausgang Nr. 18 => Subindex 17 = 11h

Ausgangskonfiguration hat Index 2037h

	COB-ID	LEN	Com	Index		Subindex	Daten			
Master:	60Bh	8	40h	37h	20h	11h	00h	00h	00h	00h
R6000:	58Bh	8	47h	37h	20h	11h	32h	00h	00h	00h

Ausgangskonfiguration = 32h = Kühlen-Stellgröße von Kanal 4, dead zero

7.3 Prozess Daten Objekte (PDO)

Die PDOs dienen dem laufenden Datenaustausch zwischen den Busteilnehmern. Die PDOs werden gesendet bzw. angenommen, wenn der R6000 im "Operational Mode" ist.

Im Gegensatz zu den SDOs werden bei den PDOs alle 8 Byte für Nettodaten verwendet. Der Inhalt der PDOs ist mit einem PDO-Mapping festgelegt, das beim R6000 nicht geändert werden kann.

Der R6000 unterstützt 4 Sende-PDOs, mit denen z. B. die aktuellen Istwerte an den Master gesendet werden, und zusätzlich 4 Empfangs-PDOs, mit denen der R6000 z. B. neue Sollwerte erhalten kann.

7.3.1 Konfiguration des PDO

Die Konfiguration der PDOs geschieht mit SDOs. Dabei wird eingestellt, ob der PDO freigegeben ist und ob er synchron oder asynchron reagiert.

	Byte	Wert	Bedeutung			
COB-ID		600h + Node-ID 580h + Node-ID	Anforderung vom Master Antwort vom Slave			
LEN		8	immer 8 Datenbyte			
Command	1		Art der Übertragung			
		1400h 1401h 1402h 1403h	1. Empfangs PDO 2. Empfangs PDO 3. Empfangs PDO 4. Empfangs PDO			
		1800h 1801h 1802h 1803h	1. Sende PDO 2. Sende PDO 3. Sende PDO 4. Sende PDO			
Subindex	4	1 2	Festlegung COB-ID und Freigabe Festlegung synchron oder asynchron			
Daten	5 8	Konfiguration	siehe Tabelle			

Konfiguration:

Subindex		Bedeutung
1	00000000h + COB-ID 80000000h + COB-ID	COB-ID des PDO muss nicht dem Defaultwert entsprechen. Das höchstwerte Bit ist gesetzt, wenn der PDO gesperrt ist.
2	00h 01h F0h = n FFh	synchron, nicht zyklisch (d.h. nur bei Änderung des Inhalts) synchron, zyklische Übertragung nach jedem n-ten SYNC-Signal asynchron

7.3.2 Zeitverhalten der PDOs

- Die asynchronen Sende-PDOs werden immer dann (sofort) gesendet, wenn sich deren Inhalt ändert.
- Die synchronen Sende-PDOs werden erst nach Eintreffen eines SYNC gesendet (vergl. Kapitel 7.4 auf Seite 66).
- Der Inhalt der asynchronen Empfangs-PDOs wird sofort nach Empfang im R6000 aktiv.
- Der Inhalt der synchronen Empfangs-PDOs wird erst dann vom R6000 übernommen, wenn ein SYNC empfangen wird.

7.3.3 Telegrammaufbau des PDO

	Byte	Wert	Bedeutung
COB-ID		Default-Wert: 180h + Node-ID	1. Sende PDO
		480h + Node-ID	4. Sende PDO
		Default-Wert: 200h + Node-ID	1. Empfangs PDO
		500h + Node-ID	4. Empfangs PDO
LEN		8	immer 8 Datenbyte
Daten	1 8	Nutzdaten	Das "PDO-Mapping" ist fest, siehe Kapitel 7.3.4 und 7.3.5

7.3.4 Inhalt der Sende-PDOs

Das Format "Festpunkt" ist das Format "Int16", der Wert ist in 1/10 der physikalischen Einheit angegeben.

	Byte	Wert	Format	Bedeutung		
COB-ID		180h + Node-ID		1. Sende-PD0		
LEN		8				
Daten	1, 2		Festpunkt	Istwert des 1. Kanals	Index 2100h	
	3, 4		Festpunkt	Istwert des 2. Kanals		
	5, 6		Festpunkt	Istwert des 3. Kanals		
	7. 8		Festpunkt	Istwert des 4. Kanals		

	Byte	Wert	Format	Bedeutung	
COB-ID		280h + Node-ID		2. Sende-PD0	
LEN		8			
Daten	1, 2		Festpunkt	Istwert des 5. Kanals	Index 2100h
	3, 4		Festpunkt	Istwert des 6. Kanals	
	5, 6		Festpunkt	Istwert des 7. Kanals	
	7. 8		Festpunkt	Istwert des 8. Kanals	

Der 3. Sende-PDO ist abhängig vom Bit 1 der Gerätesteuerung.

Bei gesetztem Bit 1 der Gerätesteuerung "mit Führungs-PDO":

	Byte	Wert	Format	Bedeutung
COB-ID		380h + Node-ID		3. Sende-PD0
LEN		8		
Daten	1, 2		Festpunkt	Führungs-Istwert von 0. Gruppe Index 2026h
	3, 4		Festpunkt	Führungs-Istwert von 1. Gruppe
	5, 6		Festpunkt	Führungs-Istwert von 2. Gruppe
	7. 8		Festpunkt	Führungs-Istwert von 3. Gruppe

Bei gelöschtem Bit 1 der Gerätesteuerung:

	Byte	Wert	Format	Bedeutung		
COB-ID		380h + Node-ID		3. Sende-PD0		
LEN		8				
Daten	1		Int8	Stellgröße des 1. Kanals	Index 2101h	
	2		Int8	Stellgröße des 2. Kanals		
	3		Int8	Stellgröße des 3. Kanals		
	4		Int8	Stellgröße des 4. Kanals		
	5		Int8	Stellgröße des 5. Kanals		
	6		Int8	Stellgröße des 6. Kanals		
	7		Int8	Stellgröße des 7. Kanals		
	8		Int8	Stellgröße des 8. Kanals		

	Byte	Wert	Format	Bedeutung
COB-ID		480h + Node-ID		4. Sende-PD0
LEN		8		
Daten	1		Unsigned8	komprimierter Status des 1. Kanals Index 2121h
	2		Unsigned8	komprimierter Status des 2. Kanals
	3		Unsigned8	komprimierter Status des 3. Kanals
	4		Unsigned8	komprimierter Status des 4. Kanals
	5		Unsigned8	komprimierter Status des 5. Kanals
	6		Unsigned8	komprimierter Status des 6. Kanals
	7		Unsigned8	komprimierter Status des 7. Kanals
	8		Unsigned8	komprimierter Status des 8. Kanals

Eine direkte Abfrage des Kanalfehlers bzw. eine Quittierung einzelner Fehlerbits erfolgt über SDOs auf Index 2021, Subindex 1 bis 8 (vergl. auch Kapitel 8.4.3 auf Seite 72)

Der komprimierte Kanalstatus hat folgende Bitbelegung:

Bit-Nr.	Bedeutung				
0	Fühlerbruch oder Verpolung				
1	1. oder 2. oberer Grenzwert überschritten				
2	1. oder 2. unterer Grenzwert überschritten				
3	Heizstromüberwachungs-Fehler				
4	Heizkreis-Fehler				
5	Fehler bei der Adaption				
6	Regler ein				
7	Adaption läuft				

R6000-64 GMC-I Messtechnik GmbH

7.3.5 Inhalt der Empfangs-PDOs

Das Format "Festpunkt" ist das Format "Int16", der Wert ist in 1/10 der physikalischen Einheit angegeben. Im Unterschied zum Schreiben eines Sollwerts mit einem SDO werden die Sollwerte nicht in den Parameter-Speicher (EEPROM) übernommen. Wenn das Bit Tauschsollwert in der Reglerfunktion gesetzt ist, wird der empfangene Wert nicht als Tauschsollwert verwendet, sondern im RAM als (erster) Sollwert abgelegt.

	Byte	Wert	Format	Bedeutung
COB-ID		200h + Node-ID		1. Empfangs-PD0
LEN		8		
Daten	1, 2		Festpunkt	Sollwert des 1. Kanals Index 2000h
	3, 4		Festpunkt	Sollwert des 2. Kanals
	5, 6		Festpunkt	Sollwert des 3. Kanals
	7. 8		Festpunkt	Sollwert des 4. Kanals

	Byte	Wert	Format	Bedeutung	
COB-ID		300h + Node-ID		2. Empfangs-PD0	
LEN		8			
Daten	1, 2		Festpunkt	Sollwert des 5. Kanals	Index 2000h
	3, 4		Festpunkt	Sollwert des 6. Kanals	
	5, 6		Festpunkt	Sollwert des 7. Kanals	
	7. 8		Festpunkt	Sollwert des 8. Kanals	

	Byte	Wert	Format	Bedeutung
COB-ID		400h + Node-ID		3. Empfangs-PDO
LEN		8		
Daten	1		Unsigned8	Reglerfunktion des 1. Kanals Index 2020h
	2		Unsigned8	Reglerfunktion des 2. Kanals
	3		Unsigned8	Reglerfunktion des 3. Kanals
	4		Unsigned8	Reglerfunktion des 4. Kanals
	5		Unsigned8	Reglerfunktion des 5. Kanals
	6		Unsigned8	Reglerfunktion des 6. Kanals
	7		Unsigned8	Reglerfunktion des 7. Kanals
	8		Unsigned8	Reglerfunktion des 8. Kanals

Der 4. Empfangs-PDO ist abhängig vom Bit 1 der Gerätesteuerung. Bei gesetztem Bit 1 der Gerätesteuerung "mit Führungs-PDO":

	Byte	Wert	Format	Bedeutung
COB-ID		500h + Node-ID		4. Empfangs-PDO
LEN		8		
Daten	1, 2		Festpunkt	Führungs-Istwert von 0. Gruppe Index 2026h
	3, 4		Festpunkt	Führungs-Istwert von 1. Gruppe
	5, 6		Festpunkt	Führungs-Istwert von 2. Gruppe
	7. 8		Festpunkt	Führungs-Istwert von 3. Gruppe

Bei gelöschtem Bit 1 der Gerätesteuerung:

	Byte	Wert	Format	Bedeutung
COB-ID		500h + Node-ID		4. Empfangs-PDO
LEN		8		
Daten	1		Unsigned8	Maske für Reglerfunktion des 1. Kanals Index 2120h
	2		Unsigned8	Maske für Reglerfunktion des 2. Kanals
	3		Unsigned8	Maske für Reglerfunktion des 3. Kanals
	4		Unsigned8	Maske für Reglerfunktion des 4. Kanals
	5		Unsigned8	Maske für Reglerfunktion des 5. Kanals
	6		Unsigned8	Maske für Reglerfunktion des 6. Kanals
	7		Unsigned8	Maske für Reglerfunktion des 7. Kanals
	8		Unsigned8	Maske für Reglerfunktion des 8. Kanals

Geänderte Bits in der Reglerfunktion werden nur dann übernommen, wenn die entsprechenden Bits im Byte "Maske für Reglerfunktion" gesetzt sind. Geänderte Bits werden ins EEPROM gespeichert.

Falls der 4. Empfangs-PDO die Führungs-Istwerte enthält, sind in den Bytes "Maske für Reglerfunktion" alle Bits gesetzt.

Bitbelegung für die Reglerfunktion und die Maske (vergl. auch Kapitel 8.4.2 auf Seite 71)

Bit-Nr.	Bedeutung				
0	Tauschsollwert aktiv				
1	Anfahrschaltung				
2	Störgrößenaufschaltung				
3	Sollwertanhebung (Boost)				
4	Umschaltregler aktiv				
5	Fehler löschen				
6	Regler ein				
7	Adaption starten				

7.4 SYNC-Objekt

Synchrone PDOs werden vom R6000 nach einer SYNC-Nachricht ausgewertet bzw. gesendet. Der R6000 muss dazu im "Operational-Mode" sein und die PDOs als synchron konfiguriert sein. Die SYNC-Nachricht vom Master ist für alle Teilnehmer im Netz bestimmt und hat sehr hohe Priorität. Das Telegramm enthält keine Daten:

	Wert	Bedeutung
COB-ID	080h	SYNC
LEN	0	keine Daten

7.5 Emergency Objekt

Tritt beim R6000 ein "Gerätefehler" auf (vergl. Index 2021, Subindex 9), sendet der R6000 ein EMCY Telegramm. Wenn alle Fehler beseitigt sind, sendet der R6000 ein EMCY Error Reset Telegramm

	Byte	Wert	Bedeutung	
COB-ID		080h + Node-ID	EMCY	
LEN		8		
Emergency Error Code	1, 2	FFxxh 0000h	neuer Fehler aufgetreten ein Fehler behoben	
Error Register	3	21h 00h	Fehler (noch) vorhanden (Generic + Device specific Error) kein Fehler mehr vorhanden	
Daten	4 8	0	nicht benutzt	

Im Lowbyte des Emergency Error Codes ist der Gerätefehler auf ein Byte komprimiert eingefügt:

Bit-Nr.	Bedeutung
0	Analogteilfehler
1	Übersteuerung Heizstromüberwachung
2	Ungültige Merkmalskombination
3	Vergleichsstellenfehler
4	EEPROM-Fehler, Parameter-Fehler
5	Sammel-Ausgangsfehler
6	Mapping-Fehler
7	

Im Objekt 1003h kann die Fehler-Historie abgefragt werden. Im Subindex 0 ist die Anzahl der gespeicherten Fehler enthalten, ab Subindex 1 können die gespeicherten Emergency Error Codes gelesen werden, deren Lowbytes die komprimierten Gerätefehler enthalten.

Eine detailierte Abfrage des Gerätefehlers bzw. eine Quittierung einzelner Fehlerbits erfolgt über SDOs auf Index 2021, Subindex 9 (vergl. auch Kapitel 8.4.3 auf Seite 72)

7.6 NMT Objekt

Mit dem Network Management kontrolliert der Master die Slaves im CANopen-Netz. Der R6000 unterstützt die angegebenen Command Specifier (CS):

	Byte	Wert	Bedeutung
COB-ID		000h	NMT
LEN		2	
CS	1	01h 02h 80h 81h 82h	Enter Operational Mode Stop Remote Enter Pre Operational Mode Reset Knoten Reset Kommunikation
NODE-ID	2	00h 01h 7Fh	für alle nur für angegebenen Knoten

Die einzelnen Befehle betreffen das Verhalten des R6000 im CANopen-Netzwerk und haben keinen Einfluss auf die Reglerfunktionen. Ausnahme: CS = 81h führt einen Reset des R6000 durch. (Wie nach Unterbrechung der Hilfsspannung)

7.7 Objektverzeichnis

In diesem Kapitel wird nur auf den herstellerspezifischen Teil des Objektverzeichnisses (Index 2000h bis 5FFFh) eingegangen. Die Indizes der Objekte sind von den Parameterindizes abgeleitet (vergl. Kapitel 8 auf Seite 68). Die vollständige Beschreibung ist dort zu finden. Das in der Spalte Typ angegebene Format "Festpunkt" ist das Format "Int16", der Wert ist in 1/10 der physikalischen Einheit angegeben.

angegeben.	Objekt	Nomo	lyn	Attribut
(hexadezimal)	Ubjekt	Name Temperaturparameter	Іур	Attribut
2000	Array[8]	Sollwert	Festpunkt	RW
2000	Array[8]	Erster oberer Grenzwert	Festpunkt	RW
2002	Array[8]	Erster unterer Grenzwert	Festpunkt	RW
2003	Array[8]	Tauschsollwert	Festpunkt	RW
2003	Array[8]	Zweiter oberer Grenzwert	Festpunkt	RW
2005	Array[8]	Zweiter unterer Grenzwert	Festpunkt	RW
2006	Array[8]	Minimaler Sollwert	Festpunkt	RW
2007	Array[8]	Maximaler Sollwert	Festpunkt	RW
2008	Array[8]	Sollwertanhebung (Boost)	Festpunkt	RW
2009	Array[8]	Boost-Dauer	Festpunkt	RW
2009 200A	Array[8]	Anfahr-Sollwert	Festpunkt	RW
200A 200B	Array[8]	Verweildauer beim Anfahren	Festpunkt	RW
200C	Array[8]	Istwert-Korrektur	Festpunkt	RW
200D	Array[8]	Istwert-Faktor	Festpunkt	RW
200E	Array[8]	Sollwertrampe aufwärts	Festpunkt	RW
200E	Array[8]	Sollwertrampe abwärts	Festpunkt	RW
2001	Anayloj	Regelparameter	Tostpunkt	1100
2010	Array[8]	Proportionalband Heizen	Festpunkt	RW
2011	Array[8]	Proportionalband Kühlen	Festpunkt	RW
2012	Array[8]	Totzone	Festpunkt	RW
2012	Array[8]	Strecken-Verzugszeit	Festpunkt	RW
2015	Array[8]	Zykluszeit	Festpunkt	RW
2016	Array[8]	Steller-Stellgrad	Int8	RW
2016	Array[8]	Anfahr-Stellgrad	Int8	RW
2017	Array[8]	Motorstellzeit	Festpunkt	RW
2018	Array[8]	Störgrößen-Stellgrad	Int8	RW
2019 201C		Minimaler Stellgrad	Int8	RW
201C 201D	Array[8] Array[8]	Maximaler Stellgrad	Int8	RW
201E	Array[8]	Fühlerfehler-Stellgrad	Int8	RW
201F	Array[8]	Schalthysterese	Festpunkt	RW
0000	A [0]	Steueranweisungen		DW
2020	Array[8]	Reglerfunktion	Unsigned8	RW
2021	Array[12]	Fehlerstatus	Unsigned16	RW
2022	Array[8]	Reglerkonfiguration	Unsigned16	RW
2023	Array[8]	erweiterte Regelkonfiguration	Unsigned8	RW
2024	Array[9]	Reglerstatus, Meldewort	Unsigned16	RO
2025	Array[8]	Schwingungssperre	Int8	RW
2026	Array[4]	Führungs-Istwert	Festpunkt	RW
2027	Array[8]	externer Istwert	Festpunkt	RW
2028	Array[8]	Handstellgrad	Int8	RW
2029	Array[8]	Kanalfehlermaske	Unsigned16	RW
202A	Array[8]	Sammelfehlermaske	Unsigned16	RW
202D	Var	Leseanfang Alarmhistorie	Int16	RW
202E	Array[15]	Alarmhistorie	Unsigned16	R0
202F	Var	Anzahl Einträge Alarmhistorie	Int16	RO RO
		Gerätespezifikation		
2031	Var	Gerätemerkmal	Unsigned8	RO
2032	Var	Dimension / Gerätesteuerung	Unsigned8	RW
2033	Array[8]	Fühlertyp	Unsigned8	RW
2036	Array[8]	Grenzwertkonfiguration	Unsigned8	RW
2037	Array[20]	Ausgangskonfiguration	Unsigned8	RW
203A	Var	Leistungsbegrenzung	Unsigned8	RW
		Heizstromüberwachung		
2060	Array[8]	Heizstrom-Nennwert	Festpunkt	RW
2061	Array[8]	Heizstrom-Nennwert 2. Regler	Festpunkt	RW
2062	Array[8]	Heizstrom-Nennwert 3. Regler	Festpunkt	RW
2064	Var	Summenstrom-Wandlerverhältnis	Festpunkt	RW
2067	Var	Heizstrom-Abtastzyklus	Festpunkt	RW
2069	Var	Sekundär-Spannung Heizspannungs-Wandler	Festpunkt	RW
	A 103	Datenlogger		DW
2090	Array[3]	aktuelle Zeit	Unsigned16	RW
2092	Var	Logger-Abtastzyklus	Festpunkt	RW
2093	Var	Logger-Steuerung	Unsigned8	RW
2094	Var	Leseanfang Istabtastwerte	Int16	RW
2095	Var	Leseanfang Stellabtastwerte	Int16	RW
2096	Array[8]	Istabtastwerte	Festpunkt	RO
2097	Array[8]	Stellabtastwerte	Festpunkt	RO
2098	Var	Anzahl Abtastungen	Int16	RO
		Schnittstelle		
20A0	Var	RS-232- / RS485-Schnittstellen-Konfiguration	Unsigned8	RO
		Temporäre Werte		
20B0	Array[8]	Aktueller Sollwert	Festpunkt	RO
20E0	Array[2]	Zustand der binären I/O	Unsigned16	RW
20E1	Array[4]	Zustand der Stetigausgänge	Unsigned16	RW
2100	Array[8]	Aktueller Istwert	Festpunkt	RO
2101	Array[8]	Aktueller Stellgrad	Int8	RO
2102	Array[24]	Aktueller Heizstrom	Festpunkt	RO
2103	Var	Aktuelle Heizspannung	Festpunkt	RO
2120	Array[8]	Maske für Reglerfunktion	Unsigned8	RW
2121	Array[8]	komprimierter Kanalstatus	Unsigned8	RO
		_ · · ·		

8 Geräteparameter

8.1 Übersicht

Kanalspezifische Größen

Hauptgruppe	PI	Wert	Format	vK, bK, PN	Anzahl	Bemerkung
0	00	Temperaturparamete				
	00	Sollwert	± 15 Bit	1	8	
	01	Erster oberer Grenzwert	± 15 Bit	1	8	
	02	Erster unterer Grenzwert	± 15 Bit	1	8	
	03	Tauschsollwert	± 15 Bit		8	
	04	Zweiter oberer Grenzwert	± 15 Bit	1	8	
	05	Zweiter unterer Grenzwert	± 15 Bit		8	
	06	Minimaler Sollwert	± 15 Bit	1	8	
	07	Maximaler Sollwert	± 15 Bit		8	
	08	Sollwertanhebung (Boost)	± 15 Bit	1	8	
	09	Boost-Dauer	± 15 Bit	/	8	
	0A	Anfahr-Sollwert	± 15 Bit		8	
	0B	Verweildauer beim Anfahren	± 15 Bit	1	8	
	00	Istwert-Korrektur	± 15 Bit	V	8	
	OD	Istwert-Faktor	± 15 Bit	1	8	
	0E	Sollwertrampe aufwärts	± 15 Bit	V	8	
	0F	Sollwertrampe abwärts	± 15 Bit	√	8	
1	10	Regelparameter	145.09			
	10	Proportionalband Heizen (Xpl)	± 15 Bit	/	8	
	11	Proportionalband Kühlen (XpII)	± 15 Bit	1	8	
	12	Totzone	± 15 Bit	V	8	
	13	Verzugszeit der Kühlung (Tull)	± 15 Bit	/	8	
	14	Strecken-Verzugszeit (Tu)	± 15 Bit	/	8	
	15	Zykluszeit	± 15 Bit	/	8	
	16	Steller-Stellgrad	± 7 Bit	/	8	
	17	Anfahr-Stellgrad	± 7 Bit	✓	8	
	18	Motorstellzeit	± 15 Bit	/	8	
	19	Störgrößen-Stellgrad	± 7 Bit	✓	8	
	1C	Minimaler Stellgrad	± 7 Bit	/	8	
	1D	Maximaler Stellgrad	± 7 Bit	1	8	
	1E	Fühlerfehler-Stellgrad	± 7 Bit	1	8	
	1F	Schalthysterese	± 15 Bit	1	8	
2		Steueranweisungen				
	20	Reglerfunktion	8 Bit	✓	8	
	21	Fehlerstatus	16 Bit	/	12	kanalspezifisch sind Worte 1 8
	22	Reglerkonfiguration	16 Bit	/	8	
	23	erweiterte Reglerkonfiguration	8 Bit	1	8	
	24	Reglerstatus, Meldewort	16 Bit	1	9	nur lesen
	25	Schwingungs-Sperre	8 Bit	1	8	
	27	externer Istwert	± 15 Bit	1	8	
	28	Handstellgrad	± 7 Bit	/	8	
	29	Kanalfehlermaske	16 Bit	/	8	
3		Gerätespezifikationer				
	33	Fühlertyp	8 Bit	1	8	
	36	Grenzwertkonfiguration	8 Bit	1	8	
6		Heizstromüberwachur	g			
	60	Heizstrom-Nennwert	± 15 Bit	/	8	
	6C	Heizstrom-Istwert	± 15 Bit	1	8	nur lesen
В		Anzeigewerte	1			nicht über serielle Schnittstelle
	В0	Aktueller Sollwert	± 15 Bit	1	8	nur lesen
	B1	Aktueller Istwert	± 15 Bit	1	8	nur lesen
	B2	Aktuelle Regelabweichung	± 15 Bit	1	8	nur lesen
	B6	Stetigstellgröße	± 15 Bit	1	8	nur lesen
	B7	Aktueller Stellgrad	± 15 Bit	/	8	nur lesen
	B8	Aktueller Sollwert (ganze Grad)	± 15 Bit	/	8	nur lesen
	B9	Aktueller Istwert (ganze Grad)	± 15 Bit	7	8	nur lesen
	BA	Aktuelle Regelabweichung (ganze Grad)	± 15 Bit	/	8	nur lesen
	טה	/ intaono nogolabwolonang (ganzo alaa)	± 10 DIL	•		Hui 1000H

R6000-68 GMC-I Messtechnik GmbH

Gerätespezifische Größen

Hauptgruppe	PI	Wert	Format	vK, bK, PN	Anzahl	Bemerkung					
2	Steueranweisungen 21 Fehlerstatus 16 Rit 12 gerätespezifisch sind Worte 9 12										
	21	Fehlerstatus	16 Bit	✓	12	gerätespezifisch sind Worte 9 12					
	26	Führungs-Istwert	± 15 Bit	/	4						
	2A	Sammelfehlermaske	16 Bit	/	8						
3		Gerätespezifikationen									
	30	Gerätekennung	8 Bit		1	nur lesen					
	31	Gerätemerkmal	8 Bit		1	nur lesen					
	32	Gerätesteuerung	8 Bit		1						
	35	Firmware-Version	8 Bit	_	1	nur lesen					
	37	Ausgangskonfiguration I/O 1 16	8 Bit	✓	20						
		Stetigausgang 1 4									
	3A	Leistungsbegrenzung	± 7 Bit		1						
	3F	Parametersatz-ID	16 Bit	1	3						
6		Heizstromüberwachung		_							
	61	Heizstrom-Nennwert 2. Regler	± 15 Bit	✓_	8						
	62	Heizstrom-Nennwert 3. Regler	± 15 Bit	/	8						
	64	Summenstrom-Wandlerverhältnis	± 15 Bit	/	1						
	67	Heizstrom-Abtastzyklus	± 15 Bit	✓.	1						
	68	Überwachungsschwelle	± 15 Bit	/	1						
	69	Sekundär-Spannung Heizspannungs-Wandler	± 15 Bit	/	1						
	6D	Heizstrom-Istwert 2. Regler	± 15 Bit	1	8	nur lesen					
	6E	Heizstrom-Istwert 3. Regler	± 15 Bit	✓.	8	nur lesen					
	6F	Heizspannungs-Istwert	± 15 Bit	1	1	nur lesen					
Α		Schnittstellen				nicht über Profibus					
	A0	Schnittstellenkonfiguration	8 Bit		1						
	A1	CAN-Baudrate	8 Bit		1	nicht bei CANopen					
В		Anzeigewerte									
	В3	Vergleichsstellentemperatur	± 15 Bit	/	1	nur lesen					

Spezialfunktionen

Hauptgruppe	PI	Wert	Format	vK, bK, PN	Anzahl	Bemerkung
2		Steueranwei	_			
	2C	Alarmhistorie, Zeitstempel	16 Bit		3	nur lesen, nicht über serielle Schnittstelle
	2D	Leseanfang Alarmhistorie	± 15 Bit		1	
	2E	Alarmhistorie	16 Bit	1	15/12	nur lesen
	2F	Anzahl Einträge Alarmhistorie	± 15 Bit		1	nur lesen
9		Datenlog	ger			
	90	aktuelle Zeit	16 Bit	/	3	keine Echtzeituhr
	92	Logger-Abtastzyklus	± 15 Bit		1	
	93	Logger-Steuerung	8 Bit		1	
	94	Leseanfang Istabtastwerte	± 15 Bit		1	
	95	Leseanfang Stellabtastwerte	± 15 Bit		1	
	96	Istabtastwerte	± 15 Bit	1	(1 15) x 8	nur lesen
	97	Stellabtastwerte	± 15 Bit	1	(1 15) x 8	nur lesen
	98	Anzahl Abtastungen	± 15 Bit		1	nur lesen
	99	Zeitpunkt letzte Abtastung	16 Bit	1	3	keine Echtzeituhr
E		Steuerfunk	tionen			
	E0	Zustand binäre I/O	16 Bit	/	2	
	E1	Zustand Stetigausgänge	16 Bit	1	4	
	E2	Meldewert	16 Bit	1	1	

Alle Einstellparameter und Daten sind nach funktioneller Zusammengehörigkeit in Parametergruppen einsortiert. Zusammen mit den Zyklusdaten und Ereignisdaten ist damit die komplette Bedienung des Reglers über die Busschnittstelle möglich.

Bei der Profibus-DP-Schnittstelle werden immer alle Parameter eines Parameterindex übertragen, bei den anderen Schnittstellen können auch Parameter einzelner Kanäle ausgewählt werden.

8.2 Hauptgruppe 0: Temperaturparameter

8.2.1 Tabelle der Parameterindizes

PI	Parameterbezeichnung	Einheit	Format	Anzahl	Einstellbereich	Bemerkung
00h	Sollwert	0,1°	± 15 Bit	8	minimaler maximaler Sollwert	
					0 ° = off, -MbU +MbU *)	Bei Grenzwert relativ
01h	Erster oberer Grenzwert	0,1°	\pm 15 Bit	8	0 ° = off, -MbU +MbU	Bei GW absolut und Differenzregler
					0 °C / 32 °F = off, MbA MbE	Bei GW absolut und Absolutwertregler
02h	Erster unterer Grenzwert	0,1°	± 15 Bit	8	Wie PI = 01h	Wie PI = 01h
03h	Tauschsollwert	0,1°	± 15 Bit	8	Wie PI = 00h	Wie PI = 00h
04h	Zweiter oberer Grenzwert	0,1°	± 15 Bit	8	Wie PI = 01h	Wie PI = 01h
05h	Zweiter unterer Grenzwert	0,1°	± 15 Bit	8	Wie PI = 01h	Wie PI = 01h
06h	Minimaler Sollwert	0,1°	± 15 Bit	8	MbA maximaler Sollwert *)	Bei Absolutwertregler
UOII	Willimaler Sollwert	0,1	I IO DIL	0	-MbU maximaler Sollwert	Bei Differenzregler
07h	Maximaler Sollwert	0,1°	± 15 Bit	8	Minimaler Sollwert MbE *)	Bei Absolutwertregler
0/11	Maximaler Sollwert	0,1	I IO DIL	0	Minimaler Sollwert MbU	Bei Differenzregler
08h	Sollwertanhebung (Boost)	0,1°	± 15 Bit	8	−MbU +MbU	
09h	Boost-Dauer	0,1 s	± 15 Bit	8	0,0 3000,0 s	
0Ah	Anfahr-Sollwert	0,1°	± 15 Bit	8	Wie PI = 00h	Wie PI = 00h
0Bh	Verweildauer beim Anfahren	0,1 s	± 15 Bit	8	0 30000	
0Ch	Istwert-Korrektur	0,1°		8	-MbU +MbU *)	
0Dh	Istwert-Faktor	‰ / 0,1°	± 15 Bit	8	10,0 1800,0 ‰ / °C	
0Eh	Sollwertrampe aufwärts	0,1° / min	± 15 Bit	8	0 = off, 1 MbU *)	
0Fh	Sollwertrampe abwärts	0,1° / min	± 15 Bit	8	0 = off, 1 MbU *)	

^{*)} MbA = Messbereichs-Anfang, MbE = Messbereichs-Ende, MbU = Messbereichs-Umfang

8.2.2 Einheit und Einstellbereich

Einheiten und Einstellbereiche bei Temperaturparametern sind abhängig von

- der konfigurierten **Dimension** für die Regelgröße (PI = 32h)
- dem konfigurierten **Fühlertyp** (PI = 33h)

Ausführung Temperaturfühler

Parameter Fühlertyp		Mess	anfang	Messende		Verpolung / Kurzschluss		Fühlerbruch	
Wert	Тур	°C	°F	°C	°F	°C	°F	°C	°F
0	J	0	32	900	1652	-20	-4	942,3	1728,1
1	L	0	32	900	1652	-20	-4	900	1652
2	K	0	32	1300	2372	-20	-4	1366,7	2492,1
3	В	0	32	1800	3272	-20	-4	1802,3	3276,1
4	S	0	32	1750	3182	-20	-4	1768,1	3214,6
5	R	0	32	1750	3182	-20	-4	1768,1	3214,6
6	N	0	32	1300	2372	-20	-4	1300	2372
7	Е	0	32	700	1292	-20	-4	715,3	1319,5
8	T	0	32	400	752	-20	-4	400	752
9	U	0	32	600	1112	-20	-4	600	1112
10	Linear 1)	0	mV	50) mV —5 mV			mV	
11	Pt100	-200	-328	600	1112	-220	-364	700 ²⁾	1292 ²⁾
12	Ni100	-50	-58	250	482	-60	-76	250	482
13	Ni120	-50	-58	250	482	-60	-76	250	482
14	_	_	_	_	_	_	_	_	_
15	Widerstand	0	Ω	33	0 Ω	0	Ω	339	,1 Ω
16	С	0	32	2300	3276,7	-20	-4	2320	3276,7
17	K	-100	-148	1250	2282	-120	-184	1269,7	3217,5

Ausführung 20 mA

Paramete	r Fühlertyp	Messi	pereich
Wert	Тур	Min	Max
0, 2	0 20 mA	−2 mA	22 mA
1, 3	4 20 mA	2,4 mA	21,6 mA
4 ³⁾	0 20 mA	−2 mA	22 mA
5 ³⁾	4 20 mA	2,4 mA	21,6 mA

Bei den Sollwertrampen sind die Einheiten abhängig von der Dimension °C / min bzw. °F / min.

Als Temperatur skalierbar, Kapitel 2.3.9 auf Seite 13 beachten!
 Je nach Leitungswiderstand.

8.3 Hauptgruppe 1: Regelparameter

8.3.1 Tabelle der Parameterindizes

PI	Parameterbezeichnung	Einheit	Format	Anzahl	Einstellbereich	Bemerkung
10h	Proportionalband Heizen	0,1°	± 15 Bit	8	0 MbU *)	
11h	Proportionalband Kühlen	0,1°	± 15 Bit	8	0 MbU *)	
12h	Totzone	0,1°	± 15 Bit	8	0 MbU *)	
13h	Verzugszeit der Kühlung	0,1 s	± 15 Bit	8	0 30000	
14h	Strecken-Verzugszeit	0,1 s	± 15 Bit	8	0 30000	
15h	Zykluszeit	0,1 s	± 15 Bit	8	1 3000	
16h	Steller-Stellgrad	%	± 7 Bit	8	Min max. Stellgrad	
17h	Anfahr-Stellgrad	%	± 7 Bit	8	Min max. Stellgrad	
18h	Motorstellzeit	0,1 s	± 15 Bit	8	10 6000	
19h	Störgrößen-Stellgrad	%	± 7 Bit	8	Min max. Stellgrad	
1Ch	Minimaler Stellgrad	%	± 7 Bit	8	-100 0	
1Dh	Maximaler Stellgrad	%	± 7 Bit	8	0 +100	
1Eh	Fühlerfehler-Stellgrad	%	± 7 Bit	8	Min max. Stellgrad	
1Fh	Schalthysterese	0,1°	± 15 Bit	8	0 MbU *)	

^{*)} MbU = Messbereichs-Umfang

8.4 Hauptgruppe 2: Steueranweisungen

8.4.1 Tabelle der Parameterindizes

PI	Parameterbezeichnung	Einheit	Format	Anzahl	Einstellbereich	Bemerkung
20h	Reglerfunktion	Bit	8 Bit	8	Siehe Kapitel 8.4.2 auf Seite 71	
21h	Kanalfehlerstatus Gerätefehlerstatus Ausgangsfehler Kanalfehlerstatus gespeichert Gerätefehlerstatus gespeichert Ausgangsfehler gespeichert	Bit	16 Bit 16 Bit 8 Bit 16 Bit 16 Bit 8 Bit	8 1 6 8 1 6	Siehe Kapitel 8.4.3 auf Seite 72	Siehe Ereignisdaten
22h	Reglerkonfiguration	Bit	16 Bit	8	Siehe Kapitel 8.4.4 auf Seite 73	
23h	erweiterte Reglerkonfiguration	Bit	8 Bit	8	Siehe Kapitel 8.4.5 auf Seite 73	
24h	Reglerstatus, Meldewort	Bit	16 Bit	9	Siehe Kapitel 8.4.6 auf Seite 73	Nur lesen
25h	Schwingungs-Sperre	0,1 s	8 Bit	8	0,0 = aus, 0,3 25,0 s	
26h	Führungs-Istwert	0,1°	± 15 Bit	4	Siehe Kapitel 2.6.3 auf Seite 18	
27h	externer Istwert	0,1°	± 15 Bit	8	Siehe Kapitel 2.3.2 auf Seite 10	
28h	Handstellgrad	%	± 7 Bit	8	Min max. Stellgrad	Nur bei Handbetrieb
29h	Kanalfehlermaske	Bit	16 Bit	8	Siehe Kapitel 8.4.7 auf Seite 74	
2Ah	Sammelfehlermaske	Bit	16 Bit	8	Siehe Kapitel 8.4.8 auf Seite 74	
2Ch	Alarmhistorie, Zeitstempel	_	16 Bit	3	Siehe Kapitel 8.4.9 auf Seite 74	1) Nur lesen, nicht über Service-Schnittstelle
2Dh	Leseanfang Alarmhistorie	_	± 15 Bit	1	1 100	1)
2Eh	Alarmhistorie				Siehe Kapitel 8.4.9 auf Seite 74	1) Nur lesen
	Zeitstempel, nur über Service-Schnittstelle Kanalfehlerstatus Gerätefehlerstatus Ausgangsfehler	_	16 Bit 16 Bit 16 Bit 8 Bit	3 8 1 6		
2Fh	Anzahl Einträge Alarmhistorie	-	± 15 Bit	1	1 100	1) Nur lesen

¹⁾ Ausführliche Beschreibung siehe Kapitel 2.9.3 auf Seite 29

8.4.2 Reglerfunktion

PI = 20h bzw. Funktionswahl bei Steuerung über Binäreingang

Bit-Nummer	Bedeutung	Bemerkung
0	Tauschsollwert aktiv	
1	Anfahrschaltung	
2	Störgrößenaufschaltung	1)
3	vorübergehende Sollwertanhebung (Boost)	1)
4	Umschaltregler aktiv	1)
5	Fehler löschen	1)
6	Regler ein	
7	Adaption starten	siehe Kap. Kap. 2.7.1

¹⁾ Gerätereset löscht Bit

8.4.3 Fehlerstatus

PI = 21h

Die Belegung der Daten ist identisch zur Belegung der Ereignisdaten.

Die Angabe "von Kanal bis Kanal" bezieht sich auf 16-Bit-Worte, d.h.

Kanal 1 ... 8 \triangleq Kanalfehlerstatus 1 ... 8 Kanal 9 \triangleq Gerätefehlerstatus Kanal 10 ... 12 \triangleq Ausgangsfehler

Manche Fehler müssen quittiert werden (vergl. Tabellen):

Dies geschieht dadurch, dass man die entsprechenden Fehlerbits auf 0 setzt. Die übergebenen Fehlerstatusworte (Regelkreis, Gerät) werden mit den im Regler vorhandenen über die AND-Funktion bitweise verknüpft, so dass im Fehlerstatuswort einzelne Bits gelöscht werden können, wenn Fehler der Reihe nach beseitigt werden. Ebenso werden Fehler, die während des Telegrammsendens auftreten nicht gelöscht.

Damit nicht speicherbare Fehlermeldungen nicht verloren gehen, werden alle Fehlerbits der 12 Fehlerworte gespeichert und nie gelöscht. Diese Worte sind durch die Angabe "von Kanal 13 bis Kanal 24" lesbar und durch Beschreiben mit Null löschbar.

Bit-Belegung Kanalfehlerstatus

Bit-Nummer	Bedeutung	Bemerkung
0	Fühlerbruch	
1	Verpolung	
2	Zweiter oberer Grenzwert überschritten	1) 3)
3	Erster oberer Grenzwert überschritten	1) 3)
4	Erster unterer Grenzwert unterschritten	1) 3)
5	Zweiter unterer Grenzwert unterschritten	1) 3)
6	Parameter unzulässig	2)
7	Heizstrom nicht aus bei abgeschaltetem Stellsignal	
8	Heizstrom zu klein bei aktivem Stellsignal	
9	Heizkreis-Fehler	2) 3)
10	Fehler beim Start der Adaption	2) 3)
11	Fehler bei Adaption und Abbruch	2) 3)
12	Heizstrom zu groß bei aktivem Stellsignal	
13	Vergleichsstellenfehler	falls Thermoelement aktiv

¹⁾ muss bei Alarmspeicherung quittiert werden

Bit-Belegung Gerätefehlerstatus

Bit-Nummer	Bedeutung	Bemerkung
0	Analogteilfehler	Error-LED leuchtet
1	Übersteuerung Heizstrom 1	
2	Übersteuerung Heizstrom 2	
3	Übersteuerung Heizstrom 3	
4	Übersteuerung Heizspannung	
5	_	
6	Vergleichsstellen-Fehler	
7	EEPROM-Fehler	2) / Error-LED leuchtet
8	Sammel-Ausgangsfehler	Error-LED leuchtet
9	Mapping-Fehler	2)
10	Parameter-Fehler	2)

²⁾ muss quittiert werden

Bit-Belegung Ausgangsfehler 1 ... 3

Bits sind gesetzt, wenn der Ausgang kurzgeschlossen, d. h. wenn der Ausgang aktiv ist, aber kein Signal an der Klemme ansteht.

Ausgangsfehler 1	
Bit-Nummer	Ausgang
0 7	1 8

Ausgangsfehler 2	
Bit-Nummer	Ausgang
0 7	9 16

Ausgangsfehler 3		
Bit-Nummer	Ausgang	
0 3	17 20	
4 7	_	

Bit-Belegung Ausgangsfehler 4 ... 6

Bits sind gesetzt, wenn der Ausgang inaktiv ist, aber ein Signal an der Klemme ansteht.

Ausgangsfehler 4		
Bit-Nummer	Ausgang	
0 7	1 8	

Ausgangsfehler 5	
Bit-Nummer	Ausgang
0 7	9 16

Ausgangsfehler 6		
Bit-Nummer	Ausgang	
0 3	17 20	
4 7	_	

R6000-72 GMC-I Messtechnik GmbH

²⁾ muss quittiert werden

³⁾ kann über Binäreingang quittiert werden

8.4.4 Reglerkonfiguration

PI = 22h

Bit-Nummer	Wert	Bedeutung		Bemerkung
0 2		Reglertyp		
	0 1 2 3 4, 5 6 7	Kanal unbenutzt Messen Steller Grenzsignalgeber PDPI-Regler Proportionalglied Reserviert		
3 5		Reglerart		
	0 1 2 3 4 5 6 7	Festwertregler Differenzregler Führungsregler Folgeregler Umschaltregler Verhältnisregler Reserviert		
6 8	0 7	Partnerkanal		Für Differenz-, Folge- und Umschaltregler
9, 10		Gruppe		
	0 1 3	Keine Gruppe Gruppennummer		
11	0/1	Istwertführung	aus / ein	
12	0/1	Heißkanal	aus / ein	
13	0/1	Wasserkühlung	aus / ein	
14	0/1	adaptive Messwertkorrektur	aus / ein	
15	0/1	Hand statt Aus	aus / ein	

8.4.5 erweiterte Reglerkonfiguration

PI = 23h

Bit-Nummer	Wert	Bedeutung	Bemerkung	
0	0/1	interner / externer Istwert		
1	0/1	Stellausgang normal / speziell für Schütze		
2	0/1	Hand statt Boost aus / ein	vgl. Kap. 2.5.3	
3	0/1	PDPI- / PI-Regler		
4	0/1	– / pH-Regelung		
5	0/1	normal / kein Kühlen bei Tauschsollwert		
6	0/1	extra Vorhalt beim Kühlen vgl. Kap. 2.2.3		
7	0/1	Induktionsheizung		

8.4.6 Reglerstatus, Meldewort

PI = 24h

Bit-Nummer	Wert	Bedeutung	Bemerkung
0 3	0, 1 15	Optimierungsphase 0: Keine Optimierung	
4	0/1	- / Rampe aufwärts	
5	0/1	- / Rampe abwärts	
6	0/1	- / Anfahrstellgrad akti	
7	0/1	- / Verweildauer aktiv	
8	0/1	Istwertführung inaktiv/aktiv	Reglerstatus (Kanal 1 8)
9	0/1	1: langsamster Kanal der Gruppe bei Istwertführung	
10	0/1	Boost inaktiv / aktiv	
11	0	nicht verwendet	
12 14	0 7	Mapping-Adresse	
15	0/1	Mapping fertig	
0	0/1		
 7	 0/1	Zustand der Meldeeingänge	Meldewort (Kanal 9)
8 15	0	mit PI = E2h beschreibbar	

GMC-I Messtechnik GmbH R6000–73

8.4.7 Kanalfehlermaske

PI = 29h

Bit-Nummer	Bedeutung
0	Fühlerbruch
1	Verpolung
2	Zweiter oberer Grenzwert überschritten
3	Erster oberer Grenzwert überschritten
4	Erster unterer Grenzwert unterschritten
5	Zweiter unterer Grenzwert unterschritten
6	Parameter unzulässig
7	Heizstrom nicht aus bei abgeschaltetem Stellsignal
8	Heizstrom zu klein bei aktivem Stellsignal
9	Heizkreis-Fehler
10	Fehler beim Start der Adaption
11	Fehler bei Adaption und Abbruch
12	Heizstrom zu groß
13	Vergleichsstellen-Fehler
14, 15	_

8.4.8 Sammelfehlermaske

PI = 2Ah

Bit-Nummer	Bedeutung
0	Fühlerbruch
1	Verpolung
2	Zweiter oberer Grenzwert überschritten
3	Erster oberer Grenzwert überschritten
4	Erster unterer Grenzwert unterschritten
5	Zweiter unterer Grenzwert unterschritten
6	Parameter unzulässig
7	Heizstromüberwachungs-Fehler
8	Heizkreis-Fehler
9	Fehler bei der Adaption
10	Analogteilfehler
11	Übersteuerung Heizstromüberwachung
12	_
13	Vergleichsstellen-Fehler
14	EEPROM-Fehler, Parameter-Fehler
15	Sammel-Ausgangsfehler, 24 V-Fehler

8.4.9 Alarmhistorie

PI = 2Eh

Die ersten drei Worte enthalten den Zeitstempel (keine Echtzeit !), bei dem der Fehlerstatus sich geändert hat, die Belegung der letzten 12 Worte ist identisch zur Belegung des Fehlerstatus (PI = 21h).

Die Angabe "von Kanal bis Kanal" bezieht sich auf 16-Bit-Worte, d. h.

Kanal 1 ... 3 Zeitstempel

Kanal 4 ... 11 Kanalfehlerstatus 1 ... 8 Kanal 12 Gerätefehlerstatus Kanal 13 ... 15 Ausgangsfehler

Da bei Profibus nur 12 Worte übertragen werden, ist der Zeitstempel mit PI = 2Ch lesbar, mit PI = 2Eh nur der Fehlerstatus (wie bei PI = 21h).

Format des Zeitstempels bei PI = 2Eh/2Ch bzw. der aktuellen Zeit bei PI = 90h:

Wort / Kanal	Zeichen	Bedeutung	Wertebereich	Bemerkung
1	Lowbyte Highbyte	Sekunde Minute	0 59 0 59	
2	Lowbyte Highbyte	Stunde Tag	0 23 1 31	
3	Lowbyte Highbyte	Monat Jahr	1 12 0 99	

8.5 Hauptgruppe 3: Gerätespezifikation

8.5.1 Tabelle der Parameterindizes

PI	Parameterbezeichnung	Einheit	Format	Anzahl	Einstellbereich	Bemerkung
30h	Gerätekennung	Bit	8 Bit	1	60h	Nur lesen
31h	Gerätebestückung	Bit	8 Bit	1	Siehe Kapitel 8.5.2 auf Seite 75	Nur lesen
32h	Gerätesteuerung	Bit	8 Bit	1	Siehe Kapitel 8.5.3 auf Seite 75	
33h	Fühlertyp	Bit	8 Bit	8	Siehe Kapitel 8.2.2 auf Seite 70	
35h	Firmware-Version	Bit	8 Bit	1	(z. B. 57h = V5.7)	Nur lesen
36h	Grenzwertkonfiguration	Bit	8 Bit	8	Siehe Kapitel 8.5.4 auf Seite 75	
37h	Ausgangskonfiguration I/O 1 16 Stetigausgang 1 4	Bit	8 Bit	20	Siehe Kapitel 8.5.5 auf Seite 76	
3Ah	Leistungsbegrenzung	%	± 7 Bit	1	0 = aus, 12 100%	vergl. Kap. 2.2.6
3Fh	Parametersatz-ID	Bit	16 Bit	3	Siehe Kapitel 8.5.6 auf Seite 76	

8.5.2 Gerätebestückung

PI = 31h

Bit-Nummer	Wert		Bedeutung	Bemerkung
0	0	Ausführung	Serienausführung OEM-Version Hardware (20mA Eingänge)	Merkmal B1 Merkmal B2
	ı		, , ,	
1, 2	0	Protokoll	EN 60870	Merkmal F1, F2, F4
	1	RS-232/RS-485	Modbus	Merkmal F3, F6
	2		HB-Therm	Merkmal F7
	3		DIN 19244 wie R7000	Merkmal F8
3, 4	0	Busschnittstelle	nur RS-485	Merkmal F3, F4, F7, F8
	1		CAN	Merkmal F1
	2		Profibus-DP	Merkmal F2, F6
5	0		8 Kanäle	
	1		4 Kanäle	
6, 7	0	A-Merkmale	16 binäre Ein- / Ausgänge	Merkmal A0
	1		20 binäre Ein- / Ausgänge	Merkmal A1
	2		16 binäre Ein- / Ausgänge, 4 stetige Ausgänge	Merkmal A2

8.5.3 Gerätesteuerung

PI = 32h

Geschrieben wird ein alle 8 Bit umfassendes Codewort, das den Vorgang startet und evtl. stoppt bzw. den Parameter setzt. In den gelesenen 8 Bit sind in den oberen 4 Bit die Information über den laufenden Vorgang und in den unteren 4 Bit Parameter enthalten.

Schreiben Lesen		Bedeutung			
Bit-Nummer	Code / Wert	Bit-Nummer	Wert		
0	0/1	0	0/1	Dimension Regelgröße °C / °F	
1	0/1	1	0/1	ohne / mit Führungs-PDO	
2	0/1	2	0/1	Heizstrom bei Kühlen = 0 / Nennwert	
3	0/1	3	0/1	 – / Reglerfunktion nicht speichern 	
0 7	0Fh	4 7		Standardwerkseinstellung in aktuellen Para	ametersatz laden
	1Eh		nicht	Aktuellen Parametersatz in Parametersatz	1 speichern
	1Fh		rücklesbar	Parametersatz 1 in aktuellen Parametersat	z laden
	2Eh		Tuckiesbai	Aktuellen Parametersatz in Parametersatz	2 speichern
	2Fh			Parametersatz 2 in aktuellen Parametersat	z laden
	3Eh			Aktuellen Parametersatz in Transferbuffer kopieren	
	3Fh			Transferbuffer in aktuellen Parametersatz laden	
	33h			reserviert	
	66h			Parametersatz an Profibus Master senden	
	99h			Blöcke an Profibus Master senden	
	BBh			Logger löschen	
	CCh		Reset Gerät		
0 7	55h	4 7	5h	Ermittlung Heizstrom-Nennwerte	starten / läuft
	_		0h		beendet
	AAh		Ah	Überprüfung Zuordnung Fühler/Heizung	starten / läuft
	AAh		0h		stoppen / beendet

8.5.4 Grenzwertfunktion und Heizkreisüberwachung

PI = 36h

Bit-Nummer	Wert	Bedeutung
0	0/1	Alarm 1: Einstellung relativ / absolut zum Sollwert
1	0/1	Alarm 1: Anfahrunterdrückung inaktiv / aktiv
2	0/1	Alarm 2: Einstellung relativ / absolut zum Sollwert
3	0/1	Alarm 2: Anfahrunterdrückung inaktiv / aktiv
4	0/1	Heizkreisüberwachung inaktiv / aktiv
5	0/1	Begrenzer inaktiv / aktiv
6	0/1	Alarm 1: Speicherung inaktiv / aktiv
7	0/1	Alarm 2: Speicherung inaktiv / aktiv

GMC-I Messtechnik GmbH R6000-75

8.5.5 Ausgangskonfiguration

PI = 37h

- Sind alle Bits = 0, ist der Ausgang inaktiv und hat als Eingang keine Funktion.
- Die Konfigurationsmöglichkeit des stetigen Ausgangs beschränkt sich auf Stellgrößenausgabe.

Ausgangskonfiguration eines Ausgangs für Normalkonfiguration (Bit 0 = 0, Bit 1 = 1)

Bit-Nummer	Wert	Schaltender Ausgang Stellgröße	Schaltender Ausgang Alarm	Stetiger Ausgang		
0	0		Ausgang			
1	1		Normal			
2 4	0 7		Kanalnummer			
5	0 / 1	Heizen / Kühlen	Heizen / Kühlen – / – Heizen / Kühlen			
6	0 / 1	Mehr / Weniger	Mehr / Weniger Arbeits- / Ruhestrom Dead- / Live zero			
7	0/1	0 = Stellgröße	1 = Alarm	Stellgröße		

Ausgangskonfiguration eines Ausgangs für Sonderkonfiguration (Bit 0 = 0, Bit 1 = 0)

Bit-Nummer	Wert	Schaltender Ausgang Stetiger Ausgang			
0	0	Ausgang			
1	0	Sonder			
2 6	0 31	Ausgangsfunktion (siehe Seite 76) Ausgabe von Null /Reserviert			
7	0/1	Arbeits- / Ruhestrom Dead- / Live zero			

Ausgangskonfiguration eines Eingangs für Normalkonfiguration (Bit 0 = 1, Bit 1 = 1)

Bit-Nummer	Wert	Schaltender Ausgang	Stetiger Ausgang			
0	1	Eingang	Ausgang, invers			
1	1	No	rmal			
2 4	0 7	Kanalnummer	Wie Konfiguration als Ausgang,			
5 7	0 7	Eingangsfunktion (siehe Seite 76) Ausgabe invers				

Ausgangskonfiguration eines Eingangs für Sonderkonfiguration (Bit 0 = 1, Bit 1 = 0)

Bit-Nummer	Wert	Schaltender Ausgang	Stetiger Ausgang
0	1	Eingang	Ausgang, invers
1	0	Sor	nder
2, 3	0 3	Gruppennummer	Wie Konfiguration als Ausgang,
4 7	0 15	Eingangsfunktion (siehe Seite 76)	Ausgabe invers

Ausgangsfunktion

Wert	Bedeutung	Bemerkung
0	Ausgang abgeschaltet	
1 8	Sammelfehler 1 8	
9	Adaption läuft oder Adaptions-Fehler	
10 13	Gruppenfehler 0 3	
14, 15	Reserviert	
16	unabhängig steuerbarer Ausgang	auch bei Stetigausgängen
17 27	Reserviert	
28	Daten 3. Regler	
29	Daten 2. Regler	externe Heizstromüberwachung
30	Takt	nur bei Arbeitsstrom
31	Quittung	

Eingangsfunktion

Wert	Bedeutung	Bemerkung	
0	Tauschsollwert aktiv		
1	Anfahrschaltung		
2	Störgrößenaufschaltung		
3	vorübergehende Sollwertanhebung (Boost)	Kanalsteuerung bzw. Gruppensteuerung	
4	Umschaltregler aktiv	Ranaistederding bzw. Gruppenstederding	
5	Fehler löschen		
6	Regler ein	_	
7	Adaption starten		
8	Bit 0 des Meldeworts (Reglerstatus Kanal 9) wird gesetzt	Moldogingong	
		Meldeeingang Gruppennummer = 0	
15	Bit 7 des Meldeworts (Reglerstatus Kanal 9) wird gesetzt	агарреннатине — о	
8 11	_		
12	Logger-Stop		
13	Daten externe Heizstromüberwachung	Gruppennummer = 3	
14	Takt externe Heizstromüberwachung		
15	Quittung externe Heizstromüberwachung		

8.5.6 Parametersatz-ID

PI = 3Fh

Die Parametersatz-ID besteht aus 3 Worten und kann gelesen und geschrieben werden. Sie ist Bestandteil jedes Parametersatzes (Bytes 19Ah...19Fh). Das Format ist frei, beliebige Werte sind zulässig.

R6000-76 GMC-I Messtechnik GmbH

8.6 Hauptgruppe 6: Heizstromüberwachung

8.6.1 Tabelle der Parameterindizes

PI	Parameterbezeichnung	Einheit	Format	Anzahl	Einstellbereich	Bemerkung
60h	Heizstrom-Nennwert	0,1 A	± 15 Bit	8	0 = off, 1 10000	
61h	Heizstrom-Nennwert 2. Regler	0,1 A	± 15 Bit	8	0 = off, 1 2500	
62h	Heizstrom-Nennwert 3. Regler	0,1 A	± 15 Bit	8	0 = off, 1 2500	
64h	Summenstrom-Wandlerverhältnis	0,1 A	± 15 Bit	1	0 10 000	
67h	Heizstrom-Abtastzyklus	0,1 s	± 15 Bit	1	0 = Auto, 1 30000	
68h	Überwachungsschwelle	%	± 15 Bit	1	0 = Default, 1100	
69h	Sekundär-Spannung Heizspannungs-Wandler	0,1 V	± 15 Bit	1	0, 100 500	
6Ch	Heizstrom-Istwert	0,1 A	± 15 Bit	8		nur lesen
6Dh	Heizstrom-Istwert 2. Regler	0,1 A	± 15 Bit	8		nur lesen
6Eh	Heizstrom-Istwert 3. Regler	0,1 A	± 15 Bit	8		nur lesen
6Fh	Heizspannungs-Istwert	0,1 V	± 15 Bit	1		nur lesen

8.7 Hauptgruppe 9: Datenlogger

Ausführliche Beschreibung der Funktion der Größen siehe Kapitel 2.9.1 auf Seite 27.

8.7.1 Tabelle der Parameterindizes

PI	Parameterbezeichnung	Einheit	Format	Anzahl	Einstellbereich	Bemerkung
90h	aktuelle Zeit (keine Echtzeituhr)	_	16 Bit	3	Siehe Kapitel 8.4.9 auf Seite 74	
92h	Logger-Abtastzyklus	0,1 s	± 15 Bit	1	0,1 300,0 s	
93h	Logger-Steuerung	Bit	8 Bit	1	0/1 = Logger Run / Stop 0/2 = Run / Run bis voll	wird nicht dauerhaft gespeichert
					128 Logger löschen	nur schreiben
94h	Leseanfang Istabtastwerte	_	± 15 Bit	1	1 3600	
95h	Leseanfang Stellabtastwerte	_	± 15 Bit	1	1 3600	
96h	Istabtastwerte	0,1 °	± 15 Bit	(1 15) x 8	MbA MbE	nur lesen 1)
97h	Stellabtastwerte	%	± 15 Bit	(1 15) x 8	-100 100	nur lesen 1)
98h	Anzahl Abtastungen	_	± 15 Bit	1	0 3600	nur lesen
99h	Zeitpunkt letzte Abtastung	_	16 Bit	3	wie PI = 90h	

¹⁾ Ausführliche Beschreibung siehe Kapitel 2.9.1 auf Seite 27

GMC-I Messtechnik GmbH R6000-77

8.8 Hauptgruppe A: Schnittstellen

Über diese Funktion können die Schnittstellenparameter eingestellt werden, jedoch nicht über Profibus. Die Änderungen werden erst nach einem Reset wirksam.

8.8.1 Tabelle der Parameterindizes

PI	Parameterbezeichnung	Einheit	Format	Anzahl	Einstellbereich	Bemerkung
A0h	Schnittstellenkonfiguration	Bit	8 Bit	1		
A1h	CAN-Baudrate	Bit	8 Bit	1		

8.8.2 Schnittstellenkonfiguration

Bit-Nummer	Wert	Bedeutung
0 3		Baudrate
	1	9600
	2	19,2 k
4 6		Parity fest eingestellt
	0	Even

8.8.3 CAN-Baudrate

Bit-Nummer	Wert	Bedeutung
0 3		Baudrate (kB)
	0	10
	1	20
	2	50
	3	100
	4	125
	5	250
	6	500
	7	800
	8	1000
4 6	0	nicht verwendet

Hauptgruppe B: Anzeigewerte 8.9

Tabelle der Parameterindizes 8.9.1

PI	Parameterbezeichnung	Einheit	Format	Anzahl	Einstellbereich	Bemerkung
B0h	Aktueller Sollwert	0,1 °	± 15 Bit	8		nur lesen
B1h	Aktueller Istwert	0,1 °	± 15 Bit	8		nur lesen
B2h	Aktuelle Regelabweichung	0,1 °	± 15 Bit	8		nur lesen
B3h	Aktuelle Vergleichsstellentemperatur	0,1 °	± 15 Bit	1		nur lesen
B6h	Stetigstellgröße	0,1 %	± 15 Bit	8		nur lesen
B7h	Aktueller Stellgrad	%	± 15 Bit	8		nur lesen
B8h	Aktueller Sollwert	1°	± 15 Bit	8		nur lesen
B9h	Aktueller Istwert	1 °	± 15 Bit	8		nur lesen
BAh	Aktuelle Regelabweichung	1°	± 15 Bit	8		nur lesen

8.10 Hauptgruppe E: Steuerfunktionen

PI	Parameterbezeichnung	Einheit	Format	Anzahl	Einstellbereich	Bemerkung
E0	Zustand binäre I/O	Bit	16 Bit	2	2)	1)
E1	Zustand Stetigausgänge	0,1%	16 Bit	4	0 1000	1)
E2	Meldewort	Bit	16 Bit	1	siehe Kap. 2.9.1 und Kap. 8.4.6	Hi Byte beschreibbar

¹⁾ Wenn der Ausgang als "unabhängig steuerbarer Ausgang" konfiguriert ist, kann der Zustand auch geschrieben werden.

R6000-78 GMC-I Messtechnik GmbH

²⁾ Die Bits 0 ... 15 im Word 0 entsprechen den Ein-/Ausgängen 1 ... 16, die Bits 0 ... 3 im Word 1 entsprechen den Ein-/Ausgängen 17 ... 20 beim Merkmal A1

GMC-I Messtechnik GmbH R6000–79

9 Stichwortverzeichnis

Numerics	Ereignisdaten	K
2-Punkt-Regler	Ereignisdaten anfordern	kanalspezifischen Alarmen 26
3-Punkt-Regler	Error-LED	Kanalsteuerung76
50 mV	ESD-Datei62	Kaskadenregelung
٨	F	Knoten-Adresse 62
A	Fehler bei Adaption22	Kommunikation32
Abfrage "Gerät o.k.?" 34, 45	Fehler bei Start der Adaption	komprimierter Fehlerstatus 64
Abtastwerte27	Fehler löschen	Konformitäts-Klasse 0 42
Adaption	Fehler und Alarme47	Kühlen
Adaptionsablauf	Fehlercode	Kühlenarbeitspunkt21
adaptiv	Fehlermeldungen	Kühlenausgang8
aktueller Sollwert	Fehlerstatus	Kurzsatz33
Alarm	Fehlerstatusworte	
Alarme des Gerätes	Festwertregelung	L
Alarmhistorie	Folgeregler	Langsatz
Alarmspeicherung	Fühler	Laständerung
Alarmunterdrückung	Fühlerart	Live zero8
Analogteilfehler	Fühlerbruch	M
Anfahroahaltara	Fühlertyp	Mappingfehler
Anfahrschaltung	Führungs-Istwert	Maske für Reglerfunktion 65
Anfahrunterdrückung	Führungsregler	Mehr8
Anfahrversuch	Funktionscodes	Mess- und Ausgabewerte
Antwork Vorgunazait32, 42, 50	Funktionsfeld	Messanfang
Antwort-Verzugszeit 32, 42, 50	Funktionswahl71	Messende
Anzeigewert		Messgröße
Anzeigewerte	G	Messwert
Aufzeichnungsdauer	Gerät zurücksetzen34	Messwerte
Ausgangsdaten	Geräteadressen	Messwertkorrektur
Ausgangsfehler	Gerätefehler	Messzyklus24
Ausgangsüberwachung	Gerätespezifikation 31, 68, 69	Modbus-Protokoll42
Automatikbetrieb	Gerätesteuerung52	mV
Automatikbetheb	Grenzwerte10	·
В	Grenzwertüberwachung 14, 23	N
Baudrate	Gruppe18	nicht benötigte Kanäle14
binäre Ausgänge26	Gruppe von Regelkanälen18	nichtflüchtigen Speicher 30
Binäreingang14, 16, 17	Gruppenalarme26	Nichttemperaturgrößen
bleibende Abweichung	Gruppenbildung	0
Busmaster18	Gruppensteuerung 16, 76	optimale Regeldynamik 19
C	Н	
CANopen	Halbduplexbetrieb	Р
CAN-Schnittstelle	Halber Vorhalt9	parallelgeschalteten Heizungen 24
CRC-16	Handbetrieb	Parameter unzulässig 22
Cyclical Redundancy Checks 43	Handoptimierung 20, 21	Parameterfehler22, 40
	Hardware-Reset	Parameterindex 35, 39, 40, 47
D	HB-THERM-Protokoll 50	Parametersätze30
Daten an Regler senden	Heißkanalregelung 17, 18	Parität
Daten vom Regler anfordern	Heizen	PDOs18, 62
Datenbit 42, 50	Heizenausgang8	PDPI-Regelalgorithmus14
Datenfeld	Heizkreis-Fehler	periodische Störung
Datenlogger27, 31, 69	Heizkreisüberwachung 23	periodischen Schwingung11
Dauerschwingung	Heizspannung24	pH-Linearisierung
Differenzregelung15	Heizspannungsschwankung24	Profibus-DP55
Differenzreglers	Heizstrom nicht aus22	Proportionalband
DIP-Schalter 7, 32, 42, 50, 55	Heizstrom zu groß22	Prozess Daten Objekte62
Dreipunkt-Regelung18	Heizstrom zu klein	Prüfsumme35
Dreipunktregler 20, 21	Heizströme anfordern	Prüfzeit28
E	Heizströme des 2. und 3. Reglers 37	R
	Heizstromüberwachung 24, 31, 68, 69	Rampensteigung
EEPROM	1	Regelabweichung14
Eingangsdaten	Istwert 10, 64	Regelkanäle
Eingangsdaten	extern	Regelparameter
Einheiten70	Istwert-Differenz	Reglerausgang
Einstellbereiche	Istwert-Differenzen	Reglerfunktion 65
Einzelkanalsteuerung16	Istwert-Ermittlung	Reglerverstärkung
EN 50170	Istwertführung	Reset
EN 60870		richtigen Verdrahtung 28

RS-232	Verhältnisregelung15Verpolung22Verweilzeit17
S	Vorhalte- und Nachstellzeit 19
Sammelfehler	vorübergehende Sollwertanhebung 17
Schaltender Ausgang	W
Schalthysterese	Weniger
Schnittstellen	Widerstandsthermometer
Schritt-Regelung	Wort-Adresse
Schrittregler 8, 20, 21	Worte lesen
Schütz	Worte schreiben 46
Schwingungsweite20, 21	7
Schwingversuch	Z
SDOs62	Zeichen-Verzugszeit32, 42, 50
Selbstoptimierung	Zeitkonstante14
Service Daten Objekte 62	Zeitstempel
Skalierung	Zielsollwert
Slave-Adresse	Zuordnung von Fühler und Heizung 28
Sollwert	Zweileiterschaltung
Sollwertanstieg	Zweipunkt-Regelung
Sollwertrampe	Zweipunktregler
Sollwertverarbeitung10	zweiten Grenzwert
Spannungswandler 24	Zyklusdaten
Standardwerkseinstellung7, 30	Zyklusdaten anfordern
Stellglied	
Stellglieder	
Stellgröße	
Stellsignalen	
Stetigregler	
Steueranweisungen	
Steuerfunktionen	
Steuersatz	
Steuerung der binären Ein-, Ausgänge. 29	
Steuerung der Stetigausgänge 29	
Störgrößenaufschaltung	
Störung	
stoßfrei	
Stromeingänge	
Summenstromwandler24	
synchron hochheizen	
T	
Teilnehmeradresse 32, 42, 50, 55	
Temperatur	
Temperaturdifferenz	
Temperaturfühlers	
Temperaturgefälle11	
Temperaturmesseingänge 7	
Temperaturparameter 31, 68, 70	
Temperaturüberwachung14	
thermische Spannungen	
Thermoelement	
Titration	
Totzone	
U	
Überhitzung	
Überschwingen 19	
überschwingungsfreies Ausregeln 14	
Übersteuerung Heizspannung 22	
Übersteuerung Heizstrom22	
Überwachungsfunktionen22	
Umschaltregelung	
Umschaltregler	
unbenutzt	
V	
Verdampfung von Wasser 9	
Vergleichsstellen-Fehler	

GMC-I Messtechnik GmbH R6000-81

10 Parameterverzeichnis

A	freien Ausgang	Logger-Steuerung 67, 69, 77
Abtastwerte	freien Eingang	NA.
Adaption	Fühlerbruch	M
Adaption ein	Fühlerfehler-Stellgrad 25, 31, 67, 68, 71	Mapping
Adaption starten	Fühlertyp7, 11, 13, 31, 67, 68, 75	Mapping fertig
	Führungs-Istwert	Mapping-Adresse
Adaptionsfehler	Führungsregler	Mapping-Fehler
adaptive Messwertkorrektur 49, 73	Tulliuligatogici	Maske für Reglerfunktion
Aktuelle Heizspannung67	G	Maximaler Sollwert 10, 31, 67, 68, 70
aktuelle Zeit		
aktuelle Zustand der Stetigausgänge29	Gerätefehlerstette	Maximaler Stellgrad
Aktueller Heizstrom	Gerätefehlerstatus	maximaler Stellgrad 17, 20, 21
Aktueller Istwert	Gerätekennung 69, 75	Meldeeingang
Aktueller Sollwert	Gerätemerkmal 67, 69	Meldewort
	Gerätesteuerung 24, 28, 30, 31, 69, 75	Merkmal
Aktueller Stellgrad	Grenzsignalgeber	Messen14, 73
Alarm 2 Speicherung aktiv	Grenzwert überschritten 72, 74	Minimaler Sollwert 10, 31, 67, 68, 70
Alarmhistorie	Grenzwert unterschritten 72, 74	Minimaler Stellgrad 31, 67, 68, 71
Alarmhistorie, Zeitstempel 69, 71	Grenzwerte absolut	minimaler Stellgrad
Alarmspeicherung	Grenzwerte relativ	Modbus
Analogteilfehler 72, 74		
Anfahren aktiv	Grenzwertfunktion	Motorstellzeit
Anfahrschaltung	Grenzwertkonfiguration 23, 31, 67, 68, 75	0
Anfahr-Sollwert 10, 17, 31, 67, 68, 70	Gruppe	•
	Gruppenalarme	Oberer Grenzwert
Anfahr-Stellgrad 17, 31, 67, 68, 71	••	Optimierungsphase
Anfahrunterdrückung	Н	D
Anzahl Abtastungen	halber Vorhalt	Р
Anzahl Einträge Alarmhistorie29, 67, 69, 71	Hand statt Aus	Parameter unzulässig
Ausgangsfehler	Handstellgrad	Parameter-Fehler
Ausgangskonfiguration 7, 8, 16, 26, 31, 67,		Parametersatz
69,	Heißkanal	Parametersatz-ID
00,, 10, 10	Heizkreis-Fehler 23, 72, 74	
В	Heizkreisüberwachung 23, 75	Parity
Baudrate	Heizspannungs-Istwert 69, 77	Partnerkanal
	Heizstrom nicht aus 24, 72, 74	PDPI
Begrenzer	Heizstrom zu groß 24, 25, 72, 74	PDPI-Regler14, 18, 19, 73
Boost 10, 17, 31, 67, 68, 70, 71, 76	Heizstrom zu klein 24, 72, 74	pH-Regelung 12, 49, 73
Boost-Dauer 17, 31, 67, 68, 70	Heizstrom-Abtastzyklus24, 25, 31, 67, 69, 77	PI-Regler
C		Profibus-DP
C	Heizstrom-Istwert 2 Paglar	Proportionalband
CAN	Heizstrom-Istwert 2. Regler 69	Proportionalband Heizen 31, 67, 68, 71
CAN-Baudrate	Heizstrom-Istwert 3. Regler 69	
_	Heizstrom-Nennwert 24, 25, 31, 67, 68, 75,	Proportionalband Kühlen 31, 67, 68, 71
D	77	Proportionalglied
Differenzregler	Heizstrom-Nennwert 2. Regler . 31, 67, 69, 77	Р
Dimension	Heizstrom-Nennwert 3. Regler . 31, 67, 69, 77	R
Dimension / Gerätesteuerung 67	Hysterese	Rampe aktiv73
Dimension Regelgröße	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Regelabweichung, aktuelle68, 78
	1	Regler ein 7, 14, 16, 20, 21, 71, 76
Dimension Regelgröße / Gerätesteuerung 7	Istabtastwerte	Reglerart
E	Istwert	Reglerfunktion . 7, 16, 17, 19, 20, 31, 67,
		68,
EEPROM-Fehler72, 74	extern	Reglerkonfiguration9, 10, 16, 17, 18, 31,
Einträge der Alarmhistorie	Istwert, aktueller	
EN 60870	Istwert-Faktor 10, 11, 13, 31, 67, 68, 70	67,
Ereignisdaten	Istwertführung16, 18, 49, 73	erweitert 9, 10, 31, 68, 71, 73
Erster oberer Grenzwert 31, 67, 68, 70	Istwertführung inaktiv/aktiv	Reglerstatus10, 17, 18, 19, 28, 29, 73
Erster unterer Grenzwert 31, 67, 68, 70	Istwert-Korrektur 10, 11, 13, 31, 67, 68, 70	Reglerstatus, Meldewort 67, 68, 71
erweiterte Regelkonfiguration 67		Reglertyp 7, 14, 17, 18, 19, 20, 21, 23,
externer Istwert	K	28,
extra Vorhalt	Kanal unbenutzt 14, 73	relativ / absolut
	Kanalfehlermaske 26, 31, 67, 68, 71	RS-485
extra Vorhalt beim Kühlen9	Kanalfehlerstatus 19, 23, 25, 26, 28, 71	
F		S
	Kanalfehlerstatuswort	Sammelfehlermaske 26, 31, 67, 69, 71
Fehler bei Adaption	komprimierter Kanalfehlerstatus 67	
Fehler bei Adaption und Abbruch	1	Schalthysterese
Fehler beim Start der Adaption 72, 74	L	Schnittstellenkonfiguration31, 69, 78
Fehler löschen	Leistungsbegrenzung 9, 31, 67, 69, 75	Schwingungs-Sperre 11, 31, 68
Fehlerstatus 67, 68, 69	Leseanfang Abtastwerte	Schwingungssperre 67
Festwertregler	Leseanfang Alarmhistorie 29, 67, 69, 71	sekundäre Heizspannung
Firmware-Version	Leseanfang Istabtastwerte 67, 69, 77	Sekundär-Spannung Heizspannungs-Wandler. 67,
	Leseanfang Stellabtastwerte 67, 69, 77	69,77
Folgeregler	Logger-Abtastzyklus 27, 31, 67, 69, 77	Sollwert 10, 23, 31, 67, 68, 70
freie Ausgänge	Loggor ribidoleyrido Zr, Or, Or, Oo, Ir	33,701

R6000-82 GMC-I Messtechnik GmbH

Sollwert, aktueller 68, 78 Sollwertanhebung 10, 17, 31, 67, 68, 70 Sollwertrampe 10 Sollwertrampe abwärts 31, 67, 68, 70 Sollwertrampe aufwärts 31, 67, 68, 70 Speicherung 75 Standardwerkseinstellung 75 Start-Fehler 19 Stellabtastwerte 67, 69, 77 Steller 14, 73 Steller-Stellgrad 14, 31, 67, 68, 71 Stellgrad, aktueller 68, 78 Stellzlyklus 14 Stellzlykluszeit 14, 17, 19, 31 Steigstellgröße 68, 78 Störgrößenaufschaltung 17, 71, 76 Störgrößen-Stellgrad 17, 31, 67, 68, 71 Strecken-Verzugszeit 31, 67, 68, 71 Summenstrom-Wandlerverhältnis 24, 31, 67, 69 77	Zweiter oberer Grenzwert 31, 67, 68, 70 Zweiter unterer Grenzwert 31, 67, 68, 70 Zykluszeit 9, 20, 67, 68, 71
T Tauschsollwert . 10, 14, 31, 67, 68, 70, 76 Tauschsollwert aktiv	
Übersteuerung	
Vergleichsstellen-Fehler	
W Wasserkühlung. 9, 49, 73 X Xpl. 20, 21, 68 Xpl. 20, 21, 68 Xpl. 19, 23	
Zeit, aktuelle	

GMC-I Messtechnik GmbH R6000-83

11 Reparatur- und Ersatzteil-Service, Mietgeräteservice

Bitte wenden Sie sich im Bedarfsfall an:

GMC-I Service GmbH
Service-Center
Thomas-Mann-Straße 20
90471 Nürnberg • Germany
Telefon +49 911 817718-0
Telefax +49 911 817718-253
E-Mail service@gossenmetrawatt.com
www.gmci-service.com

Diese Anschrift gilt nur für Deutschland. Im Ausland stehen unsere jeweiligen Vertretungen oder Niederlassungen zur Verfügung.

12 Produktsupport

Bitte wenden Sie sich im Bedarfsfall an:

GMC-I Messtechnik GmbH

Hotline Produktsupport

Telefon +49 911 8602-500

Telefax +49 911 8602-340

E-Mail support@gossenmetrawatt.com

Erstellt in Deutschland • Änderungen vorbehalten • Eine PDF-Version finden Sie im Internet

