

Serie PROFITEST MF PROFITEST MF XTRA, MF TECH DIN VDE 0100-600, DIN VDE 0105-100, OVE E 8101, NIN / NIV

3-447-159-01 1/1.23

Inhaltsverzeichnis

1	Siche	rheitsvorschriften	4
2	Anwe	endung	5
2.	1 Ve	erwendungszweck /	
-	Be	estimmungsgemäße Verwendung	5
2.	2 B€	estimmungswidrige Verwendung	5
2.	3 Ha 4 Ö4	aftung und Gewahrleistung	5
2.	4 01 5 5	Inen / Reparaturen	5 5
2.	D FL		0
3	роки	mentation	6
4	Erste	Schritte	6
5	Gerät	·	7
5.	1 Lie	eterumtang	7
5. 5	2 U 2 D	ptionales Zubenor (Auszug)	1
5. 5		eräterübersicht	، ع
5.	- 00 5 Te	echnische Daten	10
5.	6 Te	echnische Kennwerte PROFITEST MF TECH.	11
5.	7 Te	echnische Kennwerte PROFITEST MF XTRA	13
6	Bedie	en- und Anzeigeelemente	16
6.	1 Be	edienterminal	16
6.	2 Di	splay	16
6.	3 LE	EDs	16
6.	4 Si	gnalisierung der LEDs, Netzanschlüsse und	
	Po	otenzialdifferenzen	17
7	Betrie	эb	25
7.	1 St	romversorgung	25
	7.1.1	Akku-Pack (Z502H/Z502O) oder handels-	
		einsetzen bzw. austauschen	25
	7.1.2	Akku-Pack (Z502H/Z502O) im Prüfgerät	-
		aufladen	25
7.	2 Ge	erät ein-/ausschalten	25
8	Gerät	eeinstellungen	26
9	Dater	1bank	30
9.	1 Ar	nlegen von Verteilerstrukturen allgemein	30
9.	2 Ük	pertragung von Verteilerstrukturen	30
9.	3 Ve	erteilerstruktur im Prüfgerät anlegen	30
	9.3.1	Strukturerstellung (Beispiel für den Stromkreis)	30
	932	Suche von Strukturelementen	
9.	4 Da	atenspeicherung und Protokollierung	33
9.	5 Eii	nsatz von Barcode- und RFID-Lesegeräten	34
10	Allae	meine Informationen zu Messungen	35
10).1 Ar	nwendung der Kabelsätze bzw. Prüfspitzen	35
10).2 Pr	üfstecker – Einsätze wechseln	35
10).3 Ge	erät anschließen	35
10).4 Au גע	utomatische Einstellung, Überwachung und	35
10)5 M	esswertanzeige und Messwertsneicherung	
1().6 Hi	Ifefunktion	36
10).7 Pa	arameter oder Grenzwerte einstellen am	
	Be	eispiel der RCD-Messung	37
10).8 Fr	ei einstellbare Parameter oder Grenzwerte	38

Seite

10.8.1 10.8.2	Vorhandene Parameter ändern Neue Parameter ergänzen	. 38 . 38
10.9 Zw aut	eipolmessung mit schnellem oder halb omatischem Polwechsel	. 39
11 Messe	n von Spannung und Frequenz	40
11 1 1_		. 40
11.1.1	Spannung zwischen L und N (U _{L-N}), L und PE (U _{L-PE}) sowie N und PE (U _{N-PE}) bei länderspezifischem Steckereinsatz, z. B. SCHUKO40	. 40
11.1.2	Spannung zwischen L – PE, N – PE und L – L bei Anschluss 2-Pol-Adapter	. 40
11.2 3-F unc	Phasenmessung (verkettete Spannungen) d Drehfeldrichtung	. 40
12 Prüfen	von Fehlerstrom-Schutzschaltungen (RCD)	41
12.1 Me Ber stro	ssen der (auf Nennfehlerstrom bezogenen) rührungsspannung mit ½ des Nennfehler- omes und Auslöseprüfung mit Nennfehler-	10
12.2 Spa	om Szielle Prüfungen von Anlagen hzw. BCD-	. 42
Sch	nutzschaltern	44
12.2.1	Prüfen von Anlagen bzw. RCD-Schutz- schaltern mit ansteigendem Fehlerstrom (Wechselstrom) für RCDs vom Typ AC, A/F, B/B+ und EV/MI	4.4
12.2.2	Prüfen von Anlagen bzw. RCD-Schutz- schaltern mit ansteigendem Fehlerstrom	. 44
	(Gleichstrom) für RCDs vom Typ B/B+ und EV/MI (PROFITEST MF TECH,)	. 44
12.2.3	Prüfen von RCD-Schutzschaltern mit $5 \times I\Delta_N$. 45
12.2.4	Prüfen von RCD-Schutzschaltern, die für pulsierende Gleichfehlerströme geeignet sind	. 45
12.3 Prü	ifen spezieller RCD-Schutzschalter	. 46
12.3.1	Anlagen mit selektiven RCD-Schutz- schaltern vom Typ RCD-S	. 46
12.3.2	PRCDs mit nicht linearen Elementen vom Typ PRCD-K	. 46
12.3.3	SRCD, PRCD-S (SCHUKOMAT, SIDOS oder ähnliche)	. 47
12.3.4	RCD-Schalter des Typs G oder R	. 48
12.4 Prü sch	ifen von Fehlerstrom (RCD-) Schutz- naltungen in TN-S-Netzen	. 49
12.5 Prü	ifen von Fehlerstrom (RCD-) Schutz-	
sch	naltungen in II-Netzen mit hoher Leitungs-	10
η 126 Ριϊ	ifen von 6 må Fehlerstrom-Schutz-	49
eini	richtungen RDC-DD / RCMB	. 50
13 Pruten Schutz	der Abschaltbedingungen von Oberstrom- zeinrichtungen, Messen der Schleifenimpedanz	
und Er	mittein des Kurzschlussstromes	51
runkt) 13.1 Me חווס	ssungen mit Unterdrückung der RCD- slösung (nur PBOFITEST ME TECH)	51
13.1.1	Messen mit positiven Halbwellen	
	(INI TRUTILES I WIT LEUH)	. 52

13.2	Beurteilung der Messwerte
13.3	Einstellungen zur Kurzschlussstrom-
	Berechnung – Parameter I _K 53
14 M	essen der Netzimpedanz (Funktion Z_{L-N})
15 M	essen des Erdungswiderstandes (Funktion $R_{\hbox{\scriptsize E}})56$
15.1	Erdungswiderstandsmessung – netzbetrieben 57
15.2	Erdungswiderstandsmessung – batteriebetrieben "Akkubetrieb"
15.3	Erdungswiderstand netzbetrieben – 2-Pol- Messung mit 2-Pol-Adapter oder länder- spazifischem Stocker (Schuke) abno Sando – 58
15.4	Erdungswiderstandsmessung netzbetrieben – 3-Pol-Messung: 2-Pol-Adapter mit Sonde
15.5	Erdungswiderstandsmessung netzbetrieben – Messen der Erderspannung (Funktion U _E)
15.6	Erdungswiderstandsmessung netzbetrieben – Selektive Erdungswiderstandsmessung mit Zangenstromsensor als Zubehör
15.7	Erdungswiderstandsmessung batteriebetrieben "Akkubetrieb" – 3-polig (nur PROFITEST MF XTRA)
15.8	Erdungswiderstandsmessung batteriebetrieben "Akkubetrieb" – 4-polig (nur PROFITEST MF XTRA)
15.9	Erdungswiderstandsmessung batteriebetrieben "Akkubetrieb" – selektiv (4-polig) mit Zangen- stromsensor sowie Messadapter PRO-RE als Zu-
15.10	behör (nur PROFITEST MF XTRA)66 DErdungswiderstandsmessung batteriebetrieben "Akkubetrieb" – Erdschleifenmessung (mit
	Zangenstromsensor und -wandler sowie Mess- adapter PRO-RE/2 als Zubehör) (nur PROFITEST MF XTRA)67
15.1	I Erdungswiderstandsmessung batteriebetrieben "Akkubetrieb" – Messung des spezifischen Erdungswiderstands ρ _E (nur PROFITEST ME XTBA) 68
16 M	essen des Isolationswiderstandes 70
16.1	Allgemein
16.2	Sonderfall Erdableitwiderstand (R _{EISO})72
17 M (S	essen niederohmiger Widerstände bis 200 Ohm chutzleiter und Schutzpotenzialausgleichsleiter)73
17.1	Messung mit konstantem Prüfstrom74
17.2	Schutzleiterwiderstandsmessung mit Rampen- verlauf – Messung an PRCDs mit stromüber- wachtem Schutzleiter mit dem Prüfadapter PROFITEST PRCD als Zubehör (nur PROFITEST MF XTRA)
18 M	essungen mit Sensoren als Zubehör76
18.1	Strommessung mithilfe eines Zangenstromsensors76
19 Sc	onderfunktionen – Schalterstellung EXTRA77
19.1	Spannungsfall-Messung (bei ZLN) – Funktion Δ U 78
19.2	Messen der Impedanz isolierender Fußböden und Wände (Standortisolationsimpedanz) –
19.3	Prüfung des Zähleranlaufs mit Schutzkontaktste-

	cker – Funktion kWh80
19	4 Ableitstrommessung mit Ableitstrommessadapter
	PRO-AB als Zubehör – Funktion IL
	(nur PROFITEST MF XTRA)81
19	5 Prüfen von Isolationsüberwachungsgeräten –
	FUNKTION IMID (NUP PROFILEST MEXTRA)
19	6 Restspannungsprutung – Funktion U _{res}
10	(NUP PROFILEST MF XTRA)
19	(pur DDOEITEST ME YTDA)
10	(IIII FROTTEST WILLATRA)
19	deräten – Funktion RCM
	(nurPROFITEST MF XTRA)
19	.9 Überprüfung der Betriebszustände eines
	Elektrofahrzeugs an E-Ladesäulen nach
	IEC 61851-1PROFITEST MF XTRA)87
19	.10Prüfabläufe zur Protokollierung von Fehler-
	simulationen an PRCDs mit dem Adapter
	PROFITEST PRCD (nur PROFITEST MF XTRA)88
1	9.10.1 Fehlersimulation
20	Prüfsequenzen (Automatische Prüfabläufe)
	- Funktion AUT091
20	.1 Allgemein (Aufbau von Prüfsequenzen)91
20	2 Erstellen von Prüfsequenzen mit IZYTRONIQ91
20	.3 Prüfsequenzen verwenden91
21	Zurücksetzen (Werkseinstellungen)92
22	Wartung
22 22	Wartung
22 22	Wartung931 Prüfgeräte-Firmware/Software9322.1.1 Akkupflege93
22 22 22 22	Wartung93.1 Prüfgeräte-Firmware/Software93.2.1.1 Akkupflege93.2 Sicherung auswechseln93
22 22 22 22 22	Wartung931 Prüfgeräte-Firmware/Software9322.1.1 Akkupflege93.2 Sicherung auswechseln93.3 Gehäuse93
22 22 22 22 22 22	Wartung931 Prüfgeräte-Firmware/Software9322.1.1 Akkupflege93.2 Sicherung auswechseln93.3 Gehäuse93.4 Kalibrierung93
22 22 22 22 22 22 22 23	Wartung931Prüfgeräte-Firmware/Software9322.1.1Akkupflege932Sicherung auswechseln933Gehäuse934Kalibrierung93Kontakt Support und Service94
22 22 22 22 22 22 22 23	Wartung 93 1 Prüfgeräte-Firmware/Software 93 22.1.1 Akkupflege 93 .2 Sicherung auswechseln 93 .3 Gehäuse 93 .4 Kalibrierung 93 Kontakt, Support und Service 94 Wichtige Informationen zu Lizenzen 94
22 22 22 22 22 22 22 23 23 24	Wartung 93 1 Prüfgeräte-Firmware/Software 93 22.1.1 Akkupflege 93 2 Sicherung auswechseln 93 3 Gehäuse 93 4 Kalibrierung 93 Kontakt, Support und Service 94 Wichtige Informationen zu Lizenzen 94
22 22 22 22 22 22 22 23 23 24 25	Wartung931Prüfgeräte-Firmware/Software9322.1.1Akkupflege9322Sicherung auswechseln933Gehäuse934Kalibrierung935Kontakt, Support und Service94Wichtige Informationen zu Lizenzen94CE-Erklärung94
22 22 22 22 22 22 23 23 24 25 26	Wartung931Prüfgeräte-Firmware/Software9322.1.1Akkupflege932Sicherung auswechseln933Gehäuse934Kalibrierung93Kontakt, Support und Service94Wichtige Informationen zu Lizenzen94CE-Erklärung94Entsorgung und Umweltschutz95
22 22 22 22 22 22 22 23 24 25 26 27	Wartung931Prüfgeräte-Firmware/Software9322.1.1Akkupflege932Sicherung auswechseln933Gehäuse934Kalibrierung93Kontakt, Support und Service94Wichtige Informationen zu Lizenzen94CE-Erklärung94Entsorgung und Umweltschutz95Anhang96
22 22 22 22 22 23 23 24 25 26 27 27	Wartung931Prüfgeräte-Firmware/Software939322.1.1Akkupflege93932Sicherung auswechseln93933Gehäuse93934Kalibrierung9393Kontakt, Support und Service94Wichtige Informationen zu Lizenzen94CE-Erklärung94Entsorgung und Umweltschutz95Anhang961Tabellen zur Ermittlung der maximalen bzw.
22 22 22 22 22 23 24 25 26 27 27	Wartung93.1Prüfgeräte-Firmware/Software.93.2.1.1Akkupflege.93.2Sicherung auswechseln.93.3Gehäuse.93.4Kalibrierung.93Kontakt, Support und Service.94Wichtige Informationen zu Lizenzen.94CE-Erklärung.94Entsorgung und Umweltschutz.95Anhang.96.1Tabellen zur Ermittlung der maximalen bzw. minimalen Anzeigewerte unter Berücksichtigung
22 22 22 22 22 23 24 25 26 27 27	Wartung 93 1 Prüfgeräte-Firmware/Software 93 22.1.1 Akkupflege 93 2 Sicherung auswechseln 93 3 Gehäuse 93 4 Kalibrierung 93 Kontakt, Support und Service 94 Wichtige Informationen zu Lizenzen 94 CE-Erklärung 94 Entsorgung und Umweltschutz 95 Anhang 96 1 Tabellen zur Ermittlung der maximalen bzw. minimalen Anzeigewerte unter Berücksichtigung der maximalen Betriebsmess- und Eigen-
22 22 22 22 22 23 23 24 25 26 27 27	Wartung 93 1 Prüfgeräte-Firmware/Software 93 22.1.1 Akkupflege 93 22 Sicherung auswechseln 93 3 Gehäuse 93 3 Gehäuse 93 4 Kalibrierung 93 Kontakt, Support und Service 94 Wichtige Informationen zu Lizenzen 94 CE-Erklärung 94 Entsorgung und Umweltschutz 95 Anhang 96 1 Tabellen zur Ermittlung der maximalen bzw. minimalen Anzeigewerte unter Berücksichtigung der maximalen Betriebsmess- und Eigen- unsicherheiten des Gerätes 96
22 22 22 22 23 24 25 26 27 27 27	Wartung 93 1 Prüfgeräte-Firmware/Software 93 22.1.1 Akkupflege 93 2 Sicherung auswechseln 93 3 Gehäuse 93 4 Kalibrierung 93 Kontakt, Support und Service 94 Wichtige Informationen zu Lizenzen 94 CE-Erklärung 94 Entsorgung und Umweltschutz 95 Anhang 96 1 Tabellen zur Ermittlung der maximalen bzw. minimalen Anzeigewerte unter Berücksichtigung der maximalen Betriebsmess- und Eigen- unsicherheiten des Gerätes 96 2 Bei welchen Werten soll/muss ein RCD 96
22 22 22 22 22 23 24 25 26 27 27 27	Wartung 93 1 Prüfgeräte-Firmware/Software 93 22.1.1 Akkupflege 93 2 Sicherung auswechseln 93 3 Gehäuse 93 3 Gehäuse 93 Kontakt, Support und Service 94 Wichtige Informationen zu Lizenzen 94 CE-Erklärung 94 Entsorgung und Umweltschutz 95 Anhang 96 1 Tabellen zur Ermittlung der maximalen bzw. minimalen Anzeigewerte unter Berücksichtigung der maximalen Betriebsmess- und Eigen- unsicherheiten des Gerätes 96 2 Bei welchen Werten soll/muss ein RCD eigentlich richtig auslösen? 96
22 22 22 22 22 23 24 25 26 27 27 27	Wartung 93 1 Prüfgeräte-Firmware/Software 93 22.1.1 Akkupflege 93 22 Sicherung auswechseln 93 3 Gehäuse 93 3 Gehäuse 93 4 Kalibrierung 93 Kontakt, Support und Service 94 Wichtige Informationen zu Lizenzen 94 CE-Erklärung 94 Entsorgung und Umweltschutz 95 Anhang 96 1 Tabellen zur Ermittlung der maximalen bzw. minimalen Anzeigewerte unter Berücksichtigung der maximalen Betriebsmess- und Eigen- unsicherheiten des Gerätes 96 2 Bei welchen Werten soll/muss ein RCD eigentlich richtig auslösen? Anforderungen an eine Fehlerstromschutz- einrichtung (BCD) 98
 22 22 22 22 22 23 24 25 26 27 27 27 	Wartung 93 1 Prüfgeräte-Firmware/Software 93 22.1.1 Akkupflege 93 2 Sicherung auswechseln 93 3 Gehäuse 93 3 Gehäuse 93 4 Kalibrierung 93 5 Kontakt, Support und Service 94 Wichtige Informationen zu Lizenzen 94 CE-Erklärung 94 Entsorgung und Umweltschutz 95 Anhang 96 1 Tabellen zur Ermittlung der maximalen bzw. minimalen Anzeigewerte unter Berücksichtigung der maximalen Betriebsmess- und Eigen- unsicherheiten des Gerätes 96 2 Bei welchen Werten soll/muss ein RCD eigentlich richtig auslösen? Anforderungen an eine Fehlerstromschutz- einrichtung (RCD) 98 3 Prüfen von elektrischen Maschinen nach
22 22 22 22 22 23 24 25 26 27 27 27 27	Wartung 93 1 Prüfgeräte-Firmware/Software 93 22.1.1 Akkupflege 93 2 Sicherung auswechseln 93 3 Gehäuse 93 3 Gehäuse 93 4 Kalibrierung 93 Kontakt, Support und Service 94 Wichtige Informationen zu Lizenzen 94 CE-Erklärung 94 Entsorgung und Umweltschutz 95 Anhang 96 1 Tabellen zur Ermittlung der maximalen bzw. minimalen Anzeigewerte unter Berücksichtigung der maximalen Betriebsmess- und Eigen- unsicherheiten des Gerätes 96 2 Bei welchen Werten soll/muss ein RCD eigentlich richtig auslösen? Anforderungen an eine Fehlerstromschutz- einrichtung (RCD) 98 3 Prüfen von elektrischen Maschinen nach DIN EN 60204 – Anwendungen. Grenzwerte 99
22 22 22 22 22 23 24 25 26 27 27 27 27	Wartung 93 1 Prüfgeräte-Firmware/Software 93 22.1.1 Akkupflege 93 2 Sicherung auswechseln 93 3 Gehäuse 93 3 Gehäuse 93 4 Kalibrierung 93 5 Achaibrierung 93 Kontakt, Support und Service 94 Wichtige Informationen zu Lizenzen 94 CE-Erklärung 94 Entsorgung und Umweltschutz 95 Anhang 96 1 Tabellen zur Ermittlung der maximalen bzw. minimalen Anzeigewerte unter Berücksichtigung der maximalen Betriebsmess- und Eigen- unsicherheiten des Gerätes 96 2 Bei welchen Werten soll/muss ein RCD eigentlich richtig auslösen? Anforderungen an eine Fehlerstromschutz- einrichtung (RCD) 98 3 Prüfen von elektrischen Maschinen nach DIN EN 60204 – Anwendungen, Grenzwerte 99 4 Wiederholungsprüfungen nach DGUV V 3 91
22 22 22 22 22 23 24 25 26 27 27 27 27 27	Wartung 93 1 Prüfgeräte-Firmware/Software 93 22.1.1 Akkupflege 93 2 Sicherung auswechseln 93 3 Gehäuse 93 3 Gehäuse 93 4 Kalibrierung 93 5 Kontakt, Support und Service 94 Wichtige Informationen zu Lizenzen 94 Ket-Erklärung 94 Entsorgung und Umweltschutz 95 Anhang 96 1 Tabellen zur Ermittlung der maximalen bzw. minimalen Anzeigewerte unter Berücksichtigung der maximalen Betriebsmess- und Eigen- unsicherheiten des Gerätes 96 2 Bei welchen Werten soll/muss ein RCD eigentlich richtig auslösen? Anforderungen an eine Fehlerstromschutz- einrichtung (RCD) 98 3 Prüfen von elektrischen Maschinen nach DIN EN 60204 – Anwendungen, Grenzwerte 99 4 Wiederholungsprüfungen nach DGUV V 3 (bisher BGV A3) – Grenzwerte für elektrische
 22 22 22 22 22 23 24 25 26 27 27 27 27 27 27 27 	Wartung 93 1 Prüfgeräte-Firmware/Software 93 22.1.1 Akkupflege. 93 2 Sicherung auswechseln 93 3 Gehäuse 93 3 Gehäuse 93 4 Kalibrierung. 93 Kontakt, Support und Service 94 Wichtige Informationen zu Lizenzen 94 CE-Erklärung 94 Entsorgung und Umweltschutz 95 Anhang 96 1 Tabellen zur Ermittlung der maximalen bzw. minimalen Anzeigewerte unter Berücksichtigung der maximalen Betriebsmess- und Eigen- unsicherheiten des Gerätes 96 2 Bei welchen Werten soll/muss ein RCD eigentlich richtig auslösen? Anforderungen an eine Fehlerstromschutz- einrichtung (RCD) 98 3 Prüfen von elektrischen Maschinen nach DIN EN 60204 – Anwendungen, Grenzwerte
22 22 22 22 22 23 24 25 26 27 27 27 27 27 27	Wartung 93 1 Prüfgeräte-Firmware/Software 93 2 Sicherung auswechseln 93 2 Sicherung auswechseln 93 3 Gehäuse 93 3 Gehäuse 93 4 Kalibrierung 93 Kontakt, Support und Service 94 Wichtige Informationen zu Lizenzen 94 Ketlärung 94 Entsorgung und Umweltschutz 95 Anhang 96 1 Tabellen zur Ermittlung der maximalen bzw. minimalen Anzeigewerte unter Berücksichtigung der maximalen Betriebsmess- und Eigen- unsicherheiten des Gerätes 96 2 Bei welchen Werten soll/muss ein RCD eigentlich richtig auslösen? Anforderungen an eine Fehlerstromschutz- einrichtung (RCD) 98 3 Prüfen von elektrischen Maschinen nach DIN EN 60204 – Anwendungen, Grenzwerte
22 22 22 22 22 23 24 25 26 27 27 27 27 27 27 27 27	Wartung 93 1 Prüfgeräte-Firmware/Software 93 2 Sicherung auswechseln 93 2 Sicherung auswechseln 93 3 Gehäuse 93 3 Gehäuse 93 4 Kalibrierung 93 Kontakt, Support und Service 94 Wichtige Informationen zu Lizenzen 94 Kersorgung und Umweltschutz 95 Anhang 96 1 Tabellen zur Ermittlung der maximalen bzw. minimalen Anzeigewerte unter Berücksichtigung der maximalen Betriebsmess- und Eigen- unsicherheiten des Gerätes 96 2 Bei welchen Werten soll/muss ein RCD eigentlich richtig auslösen? Anforderungen an eine Fehlerstromschutz- einrichtung (RCD) 98 3 Prüfen von elektrischen Maschinen nach DIN EN 60204 – Anwendungen, Grenzwerte
22 22 22 22 23 24 25 26 27 27 27 27 27 27 27 27 27	Wartung 93 1 Prüfgeräte-Firmware/Software 93 22.1.1 Akkupflege 93 22.Sicherung auswechseln 93 3 Gehäuse 93 3 Gehäuse 93 4 Kalibrierung 93 Kontakt, Support und Service 94 Wichtige Informationen zu Lizenzen 94 CE-Erklärung 94 Entsorgung und Umweltschutz 95 Anhang 96 1 Tabellen zur Ermittlung der maximalen bzw. minimalen Anzeigewerte unter Berücksichtigung der maximalen Betriebsmess- und Eigen- unsicherheiten des Gerätes 96 2 Bei welchen Werten soll/muss ein RCD eigentlich richtig auslösen? Anforderungen an eine Fehlerstromschutz- einrichtung (RCD) 98 3 Prüfen von elektrischen Maschinen nach DIN EN 60204 – Anwendungen, Grenzwerte 99 4 Wiederholungsprüfungen nach DGUV V 3 (bisher BGV A3) – Grenzwerte für elektrische Anlagen und Betriebsmittel 100 5 Literaturliste 100 6 Internetadressen für weiterführende Informationen 100

1 Sicherheitsvorschriften

Beachten Sie diese Dokumentation und insbesondere die Sicherheitsinformationen, um sich und andere vor Verletzungen sowie das Gerät vor Schäden zu schützen.

Machen Sie diese Bedienungsanleitung und die Kurzbedienungsanleitung allen Anwendern zugänglich.

Allgemeines

- Die Prüfungen/Messungen dürfen nur durch eine Elektrofachkraft oder unter der Leitung und Aufsicht einer Elektrofachkraft durchgeführt werden. Der Anwender muss durch eine Elektrofachkraft in der Durchführung und Beurteilung der Prüfung/ Messung unterwiesen sein.
- Beachten Sie die fünf Sicherheitsregeln gem. DIN VDE 0105-100:2015-10; VDE 0105-100:2015-10, Betrieb von elektrischen Anlagen - Teil 100: Allgemeine Festlegungen (1. Vollständig abschalten. 2. Gegen Wiedereinschalten sichern. 3. Spannungsfreiheit allpolig feststellen. 4. Erden und kurzschließen. 5. Benachbarte, unter Spannung stehende Teile abdecken oder abschranken.).
- Beachten und befolgen Sie alle nötigen Sicherheitsvorschriften für Ihre Arbeitsumgebung.
- Tragen Sie bei allen Arbeiten mit dem Gerät eine geeignete und angemessene persönliche Schutzausrüstung (PSA).
- Aktive Körperhilfsmittel (z.B. Herzschrittmacher, Defibrillatoren) und passive Körperhilfsmittel können durch Spannungen, Ströme und elektromagnetische Felder vom Gerät in Ihrer Funktion beeinflusst und die Träger in ihrer Gesundheit geschädigt werden. Ergreifen Sie entsprechende Schutzmaßnahmen in Absprache mit dem Hersteller des Körperhilfsmittels und Ihrem Arzt. Kann eine Gefährdung nicht ausgeschlossen werden, verwenden Sie das Gerät nicht.

Zubehör

- Verwenden Sie nur das angegebene Zubehör (im Lieferumfang oder als optional gelistet) am Gerät.
- Lesen und befolgen Sie die Produktdokumentation des optionalen Zubehörs sorgfältig und vollständig. Bewahren Sie die Dokumente für späteres Nachschlagen auf.

Handhabung

- Setzen Sie das Gerät nur in unversehrtem Zustand ein. Untersuchen Sie vor Verwendung das Gerät. Achten Sie dabei insbesondere auf Beschädigungen, unterbrochene Isolierung oder geknickte Kabel.
 - Beschädigte Komponenten müssen sofort erneuert werden.
- Das Zubehör und alle Kabel dürfen nur in unversehrtem Zustand eingesetzt werden. Untersuchen Sie vor Verwendung das Zubehör und alle Kabel. Achten Sie dabei insbesondere auf Beschädigungen, unterbrochene Isolierung oder geknickte Kabel.
- Falls das Gerät oder sein Zubehör nicht einwandfrei funktioniert, nehmen Sie das Gerät /das Zubehör dauerhaft außer Betrieb und sichern es gegen unabsichtliche Wiederinbetriebnahme.
- Tritt während der Verwendung eine Beschädigung des Gerätes oder Zubehörs ein, z.B. durch einen Sturz, nehmen Sie das Gerät / das Zubehör dauerhaft außer Betrieb und sichern es gegen unabsichtliche Wiederinbetriebnahme.
- Das Gerät und das Zubehör dürfen nur für die in der Dokumentation des Gerätes beschriebenen Prüfungen/Messungen verwendet werden.
- Die eingebaute Spannungsmessfunktion bzw. die Netzanschlusskontrolle dürfen nicht zur Überprüfung der Spannungsfreiheit von Anlagen oder Anlagenkomponenten eingesetzt werden.

Die Spannungsfreiheit darf nur mit einem geeigneten Spannungsprüfer / Spannungsmesssystem geprüft werden, das den normativen Anforderungen der DIN EN 61243 genügt.

Betriebsbedingungen

- Verwenden Sie das Gerät und das Zubehör nicht nach längerer Lagerung unter ungünstigen Verhältnissen (z. B. Feuchtigkeit, Staub, Temperatur).
- Verwenden Sie das Gerät und das Zubehör nicht nach schweren Transportbeanspruchungen.
- Das Gerät darf nicht direkter Sonneneinstrahlung ausgesetzt werden.
- Setzen Sie das Gerät und das Zubehör nur innerhalb der angegebenen technischen Daten und Bedingungen (Umgebung, IP-Schutzcode, Messkategorie usw.) ein.
- Setzen Sie das Gerät nicht in explosionsgefährdeten Bereichen ein.

Akkus

- Bei Verwendung des Ladegeräts darf nur das Akku-Pack (Z502H/Z502O) im Gerät eingesetzt sein.
- Verwenden Sie das Gerät nicht, während das Akku-Pack (Z502H/Z502O) aufgeladen wird.
- Verwenden Sie das Gerät nicht, wenn der Akkufachdeckel entfernt wurde.

Anderenfalls kann es zum Berühren gefährlicher Spannungen kommen.

 Das Akku-Pack (Z502H/Z502O) darf nur in unversehrtem Zustand geladen werden. Untersuchen Sie vor Verwendung das Akku-Pack (Z502H/ Z502O). Achten Sie dabei insbesondere auf ausgelaufene und beschädigte Akkus.

Sicherungen

 Das Gerät verfügt über Sicherungen. Setzen Sie das Gerät nur mit einwandfreien Sicherungen ein. Eine defekte Sicherung muss ausgetauscht werden. Siehe ausführliche Bedienungsanleitung.

Messleitungen und Kontaktierung

- Das Stecken aller Leitungen muss leichtgängig erfolgen.
- Berühren Sie nie leitende Enden (z.B. von Prüfspitzen).
- Rollen Sie alle Messleitungen vollständig aus, bevor Sie eine Prüfung/Messung starten. Führen Sie nie eine Prüfung/Messung mit aufgerollter Messleitung durch.
- Vermeiden Sie Kurzschlüsse durch falsch angeschlossene Messleitungen.
- Achten Sie auf eine angemessene Kontaktierung der Krokodilklemmen, Prüfspitzen bzw. Kelvin-Sonden.

Datensicherheit

- Erstellen Sie immer eine Sicherungskopie Ihrer Messdaten.
- Beachten und befolgen Sie die jeweils nationalen gültigen Datenschutzvorschriften. Nutzen Sie die entsprechenden Funktionen im Gerät wie z.B. den Zugriffsschutz sowie weitere angemessene Maßnahmen.

2 Anwendung

Bitte lesen Sie diese wichtigen Informationen!

2.1 Verwendungszweck / Bestimmungsgemäße Verwendung

Die Mess- und Prüfgeräte der Serie PROFITEST MF umfassen

- PROFITEST MF XTRA (M534H)*
- PROFITEST MF TECH (M534K)*
- * Artikelnummer auf Typenschild (nur Prüfgerät); Bestellnummern (Gerät mit Standardlieferumfang bzw. erweitertem Zubehör) siehe Datenblatt.

Die Prüfgeräte werden verwendet zum Prüfen der Wirksamkeit von Schutzmaßnahmen an ortsfesten elektrischen Anlagen gemäß DIN VDE 0100-600, DIN VDE 0105-100, OVE E 8101, NIN / NIV und anderen länderspezifischen Normen. Sie ermöglichen auch die Prüfung von E-Ladestationen gemäß EN 61851-1 (DIN VDE 0122-1) sowie Erdungsmessungen. Für erhöhten Arbeitskomfort enthalten die Prüfgeräte vordefinierte Prüfsequenzen; optional können benutzerdefinierte Prüfsequenzen programmiert werden.

Die Prüfgeräte eignen sich besonders für die Prüfungen beim Errichten, bei der Inbetriebnahme, für Wiederholungsprüfungen und zur Fehlersuche in elektrischen Anlagen.

Der Anwendungsbereich der Prüfgeräte erstreckt sich auf alle Wechselstrom- und Drehstromnetze bis 230 V / 400 V (300 V / 500 V) Nennspannung und 16% Hz / 50 Hz / 60 Hz / 200 Hz / 400 Hz Nennfrequenz.

Im Prüfgerät wird eine Anlagenstruktur erstellt und die gemessenen Werte den Objekten zugeordnet. Durchgeführte Prüfungen und gemessene Werte können gespeichert und in einem Messund Prüfprotokoll dokumentiert werden.

Nur bei bestimmungsgemäßer Verwendung ist die Sicherheit von Anwender und Prüfgerät gewährleistet.

2.2 Bestimmungswidrige Verwendung

Alle Verwendungen des Prüfgerätes, die nicht in dieser Bedienungsanleitung oder in der Kurzbedienungsanleitung des Prüfgerätes beschrieben sind, sind bestimmungswidrig.

2.3 Haftung und Gewährleistung

Gossen Metrawatt GmbH übernimmt keine Haftung bei Sach-, Personen- oder Folgeschäden, die durch unsachgemäße oder fehlerhafte Anwendung des Produktes, insbesondere durch Nichtbeachtung der Produktdokumentation, entstehen. Zudem entfallen in diesem Fall sämtliche Gewährleistungsansprüche. Auch für Datenverluste übernimmt Gossen Metrawatt GmbH keine Haftung.

2.4 Öffnen / Reparaturen

Das Prüfgerät darf nur durch autorisierte Fachkräfte geöffnet werden, damit der einwandfreie und sichere Betrieb gewährleistet ist und die Garantie erhalten bleibt. Auch Originalersatzteile dürfen nur durch autorisierte Fachkräfte eingebaut werden.

Eigenmächtige konstruktive Änderungen am Prüfgerät sind verboten.

Falls feststellbar ist, dass das Prüfgerät durch nicht autorisiertes Personal geöffnet wurde, werden keinerlei Gewährleistungsansprüche betreffend Personensicherheit, Messgenauigkeit, Konformität mit den geltenden Schutzmaßnahmen oder jegliche Folgeschäden durch den Hersteller gewährt.

Durch Beschädigen oder Entfernen des Garantiesiegels verfallen jegliche Garantieansprüche.

2.5 Funktionsumfang

PROFITEST MF		
(Artikelnummer)	_	Ŧ
	±₩	534
	1 <u>3</u> 1 <u>3</u> 1 <u>3</u>	ΞĚ
	Fε	хe
Prüfen von Fehlerstrom-Schutzeinrichtungen (RCDs)		
U _R -Messung ohne FI-Auslösung	1	1
Messung der Auslösezeit	1	1
Messung des Auslösestroms I _F	1	1
selektive, SRCDs, PRCDs, Tvp G/R	1	1
allstromsensitive RCDs Tvp B, B+	1	1
aleichstromsensitive RDC-DDs und RCMBs	1	1
Prüfen von Isolationsüberwachungsgeräten (IMDs)	_	1
Prüfen von Differenzstrom-Überwachungsgeräten (RCMs)		1
Prüfung auf N-PE-Vertauschung	1	1
Messungen der Schleitenimpedanz Z _{L-PE} / Z _{L-N}		
Sicherungstabelle für Netze ohne RCD	1	1
ohne RCD-Auslösung, Sicherungstabelle	/	1
15 mA Messung ¹ /	1	
Erdungswiderstand R _E (Netzbetrieb)	_	
I/U-Messverfahren (2-/3-Pol-Messverfahren über	~	
Messadpater 2-Pol/2-Pol + Sonde)		
Erdungswiderstand R _E (Akkubetrieb)		1
3- oder 4-Pol-Messvertahren über Adapter PRO-RE		
Spezifischer Erdwiderstand ρ_{E} (Akkubetrieb)		1
(4-Pol-Messverfahren uber Adapter PRO-RE)		-
Selektiver Erdungswiderstand R _E (Netzbetrieb)		
mit 2-Pol-Adapter, Sonde, Erder und Zangenstromsensor	~	
(3-Pol-Messverfahren)		
Selektiver Erdungswiderstand R _E (Akkubetrieb)		
mit Sonde, Erder und Zangenstromsensor		1
(4-Pol-Messvertahren uber Adapter PRU-RE und Zangenstrom-		
Sensor)		
Erdschleitenwiderstand R _{ESCHL} (AKKubetrieb)		,
mit 2 Zangen (Zangenstromsensor direkt und Zangenstrom-		-
Wandler uber Adapter PRO-RE/2)		
Messung Potenzialausgieich R _{LO}	1	1
automatiscile ompotung		
Isolationswiderstatic R _{ISO}	1	1
	/	
Spannung O _{L-N} / O _{L-PE} / O _{N-PE} / I	V	V
Sondermessungen		
Strommessung mit Zange I _L , I _{AMP}	1	1
Drehfeldrichtung	1	1
Erdableitwiderstand R _{E(ISO)}	1	1
Spannungsfall (AU)	1	1
Standortisolation Z _{ST}	1	1
Zähleranlauf (kWh-Test)	1	1
Ableitstrom mit Adapter PRO-AB (IL)	—	1
Restspannung prüfen (Ures)	—	1
Intelligente Rampe ($ta + \Delta l$)	—	1
Elektrofahrzeuge an E-Ladesäulen (IEC 61851-1)	1	1
Protokollierung von Fehlersimulationen an PRCDs mit dem		,
Adapter PROFITEST PRCD		-
Ausstattung		
Sprache der Bedienerführung wählber ²⁾	1	1
Spicole UCI Deutenenunung Wallibal	· ·	V /
Autofunktion Driifeoguenzen	~	· ·
AUTOINIKUUN PLUSEQUENZEN	~	~
oodo-losor/PEID-Scopper)	1	1
UUG-LGSEI/NFID-SUAIIIEI)	1	
DOD-SUMMUSICHE IYP D (Datemuscher Strangeng)	V	×
Magalata maria CAT III COO V / CAT IV COO V	1	
Messkategorie CALIII 600 V / CALIV 300 V		
DAKKO-Kalidrierschein	1	 Image: A start of the start of

¹⁾ Sogenannte Life-Messung, ist nur sinnvoll, falls keine Vorströme in der Anlage vorhanden sind. Nur für Motorschutzschalter mit kleinem Nennstrom geeignet.

15 mA Prüfstrom gilt nur, wenn RCD mit $I_{\Delta N}$ = 30 mA eingestellt ist; ansonsten gilt Prüfstrom = $\frac{1}{2} \times I_{AN}$ des voreingestellten RCDs.

ansonsten gilt Prüfstrom = $\frac{1}{2} \times I_{\Delta N}$ des voreingestellten RCDs. ²⁾ z. Zt. verfügbare Sprachen: D, GB, I, F, E, P, NL, S, N, FIN, CZ, PL ³⁾ IZYTRONIQ BUSINESS Starter (IZYTRONIQ CLOUD)

3 Dokumentation

Diese Dokumentation beschreibt mehrere Prüfgeräte.

Daher können Eigenschaften und Funktionen beschrieben sein, die nicht auf Ihr Gerät zutreffen. Zudem können Abbildungen von Ihrem Gerät abweichen.

RCD-Scha	alter (Fehlerstrom-Schutzeinrichtung):	UISC
I_Δ	Auslösestrom	
$I_{\Delta N}$	Nennfehlerstrom	U_{L-L}
I _F	Ansteigender Prüfstrom (Fehlerstrom)	U _{L-N}
PRCD	Portable (ortsveränderlicher) RCD	U _{L-P}
	PRCD-S:	U _N
	chung	U _{3~}
	PRCD-K:	
	mit Unterspannungsauslösung und Schutzleiterüber- wachung	U _{S-F} U _Y
RCD-S	Selektiver RCD-Schutzschalter	
R _E	Errechneter Erdungs- bzw. Erderschleifenwiderstand	
SRCD	Socket (fest installierter) RCD	4
t _a	Auslösezeit / Abschaltzeit	1. L
$U_{I\Delta}$	Berührungsspannung im Augenblick des Auslösens	t
$U_{I\Delta N}$	Berührungsspannung	L
	bezogen auf den Nennfehlerstrom I_{\DeltaN}	_
UL	Grenzwert für die Berührungsspannung	-
Überstrom	nschutzeinrichtung:	-
l _k	Errechneter Kurzschlussstrom (bei Nennspannung)	2. N
Z _{I -N}	Netzimpedanz	ę
Z _{L-PF}	Schleifenimpedanz	-
		-
Erdung:		-
R _B	Widerstand der Betriebserde	3. ľ
R _E	Gemessener Erdungswiderstand	4. (
R _{ESchl}	Erder-Schleitenwiderstand	
Niederohn	niger Widerstand von	5. L
SCNULZ-, E	Miderstand von Potenzialausgleichsleitern:	
nl0+	PF)	6. F
BLO	Widerstand von Potenzialausgleichsleitern (– Pol an	A
1.0-	PE)	-
		-
Isolation:		
R _{E(ISO)}	Erdableitwiderstand (DIN 51953)	-
R _{ISO}	Isolationswiderstand	
R _{ST}	Standortisolationswiderstand	
Z _{ST}	Standortisolationsimpedanz	-
Strom:		
I _A	Abschaltstrom	-
li.	Ableitstrom (Messung mit Zangenstromwandler)	_
I _M	Messstrom	_
I _N	Nennstrom	
lp	Prüfstrom	-
		-
		-

Spannung:

f	Frequenz der Netzspannung
f _N	Nennfrequenz der Nennspannung
ΔU	Spannungsfall in %
U	an den Prüfspitzen gemessene Spannung während und nach der Isolationsmessung von R _{ISO}
U _{Batt}	Akkuspannung (Batteriespannung)
U _E	Erderspannung
U _{ISO}	Bei Messung von R _{ISO} : Prüfspannung, bei Rampen- funktion: Ansprech- oder Durchbruchspannung
U _{L-L}	Spannung zwischen zwei Außenleitern
U _{L-N}	Spannung zwischen L und N
U _{L-PE}	Spannung zwischen L und PE
U _N	Netz-Nennspannung
U _{3~}	höchste gemessene Spannung bei Bestimmung der Drehfeldrichtung
U _{S-PE}	Spannung zwischen Sonde und PE
U _Y	Leiterspannung gegen Erde

Erste Schritte

- Lesen und befolgen Sie die Produkt-Dokumentation. Beachten Sie dabei besonders alle Sicherheitsinformationen in der Dokumentation, auf dem Gerät und auf der Verpackung. Siehe
 - Kap. 1 "Sicherheitsvorschriften" auf Seite 4
 - Kap. 2 "Anwendung" auf Seite 5
 - Kap. 3 "Dokumentation" auf Seite 6
- . Machen Sie sich mit dem Prüfgerät vertraut. Siehe
 - Kap. 5 "Gerät" auf Seite 7
 - Kap. 6 "Bedien- und Anzeigeelemente" auf Seite 16
 - Kap. 7 "Betrieb" auf Seite 25
- Nehmen Sie grundlegende Einstellungen vor. Siehe Kap. 8 "Geräteeinstellungen" auf Seite 26.
- 4. Optional aber empfohlen: Legen Sie eine Datenbank im Prüfgerät an. Siehe Kap. 9 "Datenbank" auf Seite 30.
- Lesen Sie die grundlegenden Infos in Kap. 10 "Allgemeine Informationen zu Messungen" auf Seite 35.
- E. Führen Sie Messungen durch. Siehe Einzelmessungen bzw. Prüfsequenzen (automatische Abläufe):
 - Kap. 11 "Messen von Spannung und Frequenz" auf Seite 40
 - Kap. 12 "Pr
 üfen von Fehlerstrom-Schutzschaltungen (RCD)" auf Seite 41
 - Kap. 13 "Prüfen der Abschaltbedingungen von Überstrom-Schutzeinrichtungen, Messen der Schleifenimpedanz und Ermitteln des Kurzschlussstromes (Funktion ZL-PE und $\rm I_K)^{\prime\prime}$ auf Seite 51
 - Kap. 14 "Messen der Netzimpedanz (Funktion Z_{L-N})" auf Seite 54
 - Kap. 15 "Messen des Erdungswiderstandes (Funktion R_E)" auf Seite 56
 - Kap. 16 "Messen des Isolationswiderstandes" auf Seite 70
 - Kap. 17 "Messen niederohmiger Widerstände bis 200 Ohm (Schutzleiter und Schutzpotenzialausgleichsleiter)" auf Seite 73
 - Kap. 18 "Messungen mit Sensoren als Zubehör" auf Seite 76
 - Kap. 19 "Sonderfunktionen Schalterstellung EXTRA" auf Seite 77
 - Kap. 20 "Pr
 üfsequenzen (Automatische Pr
 üfabl
 äufe) Funktion AUTO" auf Seite 91

Weitere interessante Informationen: Kap. 22 "Wartung" auf Seite 93.

Gerät 5

Lieferumfang 5.1

Standard-Lieferumfang der PROFITEST MF-Serie:

	0		
1	Prüfgerät	1	Kompakt Akku-Pack (Z502H)
1	Schutzkontaktstecker-Ein- satz, länderspezifisch (PRO-SCHUKO / GTZ3228000R0001)	1	Ladegerät (Z502R)
1	2-Pol-Messadapter und 1 Leitung zur Erweiterung zum 3-Pol-Adapter (PRO-A3-II / Z5010)	1	DAkkS-Kalibrierschein
2	Krokodilklemmen	1	Bedienungsanleitung (dieses Dokument)
1	USB-Schnittstellenkabel		Informationen zu Open Source Software Lizenzen
1	Umhängegurt	1	Software IZYTRONIQ BUSINESS Starter* (12 Monate IZYTRONIQ CLOUD*)

** Download im Internet; Registrierschein im Lieferumfang

Optionales Zubehör (Auszug) 5.2

Die vollständige Übersicht über optionales Zubehör und detaillierte Informationen darüber finden Sie im Datenblatt des Prüfgeräts.

Hier wird das wichtigeste Zubehör aufgelistet

- Barcode-Leser (Z751A) Barcode-Leser zur Identifizierung von Anlagen, Stromkreisen und Betriebsmitteln. Anschluss am Prüfgerät und Stromversorgung via USB.
- PRO-HB (Z501V)
- Halterung für Prüfspitzen und Messadapter)
- Länderspezifische Steckereinsätze
 - PRO-GB/USA (Z503B)
 - PRO-CH (GTZ3225000R0001)
- Messadapter für PE-Messungen und ähnliche
 - PRO-RLO-II (Z501P) (Kabellänge: 10 m)
 - PRO-RLO 20 (Z505F) (Kabellänge: 20 m)
 - PRO-RLO 50 (Z505G) (Kabellänge: 50 m)
- PRO-AB (Z502S)
 - (Ableitstrommessadapter für PROFITEST MF XTRA)
- PROFITEST PRCD (M512R) (Prüfadapter zum Prüfen von mobilen Personenschutzschaltern des Typs PRCD-K und PRCD-S mit Hilfe des Prüfgeräts)
- PROFITEST EMOBILITY (M513R) (Adapter zur normgerechten Prüfung von 1- und 3-phasigen Ladekabeln Mode 2 und 3 durch Simulation von Fehlerfällen)
- E-SET BASIC (Z593A) (Basis-Zubehör für Erdungsmessung)
- E-SET PROFESSIONAL (Z592Z) (umfangreiches Zubehör für Erdungsmessung)

5.3 Bedeutung der Symbole auf dem Gerät

Warnung vor einer Gefahrenstelle (Achtung, Dokumentation beachten!)

- Gerät der Schutzklasse II

Ladebuchse für DC-Kleinspannung (für Ladegerät Z502R)

→ / + I Anzeige Akkuladezustand

Warnsymbol gemäß EN 61557-10 zur Begrenzung der Fremdüberspannung

Sicherungen (siehe Kapitel 22.2 auf Seite 93)

Das Gerät und seine Akkus dürfen nicht mit dem Hausmüll entsorgt werden. Weitere Informationen finden Sie in der Bedienungsanleitung.

EU-Konformitätskennzeichnung

Durch Beschädigen oder Entfernen des Garantiesiegels verfallen jegliche Garantieansprüche.

Besondere Fachkenntnisse sind durch Fachpersonal für elektrische Installation oder Reparatur erforderlich

Kalibriermarke (blaues Siegel):

XY123 -Zählnummer

D-K--Deutsche Akkreditierungsstelle GmbH – Kalibrierlaboratorium 15080-01-01 -Registriernummer

2018-07 -Datum der Kalibrierung (Jahr – Monat)

CAT III 600 V

Messkategorie CAT IV

300 V

Prüfgerät und Adapter

Prüfgerät und Adapter:

- 1 Bedienterminal mit Tasten und Anzeigefeld
- 2 Befestigungsöse zur Aufnahme des Tragegurts
- 3 Funktionsdrehschalter
- 4 Messadapter (2-polig)
- 5 Steckereinsatz (länderspezifisch)
- 6 Prüfstecker (mit Befestigungsring)
- 7 Krokodilklemme (aufsteckbar)
- 8 Prüfspitzen
- 9 Taste ON/START ▼ *
- 10 Taste I $I_{\Delta N}$ /Kompens./ZOFFSET
- 11 Kontaktflächen für Fingerkontakt
- 12 Halterung für Prüfstecker
- 13 Sicherungen
- 14 Klemme für Prüfspitzen (8)

Anschlüsse Stromzange, Sonde, Ableitstrommessadapter PRO-AB: 15 Stromzange Anschluss 1

- 16 Stromzange Anschluss 2
- 17 Sondenanschluss

Schnittstellen, Ladegerätanschluss:

- 19 USB-Schnittstelle Typ A für Anschluss USB-Tastatur/Barcode-Leser/RFID-Scanner
- 20 USB-Schnittstelle Typ B für Datenübertragung (PC-Anschluss)
- 21 Reset-Knopf
- 22 Anschluss für Ladegerät Z502R
- 23 Akkufachdeckel
 - (Fach für Akkus sowie Ersatzsicherungen)
- * Einschalten nur über Taste am Gerät
- Zubehör:
- A PRO-HB (Z501V) Halterung für Prüfspitzen und Messadapter separat erwerbbar

(1) Bedienterminal - Anzeigefeld

Siehe Kap. 6.1 "Bedienterminal" auf Seite 16. Siehe Kap. 6.2 "Display" auf Seite 16.

(2) Befestigungsösen für Umhängegurt

Befestigen Sie den beiliegenden Umhängegurt an den Halterungen an der rechten und linken Seite des Gerätes. Sie können dann das Gerät umhängen und haben zum Messen beide Hände frei.

(3) Funktionsdrehschalter

Mit diesem Drehschalter wählen Sie die Grundfunktionen: SETUP / I_AN / I_F / Z_L-PE / Z_L-N / R_E / R_LO / R_ISO / U / SENSOR / EXTRA / AUTO

Ist das Gerät eingeschaltet und Sie drehen den Funktionsschalter, so werden immer die Grundfunktionen angewählt.

(4) Messadapter

<u>/i</u>/

Achtung!

Der Messadapter (2-polig) darf nur mit dem Prüfstecker des Prüfgeräts verwendet werden.

Die Verwendung für andere Zwecke ist nicht zulässig!

Der aufsteckbare Messadapter (2-polig) mit zwei Prüfspitzen wird zum Messen in Anlagen ohne Schutzkontakt-Steckdosen, z. B. bei Festanschlüssen, in Verteilern, bei allen Drehstrom-Steckdosen, sowie zur Isolationswiderstands- und Niederohmmessung verwendet.

Zur Drehfeldmessung ergänzen Sie den 2-poligen Messadapter mit der mitgelieferten Messleitung (Prüfspitze) zum 3-poligen Messadapter.

(5) Steckereinsatz (länderspezifisch)

Achtung!

Der Steckereinsatz darf nur mit dem Prüfstecker des Prüfgeräts verwendet werden. Die Verwendung für andere Zwecke ist nicht zulässig!

Mit dem aufgesteckten Steckereinsatz können Sie das Gerät direkt an Schutzkontakt-Steckdosen anschließen. Sie brauchen nicht auf die Steckerpolung achten. Das Gerät prüft die Lage von Außenleiter L und Neutralleiter N und polt, wenn erforderlich, den Anschluss automatisch um.

Mit aufgestecktem Steckereinsatz auf den Prüfstecker überprüft das Gerät, bei allen auf den Schutzleiter bezogenen Messarten, automatisch, ob in der Schutzkontaktsteckdose beide Schutzkontakte miteinander und mit dem Schutzleiter der Anlage verbunden sind.

(6) Prüfstecker

Auf den Prüfstecker werden die länderspezifischen Steckereinsätze (z. B. Schutzkontakt-Steckereinsatz für Deutschland oder SEV-Steckereinsatz für die Schweiz) oder der Messadapter (2polig) aufgesteckt und mit einem Drehverschluss gesichert. Die Bedienelemente am Prüfstecker unterliegen einer Entstörfilterung. Hierdurch kann es zu einer leicht verzögerten Reaktion gegenüber einer Bedienung direkt am Gerät kommen.

(7) Krokodilclip (aufsteckbar)

(8) Prüfspitzen

Die Prüfspitzen sind der zweite (feste-) und dritte (aufsteckbare-) Pol des Messadapters. Ein Spiralkabel verbindet sie mit dem aufsteckbaren Teil des Messadapters.

(9) Taste ON/Start ▼

Mit dieser Taste am Prüfstecker oder Bedienterminal wird der Messablauf der im Menü gewählten Funktion gestartet. Aus-

nahme: Ist das Gerät ausgeschaltet, so wird es durch Drücken nur der Taste am Bedienterminal eingeschaltet.

Die Taste hat die gleiche Funktion wie die Taste ▼ am Prüfstecker.

(10) Taste $I_{\Delta N}$ / I (am Bedienterminal)

Mit dieser Taste am Prüfstecker oder Bedienterminal werden folgende Abläufe ausgelöst:

- Innerhalb der Funktion $R_{L0}\,/\,Z_{L-N}$ wird die Messung von Roffset gestartet.
- Halbautomatischer Polwechsel (siehe Kap. 10.9)

(11) Kontaktflächen

Die Kontaktflächen sind an beiden Seiten des Prüfsteckers angebracht. Beim Anfassen des Prüfsteckers berühren Sie diese automatisch. Die Kontaktflächen sind von den Anschlüssen und von der Messschaltung galvanisch getrennt.

Bei einer Potenzialdifferenz von > 25 V zwischen Schutzleiteranschluss PE und der Kontaktfläche wird PE eingeblendet. Siehe "Signalisierung der LEDs, Netzanschlüsse und Potenzialdifferenzen" auf Seite 17..

(12) Halterung für Prüfstecker

In der gummierten Halterung können Sie den Prüfstecker mit dem befestigten Steckereinsatz am Gerät sicher fixieren.

(13) Sicherungen

Die beiden Sicherungen schützen das Gerät bei Überlast. Außenleiteranschluss L und Neutralleiteranschluss N sind einzeln abgesichert. Ist eine Sicherung defekt und wird der mit dieser Sicherung geschützte Pfad beim Messen verwendet, dann wird eine entsprechende Meldung im Anzeigefeld angezeigt.

Siehe Kap. 22.2 "Sicherung auswechseln" auf Seite 93.

(14) Klemmen für Prüfspitzen (8)

(15/16) Stromzangenanschluss

An diese Buchsen dürfen ausschließlich die Zangenstromwandler angeschlossen werden, die als Zubehör angeboten werden.

(17) Sondenanschlussbuchse

Die Sondenanschlussbuchse wird für die Messung der Sondenspannung U_{S-PE}, der Erderspannung U_E, des Erdungswiderstandes R_E und des Standortisolationswiderstandes benötigt.

Bei der Prüfung von RCD-Schutzeinrichtungen zum Messen der Berührungsspannung kann sie verwendet werden. Der Anschluss der Sonde erfolgt über einen berührungsgeschützten Stecker mit 4 mm Durchmesser.

Das Gerät prüft, ob eine Sonde ordnungsgemäß gesetzt ist, und zeigt den Zustand im Anzeigefeld an.

(19) USB-Schnittstelle Typ A

Der USB-Anschluss ermöglicht den Anschluss einer USB-Tastatur, eines Barcode-Leser oder eines RFID-Scanner zur Dateneingabe.

(20) USB-Schnittstelle Typ B

Der USB-Anschluss ermöglicht den Datenaustausch zwischen Prüfgerät und PC.

(21) Reset-Knopf

Manuelles Zurücksetzen auf Werkseinstellungen, siehe Kap. 21 "Zurücksetzen (Werkseinstellungen)" auf Seite 92.

(22) Ladebuchse

An diese Buchse darf ausschließlich das Ladegerät **Z502R** zum Laden von Akkus im Prüfgerät angeschlossen werden.

(23) Akkufachdeckel – Ersatzsicherungen

Achtung!

ON S

START

Bei abgenommenem Akkufachdeckel muss das Prüfgerät allpolig vom Messkreis getrennt sein!

Das darunterliegende Fach dient der Aufnahme des Akkus (Z502H/Z502O) bzw. handelsübliche Akkus oder Batterien. Zudem befinden sich zwei Ersatzsicherungen unter dem Akkufachdeckel.

5.5 Technische Daten

Nenngebrauchsbereiche

Spannung U _N	120 V (108 V 132 V) 230 V (196 V 253 V) 400 V (340 V 440 V)		
Frequenz f _N	16 % Hz (15,4 V 18 Hz) 50 Hz (49,5 V 50,5 Hz) 60 Hz (59,4 V 60,6 Hz) 200 Hz (190 V 210 Hz) 400 Hz (380 V 420 Hz)		
Gesamtspannungsbereich Gesamtfrequenzbereich Kurvenform Temperaturbereich Akkuspannung Netzimpedanzwinkel Sondenwiderstand < 50 kΩ	65 V 550 V 15,4 V 420 Hz Sinus 0 °C + 40 °C 8 V 12 V entsprechend $cosφ = 1 0,95$		
Referenzbedingungen			
Netzspannung	230 V ± 0.1 %		
Netzfrequenz	$50 \text{ Hz} \pm 0.1 \%$		
Frequenz der Messgröße	45 Hz 65 Hz		
Kurvenform d. Messgröße	Sinus (Abweichung zwischen Effektiv- und Gleichrichtwert \leq 0,1 %)		
Netzimpedanzwinkel	$\cos \varphi = 1$		
Sondenwiderstand	$\leq 10 \Omega$		
Umgebungsspannung	$12 V \pm 0.5 V$		
Relative Luftfeuchte	40% 60%		
Fingerkontakt	bei Prüfung Potenzialdifferenz		
0	auf Erdpotenzial		
Standortisolation	rein ohmsch		
Stromversorgung			
Akkus / Batterien	8 Stück AA 1,5 V, wir empfehlen, ausschließlich den mit- gelieferten Akkupack (2000 mAh; Z502H) oder als Zubehör verfügbaren Akkupack (2500 mAh; Z502O) zu ver- wenden		
Anzahl der Messungen (Standard-Setup)		
– bei R _{ISO}	1 Messung – 25 s Pause:		
	ca. 1100 (2502H) bzw. 810 (2502O) Messungen		
– bei R _{LO}	Auto-Umpolung/1 Ω		
	(1 Messzyklus) – 25 s Pause:		
	Ca. 1000 (2502H) bzw. 970 (2502O) Messungen		
Akkutest	symbolische Anzeige der Akku-		
	spannung BAT		
Akkusparschaltung	Das Prüfgerät schaltet sich nach der		
	ab. Die Einschaltdauer kann vom		
	Anwender selbst gewählt werden.		
Sicherheitsabschaltung	Das Gerät schaltet bei zu niedriger Ver-		
	sorgungsspannung ab bzw. kann nicht eingeschaltet werden.		
Ladebuchse	Eingelegte Akkus können durch		
	Ladebuchse direkt aufgeladen werden:		
	Ladegerät Z502R		

* maximale Ladezeit bei vollständig entladenen Akkus.

Ein Timer im Ladegerät begrenzt die Ladezeit auf maximal 4 Stunden

Überlastbarkeit

 $\begin{array}{l} \mathsf{R}_{\text{ISO}} \\ \mathsf{U}_{\text{L-PE}}, \, \mathsf{U}_{\text{L-N}} \\ \mathsf{RCD}, \, \mathsf{R}_{\text{E}}, \, \mathsf{R}_{\text{F}} \\ \mathsf{Z}_{\text{L-PE}}, \, \mathsf{Z}_{\text{L-N}} \end{array}$

 R_{LO}

Schutz durch Feinsicherungen

Elektrische Sicherheit

Schutzklasse Nennspannung Prüfspannung Messkategorie Verschmutzungsgrad Sicherungen Anschluss L und N

230/400 V (300/500 V) 3,7 kV 50 Hz CAT III 600 V bzw. CAT IV 300 V 2

550 V (begrenzt die Anzahl der Mes-

sungen und Pausenzeit, bei Überlastung schaltet ein Thermoschalter das

Elektronischer Schutz verhindert das

Einschalten, wenn Fremdspannung

> 5 A – Auslösen der Sicherungen

1200 V dauernd

600 V dauernd 440 V dauernd

Gerät ab.)

anliegt.

Ш

FF 3,15 A 10 s,

je 1 G-Schmelzeinsatz FF 3,15/500G 6,3 mm × 32 mm

Elektromagnetische Verträglichkeit EMV

Produktnorm	EN 61326-1	
Störaussendung		Klasse
EN 55022		A
Störfestigkeit	Prüfwert	Leistungsmerkmal
EN 61000-4-2	Kontakt/Luft - 4 kV/8 kV	
EN 61000-4-3	10 V/m	
EN 61000-4-4	Netzanschluss - 2 kV	
EN 61000-4-5	Netzanschluss - 1 kV	
EN 61000-4-6	Netzanschluss - 3 V	
EN 61000-4-11	0,5 Periode / 100%	

Umgebungsbedingungen

Genauigkeit	0 + 40 °C
Betrieb	−5 + 50 °C
Lagerung	–20 + 60 °C (ohne Akkus)
relative Luftfeuchte	max. 75%, Betauung ist auszuschließen
Höhe über NN	max. 2000 m

Mechanischer Aufbau

Anzeige	Mehrfachanzeige mittels Punktmatrix 128 × 128 Punkte
Abmessungen	$B \times L \times T = 260 \text{ mm} \times 330 \text{ mm} \times 90 \text{ mm}$
Gewicht	ca. 2,7 kg mit Akkus
Schutzart	Gehäuse IP40, Prüfspitze IP40 nach EN 60529

Datenschnittstellen

Тур	USB für PC-Anbindung
Тур	RS-232 für Barcode- und RFID-Leser

5.6 Technische Kennwerte PROFITEST MF TECH

											Ans	schlüss	е		
Funk -tion	Messgröße	Anzeigebereich	Auf- lösung	Eingangs- impedanz/ Prüfstrom	Messbereich	Nennwerte	Betriebsmess- unsicherheit	Eigen- unsicherheit	Stecker- einsatz 1)	2-Pol- Adapter	3-Pol- Adapter	Sonde	WZ12C	Zangei Z3512A	n MFLEX P300
	U _{L-PE}	0 V 99,9 V 100 V 600 V	0,1 V 1 V		0,3 V 600 V ¹⁾		±(I2% v.M.I+5D) +(I2% v M I+1D)	±(I1% v.M.I+5D) +(I1% v.M.I+1D)							
	f	15,0 Hz 99,9 Hz	0,1 Hz			U _N = 120 V, 230 V, 400 V,	±(10,2% v.M.I+1D)	±(10,1% v.M.I+1D)	•	•	•				
U	U _{3 AC}	0 V 99,9 V 100 V 600 V	0,1 V 1 V	5 MΩ	0,3 V 600 V	500 V	±(I3% v.M.I+5D) +(I3% v.M.I+1D)	±(l2% v.M.l+5D) +(l2% v.M.l+1D)			•	-			
	USONDE	0 V 99,9 V	0,1 V		1,0 V 600 V	$I_{\rm N} = 16,7$ Hz, 50 Hz, 60 Hz,	±(12% v.M.1+5D)	±(11% v.M.I+5D)	-			•			
	UL-N	0 V 99,9 V 100 V 600 V	0,1 V 1 V	-	1,0 V 600 V ¹⁾	200 Hz, 400 Hz	±(12% v.M.1+1D) ±(13% v.M.1+5D) ±(13% v.M.1+1D)	±(12% v.M.1+1D) ±(12% v.M.1+5D) ±(12% v.M.1+1D)	•	-	•		-		
	U _{IAN}	0 V 70,0 V	0,1 V	$0,3 \times I_{\Delta N}$	5 V 70 V		+ 10% v.M. +1D	+11% v.M.I-1D							
		10 Ω … 999 Ω 1,00 kΩ … 6,51 kΩ	1 Ω 0,01 kΩ	$I_{\Delta N} = 10 \text{ mA} \times 1,05$				11370 V.W.11110	-						
		3 Ω 999 Ω 1 kΩ 2,17 kΩ	1 Ω 0,01 kΩ	$I_{\Delta N} = 30 \text{ mA} \times 1,05$	Rechenwert	U _N = 120 V									
	R _E	$\frac{1\Omega \dots 651 \Omega}{0.3 \Omega \qquad 99.9 \Omega}$	1Ω 01Ω	$I_{\Delta N}$ =100 mA × 1,05	aus $R_E = U_{IANI} / I_{ANI}$	230 V,									
		100 Ω 217 Ω	1Ω	$I_{\Delta N}$ =300 mA × 1,05		400 V									
		0,2 Ω 9,9 Ω 10 Ω 130 Ω	0,1 Ω 1 Ω	$I_{\Delta N}$ =500 mA × 1,05		f _N = 50 Hz, 60 Hz									
Ι ΔN	$I_{\rm F} (I_{\Delta \rm N} = 6 \text{ mA})$	1,8 mA 7,8 mA	0.1 m Δ	1,8 mA 7,8 mA	1,8 mA 7,8 mA	U ₁ = 25 V, 50 V			•	•		wahl-			
I _F	$I_F (I_{\Delta N} = 30 \text{ mA})$	9,0 mA 39,0 mA	0,1 mA	9,0 mA 39,0 mA	9,0 mA 39,0 mA		(150/ v M L 1D)	(12 E0/ v M L 2D)				weise			
	$I_F (I_{\Delta N} = 100 \text{ mA})$	30 mA 130 mA	1 mA	30 mA 130 mA	30 mA 130 mA	¹ ΔN — 6 mA,	±(13% V.IVI.1+1D)	±(13,3% V.IVI.1+2D)							
	$I_F (I_{\Delta N} = 300 \text{ mA})$	90 mA 390 mA	1 mA 1 mΔ	90 mA 390 mA	90 mA 390 mA	10 mA, 30 mA									
	$U_{IA} / U_{I} = 25 V$	0 V 25,0 V	0.1.V		0 V 25,0 V	100 mA,	. 1100/M.L. 1D	+11% v.M.I-1D	-						
	$U_{L\Delta} / U_L = 50 V$	0 V 50,0 V	0,1 V	wie I $_{\Delta}$	0 V 50,0 V	300 mA, 500 mA ²⁾	+110% V.IVI.I+1D	+19% v.M.1+1 D	-						
	$t_A (I_{\Delta N} \times 1)$	0 ms 1000 ms	1 ms	6 mA 500 mA	0 ms 1000 ms										
	$t_A (I_{\Delta N} \times 2)$	0 ms 1000 ms	1 ms	2 × 500 mA	0 ms 1000 ms		±4 ms	±3 ms							
	$t_A~(l_{\Delta N} imes 5)$	0 ms 40 ms	1 ms	5 × 6 mA 5 × 300 mA	0 ms 40 ms										
	$Z_{L-PE}(\begin{array}{c} \bullet \\ \bullet \end{array})$	0 mΩ 999 mΩ 1,00 Ω 9,99 Ω	1 mΩ 0,01 Ω	1,3 A AC	$\begin{array}{c} 0,15 \ \Omega \ \dots \ 0,49 \ \Omega \\ 0,50 \ \Omega \ \dots \ 0,99 \ \Omega \\ 1,00 \ \Omega \ \dots \ 9,99 \ \Omega \end{array} \ f_N$	$\begin{array}{l} U_{N} = 120 \text{ V,} \\ 230 \text{ V, } 400 \text{ V,} \\ 500 \text{ V}^{1)} \\ f_{N} = 16,7 \text{ Hz}^{8)}, 50 \text{ Hz}, \\ 60 \text{ Hz} \end{array}$	±(I10% v.M.I+30D) ±(I10% v.M.I+30D) ±(I5% v.M.I+3D)	±(I5% v.M.I+30D) ±(I4% v.M.I+30D) ±(I3% v.M.I+3D)							
_	Z _{L-PE}	0 mΩ 999 mΩ 1,00 Ω 9,99 Ω 10,0 Ω 29,9 Ω	0,1 32	3,7 A AC 0,5 A DC, 1,25 A DC	0,25 Ω 0,99 Ω 1,00 Ω 9,99 Ω	$U_{N} = 120 \text{ V}, 230 \text{ V}$ $f_{N} = 50 \text{ Hz}, 60 \text{ Hz}$	±(I18% v.M.I+30D) ±(I10% v.M.I+3D)	±(I6% v.M.I+50D) ±(I4% v.M.I+3D)							
L-PE	$I_{K}(Z_{L-PE} \blacktriangle,$	0 A 9,9 A 10 A 999 A	0,1 A 1 A		120 (108 132) V 230 (196 253) V		5.1		•	•					
Z _{L-N}	Z _{L-PE} + DC)	1,00 kA 9,99 kA 10,0 kA 50,0 kA	10 A 100 A		400 (340 440) V 500 (450 550) V		Rechenwe	rt aus Z _{L-PE}	-	Z _{L-PE}					
	Z _{L-PE} (15 mA ⁹⁾)	0,6 Ω 9,9 Ω 10,0 Ω 99,9 Ω 100 Ω 999 Ω	0,1 Ω 0,1 Ω 1 Ω		nur 10,0 Ω 99,9 Ω 100 Ω 999 Ω	Anzeigebereich $U_N = 120 \text{ V. } 230 \text{ V}$	±(I10% v.M.I+10D) ±(I8% v.M.I+2D)	±(I2% v.M.I+2D) ±(I1% v.M.I+1D)							
	I _K (15 mA ⁹⁾)	100 mA 999 mA 0,00 A 9,99 A 10,0 A 99,9 A	1 mA 0,01 A 0,1 A	15 mA AC ⁹⁾	Rechenwert abh. von U_N und Z_{L-PE} : $I_K =$	f _N = 16,7 ⁸⁾ , 50 Hz, 60 Hz	Rechenwert aus $I_{\rm K} = U_{\rm N}/Z_{\rm L}$; Z _{L-PE} (15 mA ⁹⁾): _{PE} (15 mA ⁹⁾)							
		0 mO 000 mO	1 mO	1,3 A AC 3,7 A AC	0,15 Ω 0,49 Ω		±(10% v.M.1+30D)	±(15% v.M.1+30D)							
R _F	R_E (mit Sonde) [R_E (ohne Sonde) Werte wie Z_{L-PE}]	$\begin{array}{c} 1,00\ \Omega\ \dots\ 9,99\ \Omega\\ 10,0\ \Omega\ \dots\ 99,9\ \Omega\\ 100\ \Omega\ \dots\ 999\ \Omega\\ 1\ k\Omega\ \dots\ 9,99\ k\Omega\\ \end{array}$	0,01 Ω 0,1 Ω 1 Ω 0,01 kΩ	1,3 A AC 3,7 A AC 1,3 A AC 3,7 A AC 400 mA AC 40 mA AC 4 mA AC	0,50 Ω 0,99 Ω 1,0 Ω9,99 Ω 10 Ω99,9 Ω 100 Ω999 Ω 1 kΩ 9 99 kΩ	$\begin{array}{l} U_{N} = 120 \text{ V}, 230 \text{ V} \\ U_{N} = 400 \text{ V}^{-1)} \\ f_{N} = 50 \text{ Hz}, 60 \text{ Hz} \end{array}$	\pm (110% v.M.I+30D) \pm (15% v.M.I+3D) \pm (110% v.M.I+3D) \pm (110% v.M.I+3D) \pm (110% v.M.I+3D)	±(I4% v.M.I+30D) ±(I3% v.M.I+3D) ±(I3% v.M.I+3D) ±(I3% v.M.I+3D) +(I3% v.M.I+3D)	•	•		•			
	R _E DC+	0 mΩ 999 mΩ 1,00 Ω 9,99 Ω 10,0 Ω 29,9 Ω	1 mΩ 0,01 Ω 0,1 Ω	1,3 A AC 3,7 A AC 0,5 A DC, 1,25 A DC	0,25 Ω 0,99 Ω 1,00 Ω 9,99 Ω	$U_{N} = 120V,230 V$ $f_{N} = 50 Hz$, 60 Hz	±(I18% v.M.I+30D) ±(I10% v.M.I+3D)	±(I6% v.M.I+50D) ±(I4% v.M.I+3D)	-						
	U _E	0 V 253 V	1 V	—	Rechenwert										
R _E Sel	R _E	$0\Omega\ldots999\Omega$	ι mΩ 1 Ω	1,3 A AC 2,7 A AC	0.25 Ω 300 Ω ⁴⁾	siehe R _E	±(120% v.M.1+20 D)	±(115% v.M.1+20 D)	_					•	•
Zange	R _E DC+	0 Ω 999 Ω	1 mΩ 1 Ω	U,5 A DC/1,25 A DC	.,	$U_N = 120 \text{ V}, 230 \text{ V}$ $f_N = 50 \text{ Hz}, 60 \text{ Hz}$	±(122% v.M.1+20 D)	±(115% v.M.1+20 D)							
		10 kΩ 199 kΩ	1 kΩ		10 kΩ 199 kΩ		±(120% v.M.1+2D)	±(110% v.M.I+3D)							
EXTRA	Z _{ST}	200 kΩ 999 kΩ 1,00 MΩ 9,99 MΩ 10,0 MΩ 30,0 MΩ	0,01 MΩ 0,1 MΩ	2,3 mA bei 230 V	200 κΩ 999 κΩ 1,00 ΜΩ 9,99 ΜΩ 10,0 ΜΩ 30,0 ΜΩ	$\boldsymbol{U}_0 = \boldsymbol{U}_{L\text{-}N}$	±(110% v.M.1+2D)	±(15% v.M.1+3D)	•	•	•	•			

PROFITEST MF TECH

											Ans	schlüs	se		
Funk-	Messaröße	Anzeigehereich	Auf-	Prüfstrom	Messhereich	Nennwerte	Betriebsmess-	Eigen-	Stecker-	0.0-1	0.0-1	Zang	gen / N	lessber	reiche
tion	Wicoogroupe	Anzeigebereien	lösung	Tuisuoin	WC33DCICICII	Noninvorto	unsicherheit	unsicherheit	einsatz 1)	2-P0I- Adapter	Adapter	WZ12	Z3512	MFLEX	CP1100
		1 kΩ 999 kΩ 1,00 MΩ 9,99 MΩ 10,0 MΩ 49,9 MΩ	1 kΩ 10 kΩ 100 kΩ		50 kΩ … 999 kΩ 1,00 MΩ … 49,9 MΩ	$U_N = 50 V$ $I_N = 1 mA$						U	A	P300	
		1 kΩ 999 kΩ 1,00 MΩ 9,99 MΩ 10,0 MΩ 99,9 MΩ	1 kΩ 10 kΩ 100 kΩ	-	50 kΩ 999 kΩ 1,00 MΩ 99,9 MΩ	$\begin{array}{c} U_{N}=100 \text{ V} \\ I_{N}=1 \text{ mA} \end{array}$	Bereich kΩ +(15% v M I+10D)	Bereich kΩ ±(I3% v.M.I+10D)							
R _{ISO}	R _{ISO} , R _{E ISO}	1 kΩ 999 kΩ 1,00 MΩ 9,99 MΩ 10,0 MΩ 99,9 MΩ 100 MΩ 200 MΩ	1 kΩ 10 kΩ 100 kΩ 1 MΩ	I _K = 1,5 mA	50 kΩ 999 kΩ 1,00 MΩ 200 MΩ	$U_{N} = 250 \text{ V}$ $I_{N} = 1 \text{ mA}$	$\begin{array}{c} \text{Bereich } M\Omega \\ \pm (15\% \text{ v.M.}\text{l}+1\text{D}) \end{array} \begin{array}{c} \text{Bereich } M\Omega \\ \pm (13\% \text{ v.M.}\text{l}+1\text{D}) \end{array}$	•	•						
		1 kΩ 999 kΩ 1,00 MΩ 9,99 MΩ 10,0 MΩ 99,9 MΩ 100 MΩ 500 MΩ	1 kΩ 10 kΩ 100 kΩ 1 MΩ	-	50 kΩ 999 kΩ 1,00 MΩ 499 MΩ	$\begin{array}{l} U_{N}=325 \text{ V},\\ U_{N}=500 \text{ V},\\ U_{N}=1000 \text{ V}\\ I_{N}=1 \text{ mA} \end{array}$									
	U	10 V 999 V 1,00 kV 1,19 kV	1 V 10 V		10 kV 1,19 kV		±(I3% v.M.I+1D)	±(I1,5% v.M.I+1D)							
R _{LO}	R _{LO}	0,00 Ω 9,99 Ω 10,0 Ω 99,9 Ω 100 Ω 199 Ω	0,01 Ω 0,1 Ω 1 Ω	$\begin{array}{l} I \geq 200 \text{ mA DC} \\ I < 260 \text{ mA DC} \end{array}$	0,10 Ω 5,99 Ω 6,00 Ω 99,9 Ω	U ₀ = 4,5 V	±(I4% v.M.I+2D)	±(12% v.M.1+2D)		•					
	ROFFSET	0,00 Ω 9,99 Ω	0,01 Ω	$\label{eq:lastic_linear} \begin{array}{l} l \geq 200 \text{ mA DC} \\ l < 260 \text{ mA DC} \end{array}$	$\begin{array}{c} 0,10\ \Omega\ \dots\ 5,99\ \Omega\\ 6,00\ \Omega\ \dots\ 99,9\ \Omega \end{array}$										
				Wandler- übersetzung			5)	5)							
		0,0 mA 99,9 mA	0,1 mA				±(I13% v.M.I+5D)	±(15% v.M.1+4D)							
		100 mA 999 mA 1,00 A 9,99 A	1 mA 0,01 A	1 V/A	5 A 15 A		±(13% v.M. +1D)	±(15% v.M.1+1D)				I 15 A			
		10,0 A 15,0 A	0,1 A			f _N = 50 Hz, 60 Hz	· (1110/	· (149/ · · · M 1 · OD)							
		1,00 A 9,99 A	0,01 A	1 m\//A	5 A 150 A		±(111% V.IVI.1+4D)	±(14% V.IVI.1+3D)				11			
		10,0 A 99,9 A	0,1 A	T IIIV/A	5 A 100 A		±(111% v.M.1+1D)	±(I4% v.M.I+1D)				150 A			
		0.0 mA 99.9 mA	0.1 mA				+(17% y M)	+(15% v M I+2D)							
		100 mA 999 mA	1 mA	1 V/A	5 mA 1000 mA		+(17% v M I+1D)	+(15% v M I+1D)					1 A		
		0.00 A 9.99 A	0.01 A	100 mV/A	0.05 A 10 A	f	±(13.4% v.M.1+2D)	±(I3% v.M.I+2D)					10 A	-	
		0,00 A 9,99 A	0,01 A		.,	^{IN –} 16.7 Hz. 50 Hz.	±(I3,1% v.M.I+2D)	±(I3% v.M.I+2D)					100.4		
SEN-		10,0 A 99,9 A	0,1 A	10 mV/A	0,5 A 100 A	60Hz, 200 Hz,	±(I3,1% v.M.I+1D)	±(I3% v.M.I+1D)					100 A		
SOR	L	0,00 A 9,99 A	0,01 A			400 Hz	±(I3,1% v.M.I+1D)	±(I3% v.M.I+1D)	1				1000		
6) 7)	'L/Amp	10,0 A 99,9 A	0,1 A	1 mV/A	5 A 1000 A		±(I3,1% v.M.I+2D)	±(I3% v.M.I+2D)]				Δ		
0,1)		100 A 999 A	1 A				±(I3,1% v.M.I+1D)	±(I3% v.M.I+1D)							
		0,0 mA 99,9 mA 100 mA 999 mA	0,1 mA 1 mA	1 V/A	30 mA 1000 mA		±(l27% v.M.l+100D) ±(l27% v.M.l+11D)	±(I3% v.M.I+100D) ±(I3% v.M.I+11D)	-					3 A	
		0,00 A 9,99 A	0,01 A	100 mV/A	0,3 A 10 A	f _N = 50 Hz, 60 Hz	±(l27% v.M.l+12D) +(l27% v.M.l+11D)	±(I3% v.M.I+12D) +(I3% v M I+11D)	-					30 A	
		0.00 A 9.99 A	0.01 A				±(127% v.M.1+100D)	±(13% v.M.I+100D)							
		10,0 A 99,9 A	0,1 A	10 mV/A	3 A 100 A		±(127% v.M.I+11D)	±(I3% v.M.I+11D)						300 A	
		0,00 A 9,99 A	0,01 A	10 m\//	0.5.4 100.4		±(I5% v.M.I+12D)	±(I3% v.M.I+12D)							100 4
		10,0 A 99,9 A	0,1 A	TU ITIV/A	0,5 A 100 A		±(15% v.M.1+2D)	±(I3% v.M.I+2D)]						TUU A
		0,00 A 9,99 A	0,01 A		5 A 1000 A	DC, 16,7 Hz, ±(50 Hz, 60 Hz, ±(A 200 Hz ±	±(15% v.M.1+50D)	±(I3% v.M.I+50D)]						
		10,0 A 99,9 A	0,1 A	1 mV/A			±(15% v.M.1+7D)	±(I3% v.M.I+7D)							1000 A
I		100 A 999 A	1 A		1		$\pm (15\% \text{ v.M.}) + 2D)$	±(13% v.M.1+2D)			1		1	1	1

1) U > 230 V nur mit 2- bzw. 3-Pol-Adapter

2) 1 × I_{\Delta N} > 300 mA und 2 × I_{\Delta N} > 300 mA und 5 × I_{\Delta N} > 500 mA und I_f > 300 mA nur bis U_N ≤ 230 V!

 $5 \times I_{\Delta N} > 300 \text{ mA}$ nur mit $U_N = 230 \text{ V}$

3) Die an der Zange gewählte Wandlerübersetzung (1/10/100/1000 mV/A) muss in Schalterstellung "SENSOR" / Menu "TYP" eingestellt werden.

4) bei $R_{Eselektiv}/R_{Egesamt} < 100$

5) Bei den angegebenen Betriebsmess- und Eigenunsicherheiten sind die der jeweiligen Stromzange bereits enthalten.

- 6) Messbereich des Signaleingangs am Prüfgerät U_E: 0 … 1,0 V_{eff} (0 … 1,4 V_{peak}) AC/DC
- 7) Eingangsimpedanz des Signaleingangs am Prüfgerät: 800 k Ω
- ⁸⁾ bei $f_N < 45$ Hz => U_N < 500 V
- ⁹⁾ 15 mA Prüfstrom gilt nur, wenn RCD mit $I_{\Delta N}$ = 30 mA eingestellt ist; ansonsten gilt Prüfstrom = $\frac{1}{2} \times I_{\Delta N}$ des voreingestellten RCDs.

Legende: D = Digit, v. M. = vom Messwert

5.7 Technische Kennwerte PROFITEST MF XTRA

				Fingenge							Ans	schlüss	e		
Funk- tion	Messgröße	Anzeigebereich	Auf- lösung	impedanz/ Prüfstrom	Messbereich	Nennwerte	Betriebsmess- unsicherheit	Eigen- unsicherheit	Stecker- einsatz	2-Pol- Adapter	3-Pol- Adapter	Sonde	WZ12C	Zangen Z3512A	n MFLEX P300
	U _{L-PE}	0 V 99,9 V	0,1 V		0,3 V 600 V ¹⁾	U _N =	±(I2% v.M.I+5D)	±(I1% v.M.I+5D)							
	U _{N-PE}	15,0 Hz 99,9 Hz	0,1 Hz	-	DC	120 V,	±(12% V.IVI.1+1D)	±(11% V.M.I+TD)	•	•	•				
	1	100 Hz 999 Hz	1 Hz	-	15,4 Hz 420 Hz	230 V, 400 V,	±(IU,2% V.IVI.I+ ID)	±(10,1% V.WI.I+1D)				_			
U	U _{3 AC}	100 V 99,9 V	0,1 V 1 V	5 MΩ	0,3 V 600 V	500 V,	$\pm(13\% \text{ v.IVI.1+5D})$ $\pm(13\% \text{ v.M.1+1D})$	±(I2% v.M.I+5D) ±(I2% v.M.I+1D)			•				
	U _{SONDE}	0 V 99,9 V	0,1 V	-	1,0 V 600 V	f _N = 16,7 Hz,	±(12% v.M.1+5D)	±(11% v.M.I+5D)	†			•	-		
	U _{L-N}	0 V 99,9 V 100 V 600 V	0,1 V 1 V	-	1,0 V 600 V ¹⁾	50 Hz,60 Hz, 200 Hz, 400 Hz	$\pm (13\% \text{ v.M.}+1D)$ $\pm (13\% \text{ v.M.}+5D)$ $\pm (13\% \text{ v.M.}+1D)$	\pm (12% v.M.1+1D) \pm (12% v.M.1+5D) \pm (12% v.M.1+5D)	•	-	•		-		
	ULANI	0 V 70.0 V	0.1 V	$0.3 \times I_{AN}$	5 V 70 V		+110% v.M.1+1D	+11% v.M.I-1D							
	- 12311	10 Ω 999 Ω	1Ω	10 mA + 1 05		-		+19% V.M.1+1D							
		1,00 kΩ 6,51 kΩ	0,01 kΩ	$I_{\Delta N} = 10 \text{ IIA} \times 1,05$	-										
		3 Ω 999 Ω 1 kΩ 2.17 kΩ	0.01 kΩ	$I_{\Delta N} = 30 \text{ mA} \times 1,05$	Rechenwert	U _N = 120 V.									
	R _E	1Ω 651 Ω	1Ω	$I_{\Delta N}$ =100 mA × 1,05	aus	230 V,									
		$0,3 \Omega \dots 99,9 \Omega$ 100 Q 217 Q	0,1 Ω 1 Ω	$I_{\Delta N}$ =300 mA × 1,05	$R_E = U_{I\Delta N} / I_{\Delta N}$	400 V ²									
		0,2 Ω 9,9 Ω	0,1 Ω	L 500 mA v 1.05	-	f _N = 50 Hz, 60 Hz									
IAN		10 Ω 130 Ω	1Ω	1_0_m2_0_mA7_0_m0	10				-			•			
	$I_{\rm F} (I_{\Delta \rm N} = 6 \text{ mA})$	1,8 mA 7,8 mA 3.0 mA 13.0 mA	0.1 mA	1,8 mA 7,8 mA 3.0 mA 13.0 mA	1,8 mA 7,8 mA 3.0 mA 13.0 mA	$U_{\rm L} = 25 \text{ V}, 50 \text{ V}$			•	•		wahl-			
IF_	$I_F (I_{\Delta N} = 30 \text{ mA})$	9,0 mA 39,0 mA	-,	9,0 mA 39,0 mA	9,0 mA 39,0 mA	$I_{\Delta N} =$	+(15% v M I+1D)	+(13.5% v M 1+2D)				weise			
	$I_F (I_{\Delta N} = 100 \text{ mA})$	30 mA 130 mA	1 mA	30 mA 130 mA	30 mA 130 mA	6 mA,	2(10/0 4.141.17112)	10,0 % (
	$I_{\rm F} (I_{\rm AN} = 500 \text{ mA})$	150 mA 650 mA	1 mA	150 mA 650 mA	150 mA 650 mA	30 mA,									
	$U_{L\Delta}/U_L = 25 V$	0 V 25,0 V	0.1 V	wie I	0 V 25,0 V	100 mA,	+ 10% v.M. +1D	+11% v.M.I-1D	†						
	$\frac{U_{\rm IA} / U_{\rm L} = 50 \text{ V}}{t_{\rm A} (I_{\rm AN} \times 1)}$	0 V 50,0 V	1 ms	6 mA 500 mA	0 V 50,0 V 0 ms 1000 ms	300 mA, 500 mA ²⁾		+I9% v.M.I+1 D	-						
	$t_A (t_{AN} \times 2)$	0 ms 1000 ms	1 ms	2 × 6 mA	0 ms 1000 ms	0001111									
	A ('AN ^ 2)		1 1110	2 × 500 mA	0 110 1000 110	-	±4 ms	±3 ms							
	$t_A (I_{\Delta N} \times 5)$	0 ms 40 ms	1 ms	5 × 300 mA	0 ms 40 ms										
	$Z_{L-PE}(\frown)$	0 m Ω 999 m Ω		3,7 A AC	0,10 Ω 0,49 Ω	$U_{\rm N} = 120 \text{ V},$ 230 V, 400 V, 500 V ¹⁾	±(10% v.M.I+20D)	±(15% v.M.1+20D)							
	Z _{L-N}	1,00 Ω 9,99 Ω	1 mΩ 0,01 Ω	4,7 A AC	$1,00 \Omega \dots 9,99 \Omega$	f _N =16,7 Hz ⁸⁾ , 50 Hz,	±(15% v.M.1+3D)	±(13% v.M.1+3D)							
		0 mΩ 999 mΩ	0,1 Ω	3,7 A AC 4,7 A AC	0.25 Ω 0.99 Ω	U _N = 120 V. 230 V	±(18% v.M.I+30D)	±(16% v.M.1+50D)							
7	+ DC ⁸⁾	1,00 Ω 9,99 Ω 10,0 Ω 29,9 Ω		0,5 A DC, 1,25 A DC ⁹	1,00 Ω 9,99 Ω	f _N = 50 Hz, 60 Hz	±(I10% v.M.I+3D)	±(I4% v.M.I+3D)							
	$I_{K}(Z_{L-PE} -)$	0 A 9,9 A 10 A 999 A	0,1 A 1 A		120 (108 132) V 230 (196 253) V				•	-7					
ZL-N	Z _{L-PE} +	1,00 kA 9,99 kA	10 A		400 (340 440) V		Rechenwe	rt aus Z _{L-PE}		∠L-PE					
	DC ⁸⁾)	10,0 kA 50,0 kA	100 A		500 (450 550) V		(100) 11 100	(00) 11 00)							
	Z _{L-PE} (15 mA ⁹⁾)	$0,6 \Omega \dots 99,9 \Omega$ $100 \Omega \dots 999 \Omega$	1Ω		$10,0 \Omega \dots 99,9 \Omega$ $100 \Omega \dots 999 \Omega$		±(110% V.M.1+10D) ±(18% v.M.1+2D)	±(I2% V.M.I+2D) ±(I1% v.M.I+1D)							
		0.10 A 9.99 A	0.01 A	15 mA AC ⁹⁾	100 mA 12 A	$U_N = 120 \text{ V}, 230 \text{ V}$ $f_N = 16.7^{8)}.$			-						
	I _K (15 mA ⁹⁾)	10,0 A 99,9 A	0,1 A		$(U_N = 120 V)$ 200 mA 25 A	50 Hz, 60 Hz	Rechenting $I_{V} = U_{N}/Z_{V}$	wert aus sr (15 mA ⁹⁾)							
		100 A 999 A ¹¹⁾	1 A		(U _N = 230 V)		'K - 0W 2L-1	52(10111/1)							
		$0~\text{m}\Omega$ 999 m Ω	$1 \text{ m}\Omega$	3,7 A AC 4,7 A AC	$0,10 \Omega \dots 0,49 \Omega$		±(10% v.M.I+20D) +(10% v.M.I+20D)	$\pm (15\% \text{ v.M.}1+20\text{D})$ $\pm (14\% \text{ v.M.}1\pm20\text{D})$							
	R _{E.sl} (ohne Sonde)	$1,00 \Omega \dots 9,99 \Omega$	0,01 Ω	3,7 A AC 4,7 A AC	1,0 Ω9,99 Ω	U _N wie	±(15% v.M.1+3D)	±(13% v.M.1+3D)							
	R _⊏ (mit Sonde)	10,0.0299,9.02 $100 \Omega999 \Omega$	1Ω	400 mA AC 40 mA AC	10 Ω99,9 Ω	$f_{\rm N} = 50 \text{ Hz}, 60 \text{ Hz}$	±(10% v.M.I+3D)	±(I3% v.M.I+3D)							
	2	1 kΩ … 9,99 kΩ	0,01 kΩ	4 mA AC	1 kΩ9,99 kΩ		$\pm(110\% \text{ v.M.1+3D})$ $\pm(110\% \text{ v.M.1+3D})$	$\pm(13\% \text{ v.M.1+3D})$ $\pm(13\% \text{ v.M.1+3D})$							
	R _{E (15 mA)}	0,5 Ω 99,9 Ω	0,1 Ω	15 0.00	10 Ω99,9 Ω	U _N = 120 V, 230 V	±(10% v.M.I+10D)	±(12% v.M.1+2D)		_					
^K E	(ohne/mit Sonde)	$100 \Omega \dots 999 \Omega$	1Ω	15 MA AC	100 Ω999 Ω	$f_N = 50 \text{ Hz}, 60 \text{ Hz}$	±(18% v.M.1+2D)	±(11% v.M.I+1D)	•	•		•			
	R _{E.sl} (ohne Sonde)	$0 \ m\Omega \dots 999 \ m\Omega$	1 mΩ				(100) MI 000	(100)							
	$H = + DC^{(0)}$	1,00 Ω 9,99 Ω	0,01 Ω	3,7 A AC 4,7 A AC 0.5 A DC 1 25 A DC ⁸⁾	$0,25 \Omega \dots 0,99 \Omega$	$U_N = 120 \text{ V}, 230 \text{ V}$ f _N = 50 Hz 60 Hz	\pm (118% v.M.I+30D) +(110% v.M.I+3D)	±(16% v.M.1+50D) +(14% v M 1+3D)							
	$+ DC^{8)}$	10,0 Ω 29,9 Ω	0,1 Ω	0,01120, 1,201120	1,00 22 0,00 22	IN - 00 Hz, 00 Hz	±((10%								
	U _E	0 V 253 V	1 V	3,7 A AC 4,7 A AC	$R_{E} = 0,10 \dots 9,99 \ \Omega$	$U_{N} = 120 \text{ V}, 230 \text{ V}$ $f_{N} = 50 \text{ Hz}, 60 \text{ Hz}$	Rechenwert U _E	$= U_N \times R_E/R_{E.sl}$							
	R _{E.sel}	$0 \text{ m}\Omega \dots 999 \text{ m}\Omega$	$1 \text{ m}\Omega$	2,1 A AC		1 - 120 V 220 V									
R		$10,0 \Omega \dots 99,9 \Omega$	0,01 Ω 0,1 Ω	400 mA AC	$0,25 \Omega \dots 300 \Omega^{(4)}$	$f_N = 50 \text{ Hz}, 60 \text{ Hz}$	±(120% v.M.1+20 D)	±(15% v.M.1+20 D)						•	
Sel	(nur mit Sonde)	100 Ω 999 Ω	1Ω	40 mA AC					-						•
Zange	R _{E.sel}	$0 \text{ m}\Omega \dots 999 \text{ m}\Omega$ 1 00 Ω 9 99 Ω	1 mΩ 0 01 Ω	37AAC 47AAC	0.25.0. 300.0	U _N = 120 V 230 V									
	+ DC ⁸⁾	$10,0 \Omega \dots 99,9 \Omega$	0,1 Ω	0,5 A DC, 1,25 A DC ⁸⁾	$R_{E.ges} < 10 \Omega^{4}$	$f_N = 50 \text{ Hz}, 60 \text{ Hz}$	±(l22% v.M.l+20 D)	±(15% v.M.1+20 D)							
<u> </u>	(nur mit Sonde)	100 Ω 999 Ω	1Ω 1kΩ		10 100 100 100		+(1200/ vM - 02)	+/I100/ VINT - 200						ļ	
	7	200 kΩ 999 kΩ	1 kΩ	0.0 mA h-: 000.14	200 kΩ 999 kΩ		±(120% V.1VI.1+2D)	±(110% V.IVI.I+3D)	-	_		-			
	4 _{ST}	1,00 ΜΩ 9,99 ΜΩ 10,0 ΜΩ 30,0 ΜΩ	0,01 MΩ 0,1 MΩ	2,3 IIIA DEI 230 V	1,00 MΩ 9,99 MΩ 10,0 MΩ 30,0 MΩ	$u_0 = U_{L-N}$	±(10% v.M.1+2D)	±(I5% v.M.I+3D)	•		•	•			

Technische Kennwerte PROFITEST MF XTRA

											Ans	chlüss	se		
Funk-	Mossarößo	Anzoigoboroich	Auf-	Drüfetrom	Massharaich	Nonnworto	Betriebsmess-	Eigen-	Stecker-			Zano	ien / N	lessber	reiche
tion	wiessyrube	Alizeigebereich	lösung	FILISUUIII	MESSDELEICH	NCIIIWCILC	unsicherheit	unsicherheit	einsatz	2-Pol- Adapter	3-Pol- Adapter	W7100	705104	MFLEX	CP1100
						IT-Netz-Nenn-			.,			WZ120	25012A	P300	
EXTRA	IMD-Test	20 kΩ 648 kΩ 2,51 MΩ	1 kΩ 0,01 MΩ	IT-Netzspannung U _N = 90 550 V	20 kΩ 199 kΩ 200 kΩ 648 kΩ 2,51 MΩ	$U_N =$ 120 V, 230 V, 400 V, 500 V $f_N =$ 50 Hz, 60 Hz	±7% ±12% ±3%	±5% ±10% ±2%	•		•				
		1 kΩ 999 kΩ 1,00 MΩ 9,99 MΩ 10,0 MΩ 49,9 MΩ	1 kΩ 10 kΩ 100 kΩ		50 kΩ … 999 kΩ 1,00 MΩ … 49,9 MΩ	$U_N = 50 \text{ V}$ $I_N = 1 \text{ mA}$									
		1 kΩ 999 kΩ 1,00 MΩ 9,99 MΩ 10,0 MΩ 99,9 MΩ	1 kΩ 10 kΩ 100 kΩ	-	50 kΩ … 999 kΩ 1,00 MΩ … 99,9 MΩ	$U_{N} = 100 \text{ V}$ $I_{N} = 1 \text{ mA}$	Bereich kΩ	Bereich kΩ							
R _{ISO}	R _{ISO} , R _{E ISO}	1 kΩ 999 kΩ 1,00 MΩ 9,99 MΩ 10,0 MΩ 99,9 MΩ 100 MΩ 200 MΩ	1 kΩ 10 kΩ 100 kΩ 1 MΩ	I _K = 1,5 mA	50 kΩ 999 kΩ 1,00 MΩ 200MΩ	$U_N = 250 \text{ V}$ $I_N = 1 \text{ mA}$	±(15% v.M.1+10D) Bereich MΩ ±(15% v.M.1+1D)	±(13% v.m.1+10D) Bereich MΩ ±(13% v.M.1+1D)	•	•					
		1 999 kΩ 1,00 9,99 MΩ 10,0 99,9 MΩ 100 500 MΩ	1 kΩ 10 kΩ 100 kΩ 1 MΩ	_	50 kΩ … 999 kΩ 1,00 MΩ … 499 MΩ	$\begin{array}{l} U_{N} = 325 \ V \\ U_{N} = 500 \ V \\ U_{N} = 1000 \ V \\ I_{N} = 1 \ mA \end{array}$	-								
	U	10 V 999 V DC 1,00 kV 1,19 kV	1 V 10 V		10 kV 1,19 kV		±(I3% v.M.I+1D)	±(I1,5% v.M.I+1D)							
Rio	R _{LO}	0,00 Ω 9,99 Ω 10,0 Ω 99,9 Ω 100 Ω 199 Ω	0,01 Ω 0,1 Ω 1 Ω	$\begin{array}{l} I \geq 200 \text{ mA DC} \\ I < 260 \text{ mA DC} \end{array}$	0,10 Ω 5,99 Ω 6,00 Ω 99,9 Ω	U ₀ = 4,5 V	±(I4% v.M.I+2D)	±(I2% v.M.I+2D)		•					
	ROFFSET	0,00 Ω 9,99 Ω	0,01 Ω	$\begin{array}{l} l \geq 200 \text{ mA DC} \\ l < 260 \text{ mA DC} \end{array}$	0,10 Ω 5,99 Ω 6,00 Ω 99,9 Ω										
				Wandler- übersetzung ³⁾			5)	5)							
		0,0 mA 99,9 mA	0,1 mA				±(13% v.M.1+5D)	±(15% v.M.1+4D)							
		100 mA 999 mA	1 mA	1 V/A	5 A 15 A	f _N = 50 Hz, 60 Hz						115 A			
		1,00 A 9,99 A	0,01 A				±(I13% v.M.I+1D)	±(I5% v.M.I+1D)				11071			
		10,0 A 15,0 A	0,1 A				(1440/ M L 4D)	(149) 141 00							
		1,00 A 9,99 A	0,01 A	1 m///	E A 160 A		±(I11% v.M.I+4D) ±(I11% v.M.I+1D)	±(I4% v.M.I+3D)				11			
		10,0 A 99,9 A	0,1 A	I IIIV/A	5 A 100 A			±(I4% v.M.I+1D)				150 A			
		0.0 mA 99.9 mA	0.1 mA				+(17% v M I+2D)	+(15% v M 1+2D)							
		100 mA 999 mA	1 mA	1 V/A	5 mA 1000 mA		±(17% v.M.I+1D)	±(15% v.M.I+1D)					1 A		
		0,00 A 9,99 A	0,01 A	100 mV/A	0,05 A 10 A		±(13,4% v.M.1+2D)	±(I3% v.M.I+2D)					10 A		
		0,00 A 9,99 A	0,01 A	10.14		τ _N = 16,7 Hz, 50 H,	±(I3,1% v.M.I+2D)	±(I3% v.M.I+2D)					100.1	-	
SEN-		10,0 A 99,9 A	0,1 A	TU MV/A	0,5 A 100 A	60 Hz, 200 Hz,	±(I3,1% v.M.I+1D)	±(I3% v.M.I+1D)					100 A		
SOR	l. a	0,00 A 9,99 A	0,01 A			400 HZ	±(13,1% v.M.1+1D)	±(I3% v.M.I+1D)					1000	1	
6) 7)	·L/Amp	10,0 A 99,9 A	0,1 A	1 mV/A	5 A 1000 A		±(13,1% v.M.1+2D)	±(I3% v.M.I+2D)					A		
		100 A 999 A	1 A				±(I3,1% v.M.I+1D)	±(I3% v.M.I+1D)							
		0,0 mA 99,9 mA	0,1 mA	1 V/A	30 mA		±(127% v.M.1+100D)	±(I3% v.M.I+100D)						3 A	
		100 mA 999 mA	1 mA		TUUUTIIA		±(I27% v.M.I+11D)	±(I3% V.M.I+11D)							-
		0,00 A 9,99 A	0,01 A 0,01 A	100 mV/A	0,3 A 10 A	f _N = 50 Hz, 60 Hz	±(I27% v.W.I+T2D) ±(I27% v.M.I+11D)	±(I3% v.M.I+12D) ±(I3% v.M.I+11D)						30 A	
		0,00 A 9,99 A	0,01 A	10 mV/A	3 A 100 A		±(127% v.M.1+100D)	±(I3% v.M.I+100D)						300 A	
		10,0 A 99,9 A	0,1 A				±(I27% v.M.I+11D)	±(I3% v.M.I+11D)						00071	
		U,UU A 9,99 A	0,01 A	10 mV/A	0,5 A 100 A	f	±(15% v.M.I+12D)	±(3% v.M.l+12D)							100 A
		10,0 A 99,9 A	U,1 A			' _N = DC, 16,7 Hz,	±(15% v.M.1+2D)	±(13% v.M.1+2D)							
		10 0 A 9,99 A	0,01 A	1 m\//Δ	5 A 1000 A	DC, 16,7 Hz, 50 Hz, 60 Hz, 200 Hz ± ±	±(15% v.1VI.1+50D) +(15% v.M 1±7D)	±(13% v.IVI.1+30D) +(13% v.M 1±7D)							1000 4
		100 A 999 A	1 A		5 A 1000 A 2		±(15% v.M.1+2D)	±(I3% v.M.I+2D)							1000 /1

 $^{1)}$ U > 230 V nur mit 2- bzw. 3-Pol-Adapter

 $^{2)}~1\times I_{\Delta N}>$ 300 mA und 2 $\times I_{\Delta N}>$ 300 mA und 5 $\times I_{\Delta N}>$ 500 mA und $I_f>$ 300 mA nur bis $U_N\leq$ 230 V!

 a) Die an der Zange gewählte Wandlerübersetzung (1/10/100/1000 mV/A) muss in Schalterstellung "SENSOR" / Menu "TYP" eingestellt werden.

⁴⁾ bei R_{Eselektiv}/R_{Egesamt} < 100

⁵⁾ Bei den angegebenen Betriebsmess- und Eigenunsicherheiten sind die der jeweiligen Stromzange bereits enthalten.

 $^{6)}$ Messbereich des Signaleingangs am Prüfgerät UE: 0 … 1,0 V $_{eff}$ (0 … 1,4

V_{peak}) AC/DC

 $^{7)}$ Eingangsimpedanz des Signaleingangs am Prüfgerät: 800 k $\!\Omega$

⁸⁾ bei $f_N < 45 \text{ Hz} => U_N < 500 \text{ V}$

⁹⁾ 15 mA Prüfstrom gilt nur, wenn RCD mit $I_{\Delta N}$ = 30 mA eingestellt ist; ansonsten gilt Prüfstrom = $\frac{1}{2} \times I_{\Delta N}$ des voreingestellten RCDs.

 $^{11)}\text{bei}~Z_{L\text{-PE}}$ < 0,6 Ω wird I_k > U_N/0,5 Ω angezeigt

Legende: D = Digit, v. M. = vom Messwert

Technische Kennwerte Sondermessungen PROFITEST MF XTRA

Fund			A£	Prüfstrom/		Detrichersee	Finan		Anschlü	sse	
FUNK-	Messgröße	Anzeigebereich	Aut- lösung	Signalfrequenz	Messbereich	Betriebsmess-	Elgen- unsicherheit	Adapter für	Prüfstecker	Stromz	angen
			losung	1)		unsionernen	unsienernen	PRO-RE	PRO-RE/2	Z3512A	Z591B
	RE 3-Pol	0,00 Ω 9,99 Ω 10,0 Ω 99,9 Ω 100 Ω 999 Ω	0,01 Ω 0,1 Ω 1 Ω	16 mA/128 Hz 1,6 mA/128 Hz 0.16 mA/128 Hz	1,00 Ω 19,9 Ω 5,0 Ω 199 Ω 50 Ω 1.99 kΩ	±(I10% v.M.I+10D + 1 Ω)	±(I3% v.M.I+5D + 0,5 Ω)	2)			
	RE 4-Pol	1,00 kΩ … 9,99 kΩ 10,0 kΩ … 50,0 kΩ	0,01 kΩ 0,1 kΩ	0,16 mA/128 Hz 0,16 mA/128 Hz	$0,50$ k Ω $19,9$ k Ω $0,50$ k Ω $49,9$ k Ω	±(10% v.M.1+10D)	±(13% v.M.1+5D)				
RE DAT	RE 4-Pol selektiv mit Messzange	$\begin{array}{c} 0,00 \ \Omega \ \dots \ 9,99 \ \Omega \\ 10,0 \ \Omega \ \dots \ 99,9 \ \Omega \\ 100 \ \Omega \ \dots \ 999 \ \Omega \\ 1,00 \ k\Omega \ \dots \ 999 \ k\Omega \\ 10,0 \ k\Omega \ \dots \ 9,99 \ k\Omega \\ 10,0 \ k\Omega \ \dots \ 9,90 \ k\Omega \ ^{10} \\ 10,0 \ k\Omega \ \dots \ 49,9 \ k\Omega \end{array}$	0,01 Ω 0,1 Ω 1 Ω 0,01 kΩ 0,1 kΩ 0,1 kΩ	16 mA/128 Hz 16 mA/128 Hz 1,6 mA/128 Hz 0,16 mA/128 Hz 0,16 mA/128 Hz 0,16mA/128 Hz	1,00 Ω 9,99 Ω 10,0 Ω 200 Ω	±(I15% v.M.I+10D) ±(I20% v.M.I+10D) 6)	±(I10% v.M.I+10D) ±(I15% v.M.I+10D)	2)		5)	
DA	RE spez (p)	0,0 Ωm 9,9 Ωm 100 Ωm 999 Ωm 1,00 Ωm 9,99 kΩm	0,1 Ωm 1 Ωm 0,01 kΩm	16 mA/128 Hz 1,6 mA/128 Hz 0,16 mA/128 Hz 0,16 mA/128 Hz 0,16mA/128 Hz	100 Ω m 9,99 k Ω m ⁸⁾ 500 Ω m 9,99 k Ω m ⁸⁾ 5,00 k Ω m 9,99 k Ω m ⁹⁾ 5,00 k Ω m 9,99 k Ω m ⁹⁾ 5,00 k Ω m 9,99 k Ω m ⁹⁾	±(I20% v.M.I+10D) 7)	±(I12% v.M.I+10D) 7)	2)			
	Sondenabstand d (p)	0,1 m 999 m									
	RE 2-Zangen	0,00 Ω 9,99 Ω 10,0 Ω 99,9 Ω 100 Ω 999 Ω 1,00 Ω 1,99 kΩ	0,01 Ω 0,1 Ω 1 Ω 0,01 kΩ	30 V / 128 Hz	0,10 Ω 9,99 Ω 10,0 Ω 99,9 Ω	±(I10% v.M.I+5D) ±(I20% v.M.I+5D)	±(I5% v.M.I+5D) ±(I12% v.M.I+5D)		3)	5)	4)

¹⁾ Signalfrequenz ohne Störsignal

- ²⁾ Adapterkabel PRO-RE (Z501S) für Prüfstecker zum Anschluss der Erdsonden
- (E-Set 3/4)
- ³⁾ Adapterkabel PRO-RE/2 für Prüfstecker zum Anschluss der Generatorzange E-CLIP2
- ⁴⁾ Generatorzange: E-CLIP2 (Z591B)
- ⁵⁾ Messzange: Z3512A (Z225A)
- $^{6)}$ bei $R_{E,sel}/R_{E} < 10$ oder Messzangenstrom $> 500 \ \mu A$
- $^{7)}$ bei $R_{E,H}/R_{E} \leq 100$ und $R_{E,E}/R_{E} \leq 100$ $^{8)}$ bei d = 20 m
- ⁹⁾ bei d = 2 m
- $^{10)}$ nur bei RANGE = 20 k Ω
- ¹¹⁾nur bei RANGE = 50 k Ω oder AUTO

Legende: D = Digit, v. M. = vom Messwert

6 Bedien- und Anzeigeelemente

6.1 Bedienterminal

Das Gelenk mit Stufenraster ermöglicht es Ihnen, das Anzeige- und Bedienteil nach vorne oder hinten zu schwenken. Der Ablesewinkel ist so optimal einstellbar.

6.2 Display

Auf dem Display werden angezeigt:

- ein oder zwei Messwerte als dreistellige Ziffernanzeige mit Einheit und Kurzbezeichnung der Messgröße
- Nennwerte für Spannung und Frequenz
- Anschlussschaltbilder
- Hilfetexte
- Meldungen und Hinweise.

6.3 LEDs

LED MAINS/NETZ

Sie ist nur in Funktion, wenn das Gerät eingeschaltet ist. Sie hat keine Funktion in den Spannungsbereichen U_{L-N} und U_{L-PE}. Sie leuchtet grün, rot oder orange, blinkt grün oder rot, je nach Anschluss des Gerätes und der Funktion (vgl. Kapitel 6.4 "Signalisierung der LEDs, Netzanschlüsse und Potenzialdifferenzen" ab Seite 17).

Die LED leuchtet auch, sofern bei der Messung von $\rm R_{\rm ISO}$ und $\rm R_{\rm LO}$ Netzspannung anliegt.

LED UL/RL

Sie leuchtet rot, wenn bei einer Prüfung der RCD-Schutzeinrichtung die Berührungsspannung > 25 V bzw. > 50 V ist sowie nach einer Sicherheitsabschaltung. Bei Grenzwertunter- bzw. -überschreitungen von R_{ISO} und R_{LO} leuchtet die LED ebenfalls.

LED RCD • FI

Sie leuchtet rot, wenn bei der Auslöseprüfung mit Nennfehlerstrom der RCD-Schutzschalter nicht innerhalb von 400 ms (1000 ms bei selektiven RCD-Schutzschaltern vom Typ RCD S) auslöst. Sie leuchtet ebenfalls, wenn bei einer Messung mit ansteigendem Fehlerstrom der RCD-Schutzschalter nicht vor Erreichen des Nennfehlerstromes auslöst.

Achtung!

À

Die die Netzanschlusskontrolle darf nicht zur Überprüfung der Spannungsfreiheit von Anlagen oder Anlagenkomponenten eingesetzt werden!

6.4 Signalisierung der LEDs, Netzanschlüsse und Potenzialdifferenzen

LED-Signalisierungen

	Zustand	Prüf- stecker	Mess- adapter	Stellung des Funktionsschalters	Funktion / Bedeutung
NETZ/ MAINS	leuchtet grün	Х		$I_{\Delta N} / I_{F}$, $Z_{L-N} / Z_{L-PE} / R_{E}$, ΔU , Z_{ST} , kWh, IMD, int. Rampe, RCM	Korrekter Anschluss, Messung freigegeben
NETZ/ Mains	blinkt grün		Х	$I_{\Delta N} / I_F$, $Z_{L-N} / Z_{L-PE} / R_E$, ΔU , Z_{ST} , kWh, IMD, int. Rampe, RCM	N-Leiter nicht angeschlossen, Messung freigegeben
NETZ/ Mains	blinkt rot	Х	Х	$I_{\Delta N} / I_{F}$, $Z_{L-N} / Z_{L-PE} / R_{E}$, ΔU , Z_{ST} , kWh, IMD, int. Rampe, RCM	1) keine Netzspannung oder 2) PE unterbrochen
NETZ/ Mains	leuchtet rot		Х	$R_{LO}, R_{ISO}, R_{E}, I_{L}, Sensor$	An den Sonden liegt Fremdspannung an. Die Messung wurde gesperrt.
NETZ/ Mains	blinkt gelb		Х	$I_{\Delta N}/I_{F}$, $Z_{L\text{-}N}/Z_{L\text{-}PE}/R_{E}$	L und N sind mit den Außenleitern verbunden.
				${\sf R}_{\sf ISO},{\sf R}_{\sf LO},{\sf R}_{\sf E},$ ${\sf Z}_{\sf L-N},{\sf Z}_{\sf L-PE},\Delta{\sf U},{\sf I}_{\sf L},{\sf U}_{\sf res},{\sf Sensor}$	Der eingestellte Grenzwert wurde verletzt.
UL/RL	leuchtet rot	Х	х	$\begin{array}{c} R_{E}, Z_{L-PE}, I_{F} \underbrace{\mathcal{A}}, I_{\Delta N}, \\ t_{a} + \Delta I, RCM \end{array}$	Der Grenzwert U _L der Fehlerspannung wurde über- schritten. → Eine Sicherheitsabschaltung ist erfolgt.
				$\label{eq:L-N} \begin{array}{l} Z_{L\text{-}N}, Z_{L\text{-}PE}, Z_{ST}, \text{IMD, kWh, RCM, PRCD,} \\ \text{E-Mobility} \end{array}$	Die Prüfung wurde manuell mit "NOT OK" bewertet.
RCD/FI	leuchtet rot	Х	Х	I _{∆N} / I _F <u>⊿</u> , int. Rampe	der RCD-Schutzschalter hat bei der Auslöseprüfung nicht oder nicht rechtzeitig ausgelöst

Net zanschlusskontrolle --- Ein phasen system --- LCD-Anschlusspiktogramme

Achtung!

Die die Netzanschlusskontrolle darf nicht zur Überprüfung der Spannungsfreiheit von Anlagen oder Anlagenkomponenten eingesetzt werden!

	Zustand	Prüf- stecker	Mess- adapter	Stellung des Funktionsschalters	Funktion / Bedeutung
? • ? ?	wird ein- geblendet	Stocker	adaptor	alle außer U	keine Anschlusserkennung
	wird ein- geblendet			alle außer U	Anschluss OK
PE O L N	wird ein- geblendet			alle außer U	L und N vertauscht, Neutralleiter führt Phase
PE				alle außer U und RE	keine Netzverbindung
	geblendet			RE	Standardanzeige ohne Anschlussmeldungen
PE O X L N	wird ein- geblendet			alle außer U	Neutralleiter unterbrochen
PE x L N	wird ein- geblendet			alle außer U	Schutzleiter PE unterbrochen, Neutralleiter N und/oder Außenleiter L führen Phase
PE O X • L N	wird ein- geblendet			alle außer U	Außenleiter L unterbrochen, Neutralleiter N führt Phase
PE O L N	wird ein- geblendet			alle außer U	Außenleiter L und Schutzleiter PE vertauscht
PE O X L N	wird ein- geblendet			alle außer U	Außenleiter L und Schutzleiter PE vertauscht Neutralleiter unterbrochen (nur mit Sonde)
PE O L N	wird ein- geblendet			alle außer U	L und N sind mit den Außenleitern verbunden.

Achtung!

Die die Netzanschlusskontrolle darf nicht zur Überprüfung der Spannungsfreiheit von Anlagen oder Anlagenkomponenten eingesetzt werden!

	Zustand	Prüf- stecker	Mess- adapter	Stellung des Funktionsschalters	Funktion / Bedeutung
	wird ein- geblendet			U (Dreiphasenmessung)	Rechtsdrehfeld
$ \overset{L2}{\underset{L1}{\overset{\bullet}{\frown}}} \overset{\bullet}{\underset{L3}{\overset{\bullet}{\frown}}} $	wird ein- geblendet			U (Dreiphasenmessung)	Linksdrehfeld
	wird ein- geblendet			U (Dreiphasenmessung)	Schluss zwischen L1 und L2
	wird ein- geblendet			U (Dreiphasenmessung)	Schluss zwischen L1 und L3
	wird ein- geblendet			U (Dreiphasenmessung)	Schluss zwischen L2 und L3
L2 ? L3	wird ein- geblendet			U (Dreiphasenmessung)	Leiter L1 fehlt
? └1 └3	wird ein- geblendet			U (Dreiphasenmessung)	Leiter L2 fehlt
	wird ein- geblendet			U (Dreiphasenmessung)	Leiter L3 fehlt
N L3	wird ein- geblendet			U (Dreiphasenmessung)	Leiter L1 auf N
	wird ein- geblendet			U (Dreiphasenmessung)	Leiter L2 auf N
	wird ein- geblendet			U (Dreiphasenmessung)	Leiter L3 auf N

Anschlusskontrolle	· Erdungswiderstandsmessung	batteriebetrieben	"Akkubetrieb"
--------------------	-----------------------------	-------------------	---------------

	7	D	N 4		Furthing (Dedeutory)
	Zustand	Prut- stecker	Mess- adapter	Stellung des Funktionsschalters	Funktion / Bedeutung
		01001101	uuuptoi	1 annaione contaitore	
PE O O L N	wird ein- geblendet			R _E	Standardanzeige ohne Anschlussmeldungen
U _{ext} >>	wird ein- geblendet		PRO-RE	R _E	Fremdspannung an Sonde S > 3 V Eingeschränkte Messgenauigkeit
I _{ext} >>	wird ein- geblendet		Mess- zange	R _E	Verhältnis Stör-/Messstrom > 50 bei R _{E(sel)} , 1000 bei R _{E(2Z)} Eingeschränkte Messgenauigkeit
					bel $R_{E(sel)}$: Storstrom > 0,85 A oder Vernaltnis Storstrom/Messstrom > 100 \Rightarrow kein Messwert, Anzeige RE.Z
	wird ein-	PR	PRO-RE	R _E	Sonde H nicht angeschlossen oder $R_{E,H}$ > 150 k Ω
					🌣 keine Messung, Anzeige RE – – –
R _E (H)					$R_{E,H} > 50 \text{ k}\Omega \text{ oder}$
>>	gebiender				$R_{E,H}/R_{E} > 10000$
					Messwert wird angezeigt, eingeschränkte Messgenauigkeit
					Sonde S nicht angeschlossen
					oder $R_{E,S} > 150 \text{ k}\Omega$
					oder $R_{E,S} \times R_{E,H} > 25 M\Omega^2$
R _E (S)	geblendet		PRO-RE	R _E	🌣 keine Messung, Anzeige RE – – –
>>	gebiender				$R_{E,S} > 50 \text{ k}\Omega \text{ oder}$
					$R_{E,S}/R_{E} > 300$
					Messwert wird angezeigt, eingeschränkte Messgenauigkeit
					Sonde E nicht angeschlossen oder $R_{E,E} > 150 \text{ k}\Omega$, $R_{E,E}/R_E > 2000$
R _E (E)	wird ein-		PRO-RF	R-	🌣 keine Messung, Anzeige RE – – –
>>	geblendet			''E	$R_{E,E}/R_E > 300$
					Messwert wird angezeigt, eingeschränkte Messgenauigkeit

PE-Prüfung durch Fingerkontakt an den Kontaktflächen des Prüfsteckers

	Zustand	Prüf-	Mess-	Stellung des	Funktion / Bedeutung
		stecker	adapter	Funktionsschalters	
LCD	LEDs				
PE	UL/RL RCD/FI	X	x	U (Finahagapmagaung)	Potenzialdifferenz \geq 50 V zwischen Fingerkontakt und PE (Schutzkontakt)
wird einge- blendet	leuchten rot			(Einphasenmessung)	Frequenz 1 2 50 Hz
PE wird einge- blendet	U _L /R _L RCD/FI leuchten	Х	X	U (Einphasenmessung)	falls L korrekt kontaktiert und PE unterbrochen ist (Frequenz f \geq 50 Hz)

Statusleiste: Anzeige von Ladezustand, Speicherbelegung

	Zustand	Prüf- stecker	Mess- adapter	Stellung des Funktionsschalters	Funktion / Bedeutung
Status Akku					
	wird ein- geblendet			U, Bico	Ladezustand Akku ≥ 80%
	wird ein- geblendet			R _{LO} , R _E ,	Ladezustand Akku \geq 50%
	wird ein- geblendet			$Z_{L-N}, Z_{L-PE},$	Ladezustand Akku \geq 30%
	wird ein- geblendet			Setup,	Ladezustand Akku \geq 15%
	wird ein- geblendet			EXTRA, SENSOR	Ladezustand Akku $\geq 0\%$
Akkutest					
9.93V	Spannung wird ein- geblendet			alle	Die Spannung wird als Ergebnis angezeigt. Bei U < 8 V: Akkus müssen aufgeladen oder gegen Ende der Brauchbarkeitsdauer ersetzt werden (U < 8 V).

Status Memory				
	wird ein- geblendet			Speicherbelegung $\geq 100\%$
	wird ein- geblendet			Speicherbelegung $\ge 87,5\%$
	wird ein- geblendet		U, Bisoi	Speicherbelegung $\ge 75\%$
	wird ein- geblendet		$R_{LO}, R_{E},$	Speicherbelegung $\geq 62,5\%$
	wird ein- geblendet		Z _{L-N} , Z _{L-PE} ,	Speicherbelegung $\ge 50\%$
	wird ein- geblendet		Setup,	Speicherbelegung $\ge 37,5\%$
	wird ein- geblendet		EXTRA, SENSOR	Speicherbelegung $\ge 25\%$
	wird ein- geblendet			Speicherbelegung $\ge 12,5\%$
	wird ein- geblendet			Speicherbelegung $\ge 0\%$

Fehlermeldungen — LCD-Piktogramme

Zustand	Prüf-	Mess-	Stellung des	Funktion / Bedeutung
	X	X	Alle Messungen mit Schutzleiter	Potenzialdifferenz ≥ U _L zwischen Fingerkontakt und PE (Schutzkontakt) (Frequenz f ≥ 50 Hz) Abhilfe: PE-Anschluss überprüfen Hinweis: Nur bei Einblendung
U > U MAX	X	X	I _{ΔN} / IF Δ Z _{L-N} / Z _{L-PE} / R _E	1) Spannung bei RCD-Prüfung mit Gleichstrom zu hoch (U > 253 V) 2) U generell U > 550 V mit 500 mA 3) U > 440 V bei $I_{\Delta N} / I_{F}$ 4) U > 253 V bei $I_{\Delta N} / I_{F}$ mit 500 mA 5) U > 253 V bei Messungen mit Sonde
A 2.0% I 1.04	Х	Х	$I_{\Delta N}$	RCD löst zu früh aus oder ist defekt Abhilfe: Schaltung auf Vorströme überprüfen
	Х	Х	Z _{L-PE}	RCD löst zu früh aus oder ist defekt. Abhilfe: mit "DC + positiver Halbwelle" prüfen
I RCD ?	Х	Х	Ι _{ΔΝ} / Ι _Γ	RCD hat während der Berührungsspannungsmessung ausgelöst. Abhilfe: eingestellten Nennprüfstrom prüfen
			$R_{LO,}$ IF⊿, IΔ _N , EXTRA → ta+IΔ	Der PRCD hat ausgelöst. Grund: Schlechte Kontaktierung oder defekter PRCD
₩ 1111 111 111 111 111 111 111 111 111 111 111 1	X	X	alle außer U	Von außen zugängliche Sicherung ist defekt Die Spannungsmessbereiche sind auch nach dem Ausfall der Sicherun- gen weiter in Funktion. Spezialfall R_{L0}: Fremdspannung während der Messung kann zur Zerstö- rung der Sicherung führen. Abhilfe: Sicherung tauschen gemäß Kap. 22.2.
f ~ > 425 Hz f ~ < 15 Hz	Х	Х	$I_{\Delta N} / I_F $ Z _{L-N} / Z _{L-PE} / R _E	Frequenz außerhalb des zulässigen Bereichs Abhilfe: Netzanschluss überprüfen
!!! нісм тере !!!			alle	Temperatur im Prüfgerät zu hoch Abhilfe: Warten bis sich das Prüfgerät abgekühlt hat
	Х	Х	R _{ISO} / R _{LO}	Fremdspannung vorhanden Abhilfe: das Messobjekt muss spannungsfrei geschaltet werden
STOP U DT		PRO-RE	RE (bat)	Fremdspannung > 20 V an den Sonden: H gegen E oder S gegen E keine Messung möglich
P1 / ES ??	x	PRO-RE	RE (bat)	Sonde ES nicht oder falsch angeschlossen.
		PRO-RE/ 2	RE (bat)	Generator-Stromzange (E-Clip-2) nicht angeschlossen

STOP U EXT	Х	Х	alle Messungen mit Sonde	Fremdspannung an der Sonde
U INT	Х	Х	R _{ISO}	Überspannung bzw. Überlastung des Messspannungsgenerators bei der Messung von R _{ISO} Abhilfe: Spannungsfreiheit am Messobjekt herstellen.
UN: 0V ? 	Х	Х	$I_{\Delta N} / I_F \square$ Z_{L-N} / Z_{L-PE} Z_{ST}, R_{ST}, R_E Zähleranlauf	kein Netzanschluss Abhilfe: Netzanschluss überprüfen
	Х	Х	alle	Hardwaredefekt Abhilfe: 1) Ein-/Ausschalten oder 2) Akkus kurzzeitig entnehmen Wenn Fehlermeldung weiterhin angezeigt wird, Prüfgerät an die GMC-I Service GmbH senden.
ειο · ειο · > 10 %	Х	Х	R _{LO}	OFFSET-Messung nicht sinnvoll Abhilfe: Anlage überprüfen OFFSET-Messung von R LO+ und R LO– weiterhin möglich
Γ OFFSET > 9,99 Ω		Х	R _{LO}	R _{OFFSET} > 9.99 Ω: OFFSET-Messung nicht sinnvoll Abhilfe: Anlage überprüfen
]- - C Ζ > 9,99 Ω		Х	EXTRA $\rightarrow \Delta U$	2 > 9.99 Ω: OFFSET-Messung nicht sinnvoll Abhilfe: Anlage überprüfen
) − − Δ U OFFSET ≥ ΔU		Х	EXTRA $\rightarrow \Delta U$	Offsetwert größer als Messwert an der Verbraucheranlage OFFSET-Messung nicht sinnvoll Abhilfe: Anlage überprüfen
	Х	Х	R _{ISO} / R _{LO} / R _{E(bat)}	Kontaktproblem oder Sicherung defekt Abhilfe: Prüfstecker oder Messadapter auf richtigen Sitz im Prüfstecker überprüfen oder Sicherung tauschen
		Х	R _E	Der 2-Pol-Adapter muss umgepolt werden.
	Х		$I_{\Delta N} / I_F$	N und PE sind vertauscht
	Х	Х	I _{ΔN} / IF Δ Z _{L-N} / Z _{L-PE} / R _E	 Netzanschlussfehler Abhilfe: Netzanschluss überprüfen oder Anzeige im Anschlusspiktogramm: PE unterbrochen (x) oder in Bezug auf die Tasten des Prüfsteckers unten liegender Schutzlei- terbügel unterbrochen Ursache: Spannungs-Messpfad unterbrochen Folge: die Messung wird blockiert Hinweis: Nur bei Einblendung : Messung kann durch erneutes Drücken der Taste Start trotzdem gestartet werden.
	Х		Ι _{ΔΝ} / Ι _Γ	Anzeige im Anschlusspiktogramm: in Bezug auf die Tasten des Prüfsteckers oben liegender Schutzleiterbü- gel unterbrochen Ursache: Strom-Messpfad unterbrochen Folge: keine Messwertanzeige
NO SONDE			R _E I _{∆N} / I _F ∠	Sonde wird nicht erkannt, Sonde nicht angeschlossen Abhilfe: Sondenanschluss überprüfen
V/A ?			R _E	Zange wird nicht erkannt: – Zange nicht angeschlossen oder – Strom durch die Zange zu klein (Teilerdungswiderstand zu hoch) oder – Wandlerübersetzung falsch eingestellt Abhilfe: Zangenanschluss überprüfen, Wandlerübersetzung prüfen Batterien in der METRAFLEX P300 prüfen bzw. tauschen
			R _E	Sofern Sie die Wandlerübersetzung im Prüfgerät geändert haben, erscheint der Hinweis diese auch am Zangenstromsensor einzustellen
			R _E	Spannung am Zangeneingang zu hoch oder Signal gestört Am Prüfgerät eingestellter Parameter Wandlerübersetzung stimmt möglicher- weise nicht mit der Wandlerübersetzung am Zangenstromsensor überein. Abhilfe: Wandlerübersetzung oder Aufbau prüfen

		Die Akkuspannung ist kleiner oder gleich 8 V.					
		Es sind keine zuverlässigen Messungen mehr möglich.					
	alle	Das Speichern	n der Messw	erte wird bl	ockiert.		
		Abhilfe: Akkus dauer ersetzt v	müssen auf verden.	geladen od	er gegen Er	nde der Bra	uchbarkeits-
		Widerstand im	N-PE-Pfad	zu groß			
					I _{AN} /I _F		
	1 (1		10 mA	30 mA	100 mA	300 mA	500 mA
	IAN / IF	R_{MAX} bei $I_{\Delta N}$	510 Ω	170 Ω	50Ω	15 Ω	9Ω
K N-PE > K MAA		R _{MAX} bei I _F	410 Ω	140 Ω	40 Ω	12 Ω	7Ω
		Auswirkung: D die Messung v	er erforderlic vird abgebro	che Prüfstro ochen.	om kann nicł	nt generiert	werden und
		Bei Überschre	itung der vo	rgegebener	n Berührspa	innung U _L :	
U PE > UL !	Z _{L-PE} , R _E	Z_{L-PE} und R_E :	Aufforderun	g zum Ums	chalten auf	die 15 mA-	Welle
		nur R _E alternat Aufforderung z	iv: zum Verklein	ern des Me	essbereichs	(Verringern	des Stroms)

Eingabeplausibilitätsprüfung — Kontrolle der Parameterkombinationen — LCD-Piktogramme

Zustand	Prüf- stecker	Mess- adapter	Stellung des Funktionsschalters	Funktion / Bedeutung
Parameter out of Range				Parameter außerhalb des Messbereichs (Parameter out of range)
1. 1 & N: 300 #A + 2. 5 × 1 & N			I _{AN}	5×300 mA nicht möglich
1. I & N: 500 BA + 2. 2 × I & N			Ι _{ΔΝ}	2×500 mA nicht möglich
1. I & N: 500 BA + 2. 5 × I & N			Ι _{ΔΝ}	5 ×500 mA nicht möglich
1. TYP 8/8+ TYP EV GR (V5K) 2. SR(O - 5 PR(O - K			$I_{\Delta N} / I_F $ EXTRA \rightarrow ta + I Δ	Typ B, B+ und EV/MI nicht bei G/R, SRCD, PRCD
1. 180°; ** * RCD - 5 2. G/A (/SK) SRCD - 5 RCD - K			$>I_{\Delta N}$	180 Grad nicht bei RCD-S, G/R, SRCD, PRCD-S, PRCD-K
1. NEG: ~ POS: ~~L G/R (VSK) 2. SRC0 - 5 MCD - K			$I_{\Delta N} / I_F$	DC nicht bei G/R, SRCD, PRCD
1. TYP AC + NEG: N 2. POS: N NEG: - C			$I_{\Delta N} / I_F$	Halbwelle oder DC nicht bei Typ AC
1. TYP AC/F/ + B-/EV/R1 2. NEG: N NGC: UF NGC: UF POS: O			I _{AN} / I _F	Halbwelle oder DC nicht bei Typ AC, F, B+, EV, MI
1. TYP A TYP F + 2. NEG: "L" POS: JL			$ _{\Delta N} / _{F}$	DC nicht bei Typ A, F
1			$I_{\Delta N}$ EXTRA \rightarrow RCM	1/2 Prüfstrom nicht mit DC
1. 2 × 104 5 × 104 + 2. NEG: N NEG: N NEG: U			I _{ΔN}	$2 \times I_{\Delta N} / 5 \times I_{\Delta N}$ nur mit Vollwelle
1. DC + N + AUTO 2. 10 kg (4 sA) 100 p (0,4 A) 100 p / 05			R _E	DC+ nur bei 10 Ohm
+ 1. 17 2. 0C + Nr			R _E	keine DC-Vormagnetisierung im IT Netz
1. 2 - P → © + AUTO 2. 19 k0 (4 8A) 180 (0,4 A) 190 0 (0,4 A) 10 0 J (00			R _E	15 mA nur im 1 kΩ - und 100 Ω-Bereich möglich!
1. • + TYP AC 2. TYP F TYP Bt TYP IV			EXTRA \rightarrow RCM	Bei RCM: TYP AC, F, B+ und EV/MI nicht möglich

+ 1. IT - 2. MIG: N POS: N MIG:	$I_{\Delta N} / I_{F} \square$ EXTRA \rightarrow RCM	im IT-Netz keine Messung mit Halbwelle oder DC möglich
1. Parameter 1 + 2. Parameter 2	alle	Die von Ihnen gewählten Parameter sind in Kombination mit anderen bereits eingestellten Parametern nicht sinnvoll. Die gewählten Parameter werden nicht übernommen. Abhilfe: Geben Sie andere Parameter ein.
	R _E	2-Pol-Messung über Schukostecker nicht im IT-Netz möglich
+ 1. RCD: ta + I & + 2. RCD - 5 6/R (VSK)	EXTRA \rightarrow ta+l Δ	Die intelligente Rampe ist nicht mit den RCD-Typen RCD-S und G/R möglich.

Meldungen — LCD-Piktogramme — Prüfsequenzen

Zustand	Prüf- stecker	Mess- adapter	Stellung des Funktionsschalters	Funktion / Bedeutung
Sequence			AUTO	Die Prüfsequenz enthält eine Messung, die von dem angeschlossenen Prüfgerät nicht verarbeitet werden kann. Der entsprechende Prüfschritt muss übersprungen werden. Beispiel: Die Prüfsequenz enthält eine RCM-Messung, die an den PROFITEST MF TECH übertragen wurde.
Sequences finished			AUTO	Die Prüfsequenz wurde erfolgreich durchlaufen.
				Es sind keine Prüfsequenzen hinterlegt.
NO DATA			AUTO	Ursache: Diese können durch folgende Aktionen gelöscht worden sein: Änderung der Sprache, des Profils, des DB-Modes oder durch Rücksetzen auf Werkseinstellungen.

Fehlermeldungen — LCD-Piktogramme — Ableitstrommessadapter PRO-AB

	Zustand	Prüf- stecker	Mess- adapter	Stellung des Funktionsschalters	Funktion / Bedeutung
0 0				$EXTRA \to I_L$	Messbereich überschritten. Wechseln Sie in den größeren Messbereich (Prüfgerät und Ableitstrom- messadapter).
TEST				$EXTRA \to I_L$	Testmessung: Die Prüfung wurde bestanden. Der Ableitstrommessadapter ist jetzt einsatzbereit.
TEST X	[]			$EXTRA \to I_L$	Testmessung: Die Prüfung wurde nicht bestanden. Der Ableitstrommessadapter ist defekt. Wenden Sie sich an unseren Reparaturservice.
				$EXTRA \to I_L$	Testmessung: Überprüfen Sie die Sicherung im Ableitstrommessadapter.

Die Misspanneter Win Misspanneter von den Göjekten Soll die Datenbank angepasst werden?	$I_{\Delta N} / I_F \square$ Z_{L-N} / Z_{L-PE} EXTRA $\rightarrow t_A + I_\Delta$ EXTRA \rightarrow RCM	Messwertspeicherung mit abweichendem Stromkreisparameter Der von Ihnen am Prüfgerät eingestellte Stromkreisparameter stimmt nicht mit dem in der Struktur unter Objektdaten hinterlegten Parameter überein. Beispiel: Der Auslösefehlerstrom ist in der Datenbank mit 10 mA vorgege- ben, Sie haben aber mit 100 mA gemessen. Wollen Sie alle zukünftigen Messungen mit 100 mA durchführen, muss der Wert in der Datenbank durch Bestätigung mit angepasst werden. Der Messwert wird proto- kolliert und der neue Parameter übernommen. Wollen Sie den Parameter in der Datenbank unverändert lassen, so drü- cken Sie die Taste . Messwert und geänderter Parameter werden nur protokolliert.
TXT = ?	alle	Bitte geben Sie eine Bezeichnung (alphanumerisch) ein
	alle	Betrieb mit Barcodescanner Fehlermeldung bei Aufruf des Eingabefeldes "EDIT" und bei Akkuspan- nung < 8 V. Die Ausgangsspannung für den Betrieb des Barcodelesers wird bei U < 8 V generell abgeschaltet, damit die Restkapazität der Akkus ausreicht, um Bezeichnungen zu Prüflingen eingeben und die Messung speichern zu können. Abhilfe: Akkus müssen aufgeladen oder gegen Ende der Brauchbarkeits- dauer ersetzt werden.
I (USB) > I MAX	alle	Betrieb mit Barcodescanner Es fließt ein zu hoher Strom über die RS-232-Schnittstelle. Abhilfe: Das angeschlossene Gerät ist für diese Schnittstelle nicht geeignet.
	alle	Betrieb mit Barcodescanner Barcode nicht erkannt, falsche Syntax.
мем ())) ! 100 % !	alle	Der Datenspeicher ist voll. Abhilfe: Sichern Sie die Messdaten auf einem PC und löschen Sie anschließend den Datenspeicher des Prüfgeräts durch Löschen von "database" oder durch Importieren einer (leeren) Datenbank.
DELETE ?	alle	Messung oder Datenbankelemente löschen. Dieses Abfragefenster fordert Sie zur nochmaligen Bestätigung der Löschung (YES) auf.
ESC Delete all data ?	SETUP	Achtung! Datenverlust bei Rücksetzen auf Werkseinstellung! Sichern Sie vor Drücken der jeweiligen Taste Ihre Messdaten auf einem PC. Dieses Abfragefenster fordert Sie zur nochmaligen Bestätigung der Löschung auf.
!!! File > MEM !!! 약 여러 프로 목 entable	alle	 Ist die Datenbank, d. h. die in der IZYTRONIQ angelegte Struktur zu groß für den Gerätespeicher, so erscheint diese Fehlermeldung. Die Datenbank im Gerätespeicher ist nach der abgebrochenen Daten- bankübertragung leer. Abhilfe: Verkleinern Sie die Datenbank innerhalb der IZYTRONIQ oder senden Sie die Datenbank ohne Messwerte (Taste Struktur senden), falls bereits Messwerte vorhanden sein sollten.

7 Betrieb

Achtung!

Die Schutzfolien an den beiden Sensorflächen (Fingerkontakten) des Prüfsteckers müssen entfernt sein, um eine sichere Erkennung von Berührspannungen zu gewährleisten.

7.1 Stromversorgung

Das Gerät wird über Akkus mit Strom versorgt. Es kann das mitgelieferte Akku-Pack Master (Z502H; 2000 mAh) verwendet werden, das optionale Akkupack PROFITEST (Z502O; 2500mAh) oder handelsübliche Einzelakkus oder Batterien.

😥 Hinweis

Verwenden Sie möglichst das mitgelieferte oder als Zubehör verfügbare Akkupack (Z502H/Z502O) mit verschweißten Zellen. Hierdurch ist gewährleistet, dass immer ein kompletter Satz ausgetauscht wird und alle Akkus/Batterien polrichtig eingelegt sind, um ein Auslaufen der Akkus/Batterien zu vermeiden.

Bei der Inbetriebnahme haben Sie bereits das mitgelieferte Akku-Pack Z502H eingesetzt. Siehe Kurzbedienungsanleitung.

7.1.1 Akku-Pack (Z502H/Z5020) oder handelsübliche Einzelakkus oder Batterien einsetzen bzw. austauschen

Achtung!

/!\

<u>/</u>]\

Vor dem Öffnen des Akkufaches muss das Gerät allpolig vom Messkreis (Netz) getrennt werden!

Achtung!

Handelsübliche Einzelakkus bzw. Batterien müssen den technischen Daten entsprechen, siehe Seite 10.

- ➡ Lösen Sie an der Rückseite die Schlitzschraube des Akkufachdeckels und nehmen Sie ihn ab.
- Nehmen Sie den entladenen Akku-Pack/die handelsüblichen Akkus/die Batterien heraus.
- Setzen Sie den neuen Akku-Pack/die handelsüblichen Akkus/ die Batterien in das Akkufach ein.

Achtung! Bei handelsüblichen Einzelakkus oder Batterien: Achten Sie unbedingt auf das polrichtige Einsetzen aller Akkus/Batterien. Ist bereits ein Akkus/eine Batterie mit falscher Polarität eingesetzt, wird dies vom Prüfgerät nicht erkannt und führt möglicherweise zum Auslaufen der Akkus/Batterien und zu Schäden am Prüfgerät.

Setzen Sie den Deckel wieder auf und schrauben Sie ihn fest.

Hinweis

Entsorgen Sie das Akku-Pack bzw. die handelsüblichen Einzelakkus bzw. Batterien gegen Ende der Brauchbarkeitsdauer (Ladekapazität ca. 80 %) umweltgerecht. Siehe Kap. 26 "Entsorgung und Umweltschutz" auf Seite 95.

7.1.2 Akku-Pack (Z502H/Z5020) im Prüfgerät aufladen

Achtung!

Wenn handelsübliche Einzelakkus verwendet werden, dürfen diese nur extern geladen werden. Verwenden Sie nicht das Ladegerät Z502R zum Laden der handelsüblichen Einzelakkus.

Die Qualität handelsüblicher Einzelakkus ist nicht überprüfbar und kann beim Laden im Gerät zum Erhitzen und damit zu Verformungen und Explosionen führen.

Achtung!

Wenn handelsübliche Einzelakkus verwendet werden, dürfen diese nur extern geladen werden. Verwenden Sie nicht das Ladegerät Z502R zum Laden der handelsüblichen Einzelakkus.

Die Qualität handelsüblicher Einzelakkus ist nicht überprüfbar und kann beim Laden im Gerät zum Erhitzen und damit zu Verformungen und Explosionen führen.

Achtung!

Batterien dürfen nicht geladen werden.

Achtung!

Verwenden Sie zum Laden des im Prüfgerät eingesetzten Kompakt Akku-Pack (Z502H/Z502O) nur das Ladegerät Z502R.

Achtung!

Das Ladegerät Z502R ist nur für Netzbetrieb geeignet!

Achtung!

Schalten Sie das Prüfgerät während des Ladevorgangs nicht ein. Der Ladevorgang kann ansonsten gestört werden.

- Überprüfen Sie, dass der Akku-Pack (Z502H/Z502O) eingelegt ist bzw. keine handelsüblichen Akku-Packs oder Batterien eingelegt sind.
- Setzen Sie den f
 ür Ihr Land passenden Netzstecker in das Ladeger
 ät Z502R ein.
- Verbinden Sie das Ladegerät Z502R über den Klinkenstecker mit dem Prüfgerät und schließen Sie das Ladegerät über den Wechselstecker an das 230 V-Netz an.
- Entfernen Sie das Ladegerät erst vom Prüfgerät, wenn die grüne LED (voll/ready) leuchtet.

Falls die Akkus bzw. der Akku-Pack längere Zeit (> 1 Monat) nicht verwendet bzw. geladen worden ist (bis zur Tiefentladung):

Beobachten Sie den Ladevorgang (Signalisierung durch LEDs am Ladegerät) und starten Sie gegebenenfalls einen weiteren Ladevorgang (nehmen Sie das Ladegerät hierzu vom Netz und trennen Sie es auch vom Prüfgerät. Schließen Sie es danach wieder an). Beachten Sie, dass die Systemuhr in diesem Fall nicht weiterläuft und bei Wiederinbetriebnahme neu gestellt werden muss.

7.2 Gerät ein-/ausschalten

Durch Drücken der Taste **ON/START** ▼ wird das Prüfgerät eingeschaltet. Das jeweilige der Funktionsschalterstellung entsprechende Menü wird eingeblendet.

Durch gleichzeitiges Drücken der Tasten **MEM** und **HELP** wird das Gerät manuell ausgeschaltet.

Nach einer im **SETUP** eingestellten Zeit wird das Gerät automatisch ausgeschaltet, siehe Geräteeinstellungen Kap. 8.

Akku-/Batterietest

hende Piktogramm.

Nach dem Einschalten folgt ein Akku-/Batterietest. Ist die Versorgungsspannung unter den zulässi-

gen Wert abgesunken, erscheint das nebenste-

Bei sehr stark entladenen Akkus/leeren Batterien arbeitet das Gerät nicht. Es erscheint dann auch keine Anzeige.

Sorgen Sie für eine ausreichende Stromversorgung, indem Sie das Akku-Pack (Z502H/Z502O) aufladen bzw. geladene handelsübliche Akkus oder neue Batterien einsetzen. Siehe Kap. 7.1 "Stromversorgung" auf Seite 25.

Bedeutung einzelner Parameter

Oa Einschaltdauer Prüfgerät

Hier können Sie die Zeit auswählen, nach der sich das Prüfgerät automatisch abschaltet. Diese Auswahl wirkt sich stark auf die Lebensdauer/den Ladezustand der Akkus aus.

Ob Einschaltdauer LCD-Beleuchtung

Hier können Sie die Zeit auswählen, nach der sich die LCD-Beleuchtung automatisch abschaltet. Diese Auswahl wirkt sich stark auf die Lebensdauer/den Ladezustand der Akkus aus.

Zur exakten Justierung des Drehschalters können Sie wie folgt vorgehen:

- 1 Um ins Untermenü Drehschalterabgleich zu gelangen, drücken Sie die Softkey-Taste **TESTS** Drehschalter/Akkutest.
- 2 Drücken Sie jetzt die Softkey-Taste mit dem Drehschaltersymbol.
- 3 Überprüfen Sie, dass der Drehschalter auf SETUP steht.

Der Pegelstrich vor der Zahl sollte mittig vor der Zahl stehen. Der Wert der Zahl kann in einem Bereich von –1 bis 101 angezeigt werden und sollte zwischen 45 und 55 liegen. Im Falle von –1 oder 101 stimmt die Drehschalterposition nicht mit der im Display angezeigten Messfunktion überein.

Liegt der angezeigte Wert außerhalb dieses Bereichs, justieren Sie diese Position nach durch Drücken der Softkey-Taste **Nachjustierung**. Ein kurzer Signalton bestätigt die Nachjustierung.

Hinweis

Falls die Beschriftung der LCD-Darstellung des Drehschalters mit der tatsächlichen Position des Drehschalters nicht übereinstimmt, warnt ein Dauerton während des Drückens der Softkey-Taste **Nachjustierung**.

- 4 Bestätigen Sie durch Drücken der Softkey-Taste mit dem Drehschaltersymbol. Danach schaltet die Anzeige auf die nächste Messfunktion um.
- 5 Drehen Sie den Drehschalter im Uhrzeigersinn auf die nächste Messfunktion (nach SETUP zuerst $I_{\Delta N}$).
- 6 Wiederholen Sie die Schritte 3 bis 5 bis Sie alle Drehschalterfunktionen kontrolliert bzw. nachjustiert haben.

7 Drücken Sie ESC, um zurück zum Hauptmenü zu gelangen.

2 Untermenü: TEST – Akkuspannungsabfrage

Ist die Akkuspannung kleiner oder gleich 8,0 V leuchtet die LED UL/RL rot, zusätzlich ertönt ein Signal.

🐼 Hinweis

Messablauf

Sinkt die Akkuspannung unter 8,0 V während eines Messablaufs, wird dies allein durch ein Pop-up-Fenster signali-

siert. Die gemessenen Werte sind ungültig. Die Messergebnisse können nicht abgespeichert werden.

Se Mit ESC gelangen Sie zurück zum Hauptmenü.

3c Sprache der Bedienerführung (CULTURE)

Wählen Sie das gewünschte Landes-Setup über das zugehörige Länderkennzeichen aus.

3e Werkseinstellungen (FACTORY SETTINGS)

Durch Betätigen dieser Taste wird das Prüfgerät in den Zustand nach Werksauslieferung zurückgesetzt. Siehe auch Kap. 21 "Zurücksetzen (Werkseinstellungen)" auf Seite 92.

Achtung!

Sämtliche Strukturen, Daten und Sequenzen werden gelöscht! Sichern Sie vor dem Zurücksetzen Ihre Strukturen, Messdaten und Sequenzen auf einen PC.

(3f) Helligkeit einstellen

Erstellen von Strukturen im TXT MODE

Die Datenbank im Prüfgerät ist standardmäßig auf Text-Mode eingestellt, "TXT" wird in der Kopfzeile eingeblendet. Strukturelemente können von Ihnen im Prüfgerät angelegt und im "Klartext" beschriftet werden, z. B. Kunde XY, Verteiler XY und Stromkreis XY.

Erstellen von Strukturen im ID MODE

Alternativ können Sie im ID MODE arbeiten, "ID" wird in der Kopfzeile eingeblendet. Die Strukturelemente können von Ihnen im Prüfgerät angelegt und mit beliebigen Identnummern beschriftet werden.

🐼 Hinweis

Im Prüfgerät können entweder Strukturen im Text-Mode oder im Ident-Mode angelegt werden. In dem Protokollierprogramm dagegen werden immer Bezeichnungen und Identnummern vergeben.

Sind im Prüfgerät beim Anlegen von Strukturen keine Texte oder keine Identnummern hinterlegt worden, so generiert das Protokollierprogramm selbsttätig die fehlenden Einträge. Anschließend können diese im Protokollierprogramm bearbeitet und bei Bedarf ins Prüfgerät zurückübertragen werden. (4) Prüfer auswählen, hinzufügen oder löschen

S i fi		
Erika Mustermann Erika Mustermann	•	
		Prüfer neu anlegen
	\sim	
	ľ	

Zur Eingabe eines Textes siehe auch Kap. 10.8 Seite 38.

Hinweis

Der Prüfer kann nicht geändert werden. Ist ein Prüfername fehlerhaft, können Sie diesen löschen und einen neuen korrekten Prüfer anlegen.

Änderungen sind nicht rückwirkend. Ein gelöschter Prüfer bleibt für durchgeführte Prüfungen erhalten.

9 Datenbank

9.1 Anlegen von Verteilerstrukturen allgemein

Im Prüfgerät kann eine komplette Verteilerstruktur mit Stromkreisbzw. RCD-Daten angelegt werden.

Diese Struktur ermöglicht die Zuordnung von Messungen zu den Stromkreisen verschiedener Verteiler, Gebäude und Kunden.

Zwei Vorgehensweisen sind möglich:

• Vor Ort bzw. auf der Baustelle: Verteilerstruktur im Prüfgerät anlegen.

Es kann eine Verteilerstruktur im Prüfgerät mit maximal 50000 Strukturelementen angelegt werden, die im Flash-Speicher des Prüfgerätes gesichert wird.

oder

• Erstellen und Speichern einer vorliegenden Verteilerstruktur mithilfe der PC-Datenbank- und Protokolliersoftware IZYTRONIQ.

Hinweise zur IZYTRONIQ

Zur Installation und Anwendung lesen Sie bitte die Online-Hilfe zum PC-Programm.

9.2 Übertragung von Verteilerstrukturen

Folgende Übertragungen sind möglich:

- Übertragung einer Verteilerstruktur vom PC an das Prüfgerät.
- Übertragung einer Verteilerstruktur einschlie
 ßlich der Messwerte vom Pr
 üfger
 ät zum PC.

Zur Übertragung von Strukturen und Daten zwischen Prüfgerät und PC müssen beide über ein USB-Schnittstellenkabel verbunden sein.

Hinweis

Während der Datenübertragung darf sich der Funktionsdrehschalter <u>nicht</u> in Drehschalterstellung "U" befinden. Während der Übertragung von Strukturen und Daten erscheint die folgende Darstellung auf dem Display.

9.3 Verteilerstruktur im Prüfgerät anlegen

Übersicht über die Bedeutung der Symbole zur Strukturerstellung

Symbole		Bedeutung	
Haupt-	Unter-		
epene	eberie	Sneichermenii Seite 1 von 3	
		Cursor OBEN: blättern pach obon	
		Ouisor Oben. Diattern nach Oben	
		Cursor UNTEN: blättern nach unten	
↓		ENTER: Auswahl bestätigen + → – in untergeordnete Ebene wechseln (Verzeichniq1>>sbaum aufklappen) oder – → + in übergeordnete Ebene wechseln (Verzeichnisbaum schließen)	
Ð,		Einblenden der vollständigen Strukturbezeichnung (max. 63 Zeichen) oder Identnummer (25 Zeichen) in einem Zoomfenster.	
	TXT ID TXT ID	Temporäres Umschalten zwischen Strukturbe- zeichnung und Identnummer. Diese Tasten haben keinen Einfluss auf die Haupt- einstellung im Setup-Menü siehe DB-MODE Seite 28.	
	Q	Ausblenden des Zoomfensters	
>> 1 / 3		Seitenwechsel zur Menüauswahl	
		Sneichermenii Seite 2 von 3	
		Strukturelement hinzufügen	
Ē		otrakta element ninzalagen	
Prüf- gerät	izytro- Niq		
		STANDORTBAUM	
		Liegenschaft	
		Gebäude	
		Ebene	
	F	Raum	
		E-BAUM – Elektrischer Baum	
ń		Kunde	
	Ŷ	Elektrische Anlage	
#		Maschine	
좄	ŀ.	Verteiler	

Symbole		Bedeutung		
4	Ţ	Stromkreis		
RCD	RCD	RCD		
RCM	RCM	RCM		
		RCBO		
IMD 7	IMD 7	IMD		
Ŷ	Ţ	Betriebsmittel		
 F·	-T	PA-Schiene		
╨╾		PA-Leiter		
١		Erder		
- ()-		Messpunkt		
ľ		Angewähltes Strukturelement löschen		
V Ω A		Messdaten einblenden, sofern für dieses Struktur- element eine Messung durchgeführt wurde.		
ſ		Bearbeiten des angewählten Strukturelements		
		Speichermenü Seite 3 von 3		
Q ID		Nach Identnummer suchen > Vollständige Identnummer eingeben		
Q TXT		Nach Text suchen > Vollständigen Text (ganzes Wort) eingeben		
Q, ALL		Nach Identnummer oder Text suchen		
	Q »	Weitersuchen		
		Editiormonü		
		Auswahl eines alphanumerischen Zeichens		
		Cursor RECHTS:		
		Auswahl eines alphanumerischen Zeichens		
4		ENTER: einzelne Zeichen übernehmen		
	\checkmark	Eingabe bestätigen		
	←	Cursor nach links		
	\rightarrow	Cursor nach rechts		
e Del		Zeichen löschen		

Symbole	Bedeutung
A a 0 @	Umschaltung zwischen alphanumerischen Zei- chen:
A	✓ А В С D E F G H I J K L M N O P O R S T U V W X Y Z № + -
а	✓ Tabcdefghijk lmnopqrstuvw xyz = -
0	Ziffern - * / = : / ; - () < > · ! ? • + -
@	✓ Caáööüüβ€\$% δ#aàéèí1óòúù ññæ≃+-

Symbolik Verteilerstruktur / Baumstruktur

Bedeutung der Symbole hinter einem Strukturelementsymbol: Haken: sämtliche Messungen zu diesem Element wurden bestanden X: mindestens eine Messung wurde nicht bestanden kein Symbol: es wurde noch keine Messung durchgeführt

Kunde Gebäude Verteiler RCD Stromkreis Stromkreis

	ТХТ	MEM BAT					
	P	database					
)	P	Max Mustermann					
)		🕆 Lagerhalle					
r	- 무 -	- Einspeisung	4				
)	9_	RCD2					
S	H	🗲 🧹 Maschinel					
5	무	Maschine2	Ð,				
			>>				
			1/3				
		Baumelement wie im Windows Explorer: +: Unterobjekte vorhanden, mit → einblende -: Unterobjekte werden angezeigt, mit → au	n sblenden				

9.3.1 Strukturerstellung (Beispiel für den Stromkreis)

Nach Anwahl über die Taste **MEM** finden Sie auf drei Menüseiten (1/3, 2/3 und 3/3) alle Einstellmöglichkeiten zur Erstellung einer Baumstruktur. Die Baumstruktur besteht aus Strukturelementen, im Folgenden auch Objekte genannt.

Position zum Hinzufügen eines neuen Objekts wählen

Benutzen Sie die Tasten $\uparrow \downarrow$, um die gewünschten Strukturelemente anzuwählen.

Mit , wechseln Sie in die Unterebene.

Mit >> blättern Sie zur nächsten Seite.

Neues Objekt anlegen

Neues Objekt aus Liste auswählen

Wählen Sie ein gewünschtes Objekt aus der Liste über die Tasten $\uparrow \downarrow$ aus und bestätigen dies über die Taste \dashv .

Je nach gewähltem Profil im **SETUP** des Prüfgeräts (siehe Kap. 8) kann die Anzahl der Objekttypen begrenzt sein oder die Hierarchie unterschiedlich aufgebaut sein.

Bezeichnung eingeben

Geben Sie eine Bezeichnung ein und quittieren diese anschließend durch Eingabe und bestätigen von \checkmark .

Hinweis

Bestätigen Sie die Eingabe mit ✓ und →, ansonsten wird die Eingabe nicht übernommen.

die unten voreingestellten oder geänderten Parameter, ansonsten wird die neu angelegte Bezeichnung nicht übernommen und abgespeichert.

Kommentar eingeben

Geben Sie einen Kommentar ein und quittieren diese anschließend durch Eingabe und bestätigen von \checkmark .

Hinweis

Bestätigen Sie die Eingabe mit ✓ und →, ansonsten wird die Eingabe nicht übernommen.

Parameter für Stromkreis einstellen

Z. B. müssen hier für den ausgewählten Stromkreis die Nennstromstärken eingegeben werden. Die so übernommenen und abgespeicherten Messparameter werden später beim Wechsel von der Strukturdarstellung zur Messung automatisch in das aktuelle Messmenü übernommen.

Hinweis

Über Strukturerstellung geänderte Stromkreisparameter bleiben auch für Einzelmessungen (Messungen ohne Speicherung) erhalten.

Ändern Sie im Prüfgerät die von der Struktur vorgegebenen Stromkreisparameter, so führt dies beim Abspeichern zu einem Warnhinweis, siehe Fehlermeldung Seite 24.

9.3.2 Suche von Strukturelementen

Die Suche beginnt unabhängig vom aktuell markierten Objekt immer bei database.

Wechseln Sie zur Seite 3/3 im Datenbankmenü

Nach Auswahl der Textsuche

und Eingabe des gesuchten Textes (nur genaue Übereinstimmung wird gefunden, keine Wildcards, case sensitive)

wird die gefundene Stelle angezeigt. Weitere Stellen werden durch Anwahl des nebenstehenden Icons gefunden.

Werden keine weiteren Einträge gefunden, so wird obige Meldung eingeblendet.

9.4 Datenspeicherung und Protokollierung

Messung vorbereiten und durchführen

Zu jedem Strukturelement können Messungen durchgeführt und gespeichert werden. Dazu gehen Sie in der angegebenen Reihenfolge vor:

- Stellen Sie die gewünschte Messung am Drehrad ein.
- \Rightarrow Starten Sie mit der Taste **ON/START** \blacksquare oder I_{ΔN} die Messung.
- Am Ende der Messung wird der Softkey → Diskette eingeblendet.
- Drücken Sie kurz die Taste Wert Speichern.

Die Anzeige wechselt zum Speichermenü bzw. zur Strukturdarstellung.

- Navigieren Sie zum gewünschten Speicherort, d. h. zum gewünschte Strukturelement/Objekt, an dem die Messdaten abgelegt werden sollen.
- Sofern Sie einen Kommentar zur Messung eingeben wollen, drücken Sie die nebenstehende Taste und geben Sie eine Bezeichnung über das Menü "EDIT" ein wie im Kap. 9.3.1 beschrieben.

Schließen Sie die Datenspeicherung mit der Taste "STORE" ab.

-

Alternatives Speichern

Durch langes Drücken der Taste Wert Speichern wird der Messwert an der zuletzt eingestellten Stelle im Strukturdiagramm abgespeichert, ohne dass die Anzeige zum Speichermenü wechselt.

Hinweis

 \Box

Sofern Sie die Parameter in der Messansicht ändern, werden diese nicht für das Strukturelement übernommen. Die Messung mit den veränderten Parametern kann trotzdem unter dem Strukturelement gespeichert werden, wobei die geänderten Parameter zu jeder Messung mitprotokolliert werden.

Aufruf gespeicherter Messwerte

Wechseln Sie auf die Seite 2

Wechseln Sie zur Verteilerstruktur durch Drücken der Taste MEM und zum gewünschten Stromkreis über die Cursortasten.

Blenden Sie die Messdaten ein

durch Drücken nebenstehender Taste:

Pro LCD-Darstellung wird jeweils eine Messung mit Datum und Uhrzeit sowie ggf. Ihrem Kommentar eingeblendet. Beispiel: RCD-Messung.

🐼 Hinweis

Ein Haken in der Kopfzeile bedeutet, dass diese Messung bestanden ist.

Ein Kreuz bedeutet, dass diese Messung nicht bestanden wurde.

Ein Kreis bedeutet, dass die Messung nicht bewertet wurde.

- Blättern zwischen den Messungen ist über die nebenstehenden Tasten möglich.
- Sie können die Messung über die nebenstehende Taste löschen.

Ein Abfragefenster fordert Sie zur Bestätigung der Löschung auf.

Über die nebenstehende Taste

(MW: Messwert/PA: Parameter) können Sie sich die Einstellparameter zu dieser Messung anzeigen lassen.

Blättern zwischen den Parametern ist über die nebenstehenden Tasten möglich.

Datenauswertung und Protokollierung mit dem Protokollierprogramm

Sämtliche Daten inklusive Verteilerstruktur können mit dem Protokollierprogramm auf den PC übertragen und ausgewertet werden. Hier sind nachträglich zusätzliche Informationen zu den einzelnen Messungen eingebbar. Auf Tastendruck wird ein Protokoll über sämtliche Messungen innerhalb einer Verteilerstruktur erstellt oder die Daten in eine EXCEL-Tabelle exportiert.

Hinweis

Beim Drehen des Funktionsdrehschalters wird die Datenbank verlassen. Die zuvor in der Datenbank eingestellten Parameter werden nicht in die Messung übernommen.

9.5 Einsatz von Barcode- und RFID-Lesegeräten

Suche nach einem bereits erfassten Barcode

Der Ausgangspunkt (Schalterstellung und Menü) ist beliebig.

- Scannen Sie den Barcode Ihres Objekts ab.
- Der gefundene Barcode wird invers dargestellt.
- Solution Mit ENTER wird dieser Wert übernommen.

Hinweis

Ein bereits selektiertes/ausgewähltes Objekt wird bei der Suche nicht berücksichtigt.

Allgemeines Weitersuchen

Q >>

Unabhängig davon, ob ein Objekt gefunden wurde oder nicht, kann über diese Taste weitergesucht werden: –Objekt gefunden: weitersuchen unterhalb des zuvor gewählten Objekts

-kein weiteres Objekt gefunden: die gesamte Datenbank wird auf allen Ebenen durchsucht

Einlesen eines Barcodes zum bearbeiten

Sofern Sie sich im Menü zur alphanumerischen Eingabe befinden, wird ein über ein Barcode- oder RFID-Leser eingescannter Wert direkt übernommen.

Einsatz eines Barcodedruckers (Zubehör)

Ein Barcodedrucker ermöglicht folgende Anwendungen:

- Ausgabe von Identnummern f
 ür Objekte als Barcode verschl
 üsselt; zum schnellen und komfortablen Erfassen bei Wiederholungspr
 üfungen
- Ausgabe von ständig vorkommenden Bezeichnungen wie z. B. Prüfobjekttypen als Barcodes verschlüsselt in eine Liste, um diese bei Bedarf für Kommentare einlesen zu können.

10 Allgemeine Informationen zu Messungen

10.1 Anwendung der Kabelsätze bzw. Prüfspitzen

- Lieferumfang 2-Pol-Messadapter und 1 Leitung zur Erweiterung zum 3-Pol-Adapter (PRO-A3-II / Z5010)
- Optionales Zubehör Messadapter 2-polig mit 10 m Kabel PRO-RLO II (Z501P)
- Optionales Zubehör Kabelsatz KS24 (GTZ3201000R0001)

Nur mit der auf der Prüfspitze der Messleitung aufgesteckten Sicherheitskappe dürfen Sie nach DIN EN 61010-031 in einer Umgebung nach Messkategorie III und IV messen.

Für die Kontaktierung in 4-mm-Buchsen müssen Sie die Sicherheitskappen entfernen, indem Sie mit einem spitzen Gegenstand (z. B. zweite Prüfspitze) den Schnappverschluss der Sicherheitskappe aushebeln.

Achtung!

Halten Sie den Prüfstecker und die Prüfspitzen fest, wenn Sie sie z. B. in eine Buchse gesteckt haben. Bei Zugbelastung der Wendelleitung besteht Verletzungsgefahr durch den zurückschnellenden Prüfstecker oder die zurückschnellende Prüfspitze.

10.2 Prüfstecker – Einsätze wechseln

Der Prüfstecker kann mit verschiedenen Einsätzen ausgestattet werden (z.B. zweipoliger Messadapter oder länderspezifischer Steckereinsatz.)

Zum Wechseln drehen Sie den Befestigungsring auf, bis Sie den aktuellen Einsatz herausziehen können. Setzen Sie anschließend den gewünschten Einsatz ein und drehen den Befestigungsring wieder zu.

(Siehe Übersicht Kap. Seite 8.)

10.3 Gerät anschließen

In Anlagen mit Schutzkontakt-Steckdosen schließen Sie das Gerät mit dem Prüfstecker, auf dem der passende länderspezifische Steckereinsatz befestigt ist, an das Netz an. Die Spannung zwischen Außenleiter L und Schutzleiter PE darf maximal 253 V betragen!

Sie brauchen dabei nicht auf die Steckerpolung achten. Das Gerät prüft die Lage von Außenleiter L und Neutralleiter N und polt, wenn erforderlich, den Anschluss automatisch um. Ausgenommen davon sind:

- Spannungsmessung in Schalterstellung U
- Isolations-Widerstandsmessung
- Niederohm-Widerstandsmessung

Die Lage von Außenleiter L und Neutralleiter N sind am Steckereinsatz gekennzeichnet.

Wenn Sie an Drehstrom-Steckdosen, in Verteilern oder an Festanschlüssen messen, dann nehmen Sie den Messadapter (2-polig) und befestigen ihn am Prüfstecker. Den Anschluss stellen Sie mit der Prüfspitze (an PE bzw. N) und über die zweite Prüfspitze (an L) her.

Zur Drehfeldmessung müssen Sie den 2-poligen Messadapter mit der beiliegenden Messleitung zum 3-Pol-Adapter ergänzen.

Berührungsspannung (bei der RCD-Prüfung) und Erdungswiderstand können, Erderspannung, Standortisolationswiderstand und Sondenspannung müssen mit einer Sonde gemessen werden. Sie wird an der Sondenanschlussbuchse über einen berührungsgeschützten Anschlussstecker mit 4 mm Durchmesser angeschlossen.

10.4 Automatische Einstellung, Überwachung und Abschaltung

Das Prüfgerät stellt automatisch alle Betriebsbedingungen ein, die es selbsttätig ermitteln kann. Es prüft die Spannung und die Frequenz des angeschlossenen Netzes. Liegen die Werte innerhalb gültiger Nennspannungs- und Nennfrequenzbereiche, dann werden sie im Anzeigefeld angezeigt. Liegen die Werte außerhalb, dann werden statt U_N und f_N die aktuellen Werte von Spannung (U) und Frequenz (f) angezeigt.

Die **Berührungsspannung**, die vom Prüfstrom erzeugt wird, wird bei jedem Messablauf überwacht. Überschreitet die Berührungsspannung den Grenzwert von > 25 V bzw. > 50 V, so wird die Messung sofort abgebrochen. Die LED U_L/R_L leuchtet rot. Das Gerät lässt sich nicht in Betrieb nehmen bzw. es schaltet sofort ab, wenn die **Akkuspannung** den zulässigen Grenzwert unterschreitet.

Die Messung wird automatisch abgebrochen bzw. der Messablauf gesperrt (ausgenommen Spannungsmessbereiche und Drehfeldmessung):

- bei unzulässiger Netzspannung (< 60 V, > 253 V / > 330 V / > 440 V bzw. > 550 V) bei Messungen, bei denen Netzspannung erforderlich ist,
- wenn bei einer Isolationswiderstands- bzw. Niederohmmessung eine Fremdspannung vorhanden ist,
- wenn die Temperatur im Gerät zu hoch ist. Unzulässige Temperaturen treten in der Regel erst nach ca. 50 Messabläufen im 5 s-Takt auf, wenn der Funktionsdrehschalter in der Schaltstellung Z_{L-PE} oder Z_{L-N} ist. Beim Versuch einen Messablauf zu starten, erfolgt eine entsprechende Meldung auf dem Anzeigefeld.

Das Gerät schaltet sich frühestens am Ende eines (automatischen) Messablaufs und nach Ablauf der vorgegebenen Einschaltdauer (siehe Kapitel 7.2) automatisch ab. Die Einschaltdauer verlängert sich wieder um die im Setup eingestellte Zeit, wenn eine Taste oder der Funktionsdrehschalter betätigt wird. Bei der Messung mit steigendem Fehlerstrom in Anlagen mit selektiven RCD-Schutzschaltern bleibt das Prüfgerät ca. 75 s lang eingeschaltet zuzüglich der vorgegebenen Einschaltdauer. Das Gerät schaltet sich immer selbstständig ab!

10.5 Messwertanzeige und Messwertspeicherung

Im Anzeigefeld werden angezeigt:

- Messwerte mit ihrer Kurzbezeichnung und Einheit,
- die ausgewählte Funktion,
- die Nennspannung,
- die Nennfrequenz
- sowie Fehlermeldungen.

Bei den automatisch ablaufenden Messvorgängen werden die Messwerte bis zum Start eines weiteren Messvorganges bzw. bis zum selbsttätigen Abschalten des Gerätes gespeichert und als digitale Werte angezeigt.

Wird der Messbereichsendwert überschritten, so wird der Endwert mit dem vorangestellten ">" (größer) Zeichen dargestellt und damit Messwertüberlauf signalisiert.

😥 Hinweis

Die LCD-Darstellungen in dieser Bedienungsanleitung können aufgrund von Produktverbesserungen von denen des aktuellen Geräts abweichen.

Schutzkontakt-Steckdosen auf richtigen Anschluss prüfen Das Prüfen von Schutzkontakt-Steckdosen auf richtigen Anschluss, vor der jeweiligen Prüfung der Schutzmaßnahme, wird durch das Fehlererkennungssystem des Prüfgeräts erleichtert. Das Gerät zeigt einen fehlerhaften Anschluss folgendermaßen an:

- Unzulässige Netzspannung (< 60 V oder > 253 V): Die LED MAINS/NETZ blinkt rot und der Messablauf ist gesperrt.
- Schutzleiter nicht angeschlossen oder Potenzial gegen Erde \geq 50 V bei \geq 50 Hz (Schalterstellung U – Einphasenmessung): Beim Berühren der Kontaktflächen (Fingerkontakte*) bei gleichzeitiger Kontaktierung von PE (sowohl durch länderspezifischen Steckereinsatz z. B. SCHUKO als auch durch die Prüfspitze PE am 2-Pol-Adapter) wird PE eingeblendet (nur nach Start eines Prüfablaufs). Zusätzlich leuchten die LEDs U_L/R_L und RCD/FI rot.
 - * Zum sicheren Erkennen der Berührspannungen müssen am Prüfstecker beide Sensorflächen mit den ungeschützten Fingern/Handfläche im direkten Hautkontakt berührt werden, siehe auch Kapitel 7.

- Neutralleiter N nicht angeschlossen (bei netzabhängigen Messungen): die LED MAINS/NETZ blinkt grün
- Einer der beiden Schutzkontakte nicht angeschlossen:

Dies wird bei der Berührspannungsprüfung U_{IAN} automatisch überprüft. Ein schlechter Übergangswiderstand eines Kontaktes führt je nach Polung des Steckers zu folgenden Anzeigen:

Anzeige im Anschlusspiktogramm:
 PE unterbrochen (x) oder in Bezug auf die

Tasten des Prüfsteckers unten liegender Schutzleiterbügel unterbrochen Ursache: Spannungs-Messpfad unterbrochen Folge: die Messung wird blockiert

 Anzeige im Anschlusspiktogramm: in Bezug auf die Tasten des Pr
üfsteckers oben liegender Schutzleiterb
ügel unterbrochen

Ursache: Strom-Messpfad unterbrochen Folge: keine Messwertanzeige

😥 Hinweis

Siehe "Signalisierung der LEDs, Netzanschlüsse und Potenzialdifferenzen" auf Seite 17.

Achtung!

Ein Vertauschen von N und PE in einem Netz ohne RCD-Schalter wird nicht erkannt und nicht signalisiert. In einem Netz mit RCD-Schalter löst dieser bei der Berührungsspannungsmessung ohne Auslösung (automatische Z_{L-N} -Messung) aus, sofern N und PE vertauscht sind.

10.6 Hilfefunktion

Hilfe im Gerät

Für jede Schalterstellung bzw. Grundfunktion können Sie, **nach** deren Wahl über den Funktionsdrehschalter, folgende Informationen darstellen:

- Anschlussschaltbild
- Messbereich
- Nenngebrauchsbereich und Betriebsmess- und Eigenunsicherheiten
- Nennwert
- Drücken Sie zum Aufruf der Hilfefunktion die Taste HELP.

- Sind mehrere Hilfeseiten je Messfunktion vorhanden, muss die Taste HELP wiederholt gedrückt werden.
- Drücken Sie zum Verlassen der Hilfefunktion die Taste ESC.

dienungsanleitung

Wenn Sie in der Schalterstellung Setup die Taste **HELP** drücken, erscheint ein QR-Code auf dem Display.

Lesen Sie diesen QR-Code mit einem kompatibeln Gerät, können Sie die Website des Gerätes aufrufen. Dort finden Sie Produktinformationen inkl. Links zu den einzelnen Gerätetypen. Rufen Sie die Website Ihres Produkttyps auf, finden Sie im Bereich "Download/Dokumentation" die Bedienungsanleitung und weitere Produktdokumentation (z.B. Datenblatt).

Gossen Metrawatt GmbH

- 1 Untermenü zum Einstellen der gewünschten Parameter aufrufen.
- 2 Parameter über die Cursortasten \uparrow oder \downarrow auswählen.
- 3 Ins Einstellmenü des gewählten Parameters über die Cursortaste → wechseln.
- 4 Einstellwert über die Cursortasten \uparrow oder \downarrow auswählen.
- 5 Einstellwert über → bestätigen. Dieser Wert wird ins Einstellmenü übernommen.
- 6 Erst mit ✓ wird der Einstellwert dauerhaft für die zugehörige Messung übernommen und ins Hauptmenü zurückgesprungen. Statt mit ✓ gelangen Sie mit ESC zurück ins Hauptmenü, ohne den neu gewählten Wert zu übernehmen.

Parameterverriegelung (Plausibilitätsprüfung)

Einzelne gewählten Parameter werden vor der Übernahme ins Messfenster auf Plausibilität überprüft.

Ist der von Ihnen gewählte Parameter in Kombination mit anderen bereits eingestellten Parametern nicht sinnvoll so wird dieser nicht übernommen. Der zuvor eingestellte Parameter bleibt gespeichert.

Abhilfe: Wählen Sie einen anderen Parameter.

10.8 Frei einstellbare Parameter oder Grenzwerte

10.8.1 Vorhandene Parameter ändern

Für bestimmte Messfunktionen können einzelne Parameter geändert, d. h. in vorgegebenen Grenzen frei eingestellt werden. Ein mögliches Menü **EDIT** in wird erst nach Wechsel in die rechte Spalte und Anwahl des editierbaren Parameters in eingeblendet.

Beispiel Messfunktion RL0 - Parameter: LIMIT RL0

- 1 Rufen Sie das Untermenü zum Einstellen des gewünschten Parameters auf (ohne Abbildung, siehe Kap. 10.7).
- 3 Wählen Sie das Editiermenü aus durch Drücken der Taste

10.8.2 Neue Parameter ergänzen

Für bestimmte Messfunktionen können neben den Festwerten weitere Werte in vorgegebenen Grenzen ergänzt werden. Ein mögliches Menü **EDIT**+ i wird erst nach Wechsel in die rechte Spalte eingeblendet.

Beispiel Messfunktion I_{ΔN} – Parameter: I_{ΔN}

1 Rufen Sie das Untermenü zum Einstellen des gewünschten

Parameters auf (ohne Abbildung, siehe Kap. 10.7).

2 Wählen Sie das Editiermenü aus durch Drücken der Taste

	Ziffer/Einheit auswählen
EDIT 9.00 mA	Ziffer/Finheit auswählen
	→ Ziffer/Einheit übernehmen ✓ Wert speichern (in Liste)
>=6mA <=500mA	Zeichen löschen

3 Wählen Sie über die Cursortasten LINKS oder RECHTS die jeweilige Ziffer aus. Mit → wird die Ziffer übernommen. Die Übernahme des Wertes erfolgt mit Anwahl von ✓ und bestätigen durch →. Der neue Parameter wird der Liste hinzugefügt.

Hinweis

Beachten Sie die vorgegebenen Grenzen für den neuen Einstellwert. Geben Sie mögliche Nachkommastellen mit ein.

10.9 Zweipolmessung mit schnellem oder halb automatischem Polwechsel

Für folgende Prüfungen ist eine schnelle halb automatische Zweipolmessung möglich.

- Spannungsmessung U
- Schleifenimpedanzmessung ZLP-E
- Netzinnenwiderstandsmessung Z_{L-N}
- Isolationswiderstandsmessung R_{ISO}

Schneller Polwechsel am Prüfstecker

Der Polungsparameter steht auf AUTO.

Eine schnelle und komfortable Umschaltung zwischen allen Polungsvarianten ohne Umschaltung in das Untermenü zur Parametereinstellung ist durch Drücken der Taste $I_{\Delta N}$ am Gerät oder am Prüfstecker möglich.

Halbautomatischer Polwechsel im Speicherbetrieb

Der Polungsparameter steht auf AUTO.

Soll eine Prüfung mit allen Polungsvarianten durchgeführt werden, so erfolgt nach jeder Messung ein automatischer Polwechsel nach dem **Speichern**.

Ein Überspringen von Polungsvarianten ist durch Drücken der Taste $I_{\Delta N}$ am Gerät oder am Prüfstecker möglich.

11 Messen von Spannung und Frequenz

Messfunktion wählen

Umschalten zwischen 1- und 3-Phasen-Messung

Durch Drücken der nebenstehenden Softkey-Taste schalten Sie zwischen 1- und 3-Phasen-Messung um. Die gewählte Phasenmessung wird invers dargestellt (weiß auf schwarz).

11.1 1-Phasenmessung

Für die Messung der Sondenspannung $\mathrm{U}_{\mathrm{S}\text{-}\mathrm{PE}}$ muss eine Sonde gesetzt werden.

11.1.1 Spannung zwischen L und N (U_{L-N}), L und PE (U_{L-PE}) sowie N und PE (U_{N-PE}) bei länderspezifischem Steckereinsatz, z. B. SCHUKO

Durch Drücken der nebenstehenden Softkey-Taste schalten Sie zwischen länderspezifischem Steckereinsatz z. B. SCHUKO und 2-Pol-Adapter um. Die gewählte Anschlussart wird invers dargestellt (weiß auf schwarz).

\bigcirc	BAT	\square	UL	N-PE
	МЕМ 🗌			U3~
U L3-L1				
	40	3 V		
U L1-L2				
	40	4 V		
U L2-L3				
	40	4 V		
	-			
	f	50,0H;	2	

Hinweis

Wenn Sie den länderspezifischem Steckereinsatz z. B. SCHUKO von vorne betrachten, dann sehen Sie die eingeprägten Buchstaben "L" und "N". Bei der Spannungsmessung wird nicht automatisch umgepolt. Sie können deshalb feststellen, an welchem Anschluss die Phase in der Steckdose liegt. Wird die (Netz-) Spannung bei UL-PE eingeblendet, dann ist die Phase dort, wo auf dem Stecker "L" steht. Wird die (Netz-) Spannung bei N-PE eingeblendet, dann liegt die Phase in der Steckdose am Anschluss für N.

11.1.2 Spannung zwischen L – PE, N – PE und L – L bei Anschluss 2-Pol-Adapter

Durch Drücken der nebenstehenden Softkey-Taste schalten Sie zwischen länderspezifischem Steckereinsatz z. B. SCHUKO und 2-Pol-Adapter um. Die gewählte Anschlussart wird invers dargestellt (weiß auf schwarz). Zweipolmessung mit schnellem oder halb automatischem Polwechsel, siehe Kap. 10.9.

11.2 3-Phasenmessung (verkettete Spannungen) und Drehfeldrichtung

Anschluss

Zum Anschließen des Gerätes benötigen Sie den Messadapter (2-polig) der mit der mitgelieferten Messleitung zum 3-poligen Messadapter erweitert werden muss.

Softkey-Taste

U3~ drücken

 \Box

An allen Drehstromsteckdosen ist generell ein Rechtsdrehfeld gefordert.

- Der Messgeräteanschluss bei CEE-Steckdosen ist meist problematisch, es gibt Kontaktprobleme. mithilfe des von uns angebotenen VARIO-STECKER-SETs Z500A sind schnelle und zuverlässige Messungen ohne Kontaktprobleme durchführbar.
- Anschluss bei 3-Leitermessung Stecker L1-L2-L3 im Uhrzeigersinn ab PE-Buchse

Die Drehfeldrichtung wird über folgende Einblendungen angezeigt:

Rechtsdrehfeld

Hinweis

Sämtliche Signalisierungen zur Netzanschlusskontrolle siehe Kap. 6.4.

Spannungspolarität

Wenn Normen den Einbau von einpoligen Schaltern im Neutralleiter verbieten, muss durch eine Prüfung der Spannungspolarität festgestellt werden, dass alle etwa vorhandenen einpoligen Schalter in den Außenleitern eingebaut sind.

12 Prüfen von Fehlerstrom-Schutzschaltungen (RCD)

Das Prüfen von Fehlerstrom-Schutzeinrichtungen (RCD) umfasst:

- Besichtigen,
- Erproben,
- Messen.

Zum Erproben und Messen verwenden Sie das Prüfgerät.

Achtung!

Bei der Prüfung von Netzen mit RCD-Schaltern, können diese abschalten. Dies kann auch dann vorkommen, wenn die Prüfung dies normalerweise nicht vorsieht. Es können bereits Ableitströme vorhanden sein, die zusammen mit dem Prüfstrom des Prüfgeräts die Abschaltschwelle des RCD-Schalters überschreiten. PCs, die in der Nähe betrieben werden, können somit abgeschaltet werden und damit ihre Daten verlieren. Vor der Prüfung sollten also alle Daten und Programme geeignet gesichert und ggf. der Rechner abgeschaltet werden. Der Hersteller des Prüfgerätes haftet nicht für direkte oder indirekte Schäden an Geräten, Rechnern, Peripherie oder Datenbeständen bei Durchführung der Prüfungen.

Messverfahren

Durch Erzeugen eines Fehlerstromes hinter der Fehlerstrom-Schutzeinrichtung ist nachzuweisen, dass die

- Fehlerstrom-Schutzeinrichtung spätestens bei Erreichen ihres Nennfehlerstromes auslöst und
- die f
 ür die Anlage vereinbarte Grenze der dauernd zul
 ässigen Ber
 ührungsspannung U_L nicht
 überschritten wird.

Dies wird erreicht durch:

Messung der Berührungsspannung
 10 Messungen mit Vollwellen und Hochrechnung auf I_{ΔN}

- Nachweis der Auslösung innerhalb von 400 ms bzw. 200 ms mit $\mathrm{I}_{\Delta\mathrm{N}}$

 Nachweis des Auslösestromes mit ansteigendem Fehlerstrom.

Er muss zwischen 50% und 100% von $I_{\Delta N}$ liegen (meist bei ca. 70%)

 Keine vorzeitige Auslösung mit dem Pr
üfger
ät, da mit 30% des Fehlerstromes gestartet wird (wenn kein Vorstrom in der Anlage flie
ßt).

Tabelle RCD/FI	Form des Differenzstromes	Korrekte Funktion des RCD/FI- Schalters			/FI-
		Тур АС	Typ A/F	Typ B*/ B+*	Typ EV/ MI*
Wechselstrom	langsam ansteigend	r	~	~	~
Pulsierender	plötzlich auftretend				./
Gleichstrom	langsam ansteigend		•	·	•
Gleichstrom				~	~
Gleichstrom bis 6 mA					V

* nur PROFITEST MF TECH,

Prüfnorm

Gemäß DIN VDE 0100-600 ist nachzuweisen, dass

- die beim Nennfehlerstrom auftretende Ber
 ührungsspannung den f
 ür die Anlage maximal zul
 ässigen Wert nicht
 überschreitet.
- die Fehlerstrom-Schutzschalter beim Nennfehlerstrom innerhalb 400 ms (1000 ms bei selektiven RCD-Schutzschaltern) auslösen.

Wichtige Hinweise

- Das Prüfgerät erlaubt einfache Messungen an allen RCD-Typen. Wählen Sie RCD, SRCD, PRCD, o. ä.
- Die Messung muss pro RCD (FI) nur an einer Stelle in den angeschlossenen Stromkreisen erfolgen, an allen anderen Anschlüssen im Stromkreis muss niederohmiger Durchgang des Schutzleiters nachgewiesen werden (R_{LO} oder U_B).
- Im TN-System zeigen die Messgeräte wegen des niedrigen Schutzleiterwiderstandes oft 0,1 V Berührungsspannung an.
- Selektive Fehlerstrom-Schutzeinrichtungen (RCD S) mit Kennzeichnung \boxed{S} können als alleiniger Schutz für automatische Abschaltung eingesetzt werden, wenn sie die Abschaltbedingungen wie nicht selektive Fehlerstrom-Schutzeinrichtungen einhalten (also t_a < 400 ms). Dies kann durch Messung der Abschaltzeit nachgewiesen werden.
- RCDs Typ B dürfen nicht in Reihe mit RCDs vom Typ A oder F liegen.

😥 Hinweis

Vormagnetisierung

Über den 2-Pol-Adapter sind nur AC-Messungen vorgesehen. Eine Unterdrückung der RCD-Auslösung über eine Vormagnetisierung durch Gleichstrom ist nur über den länderspezifischen Steckereinsatz z. B. SCHUKO oder den 3-Pol-Adapter möglich.

Messung ohne oder mit Sonde

Die Messungen können Sie mit oder ohne Sonde ausführen.

Die Messung mit Sonde setzt voraus, dass die Sonde das Potenzial der Bezugserde hat. Das bedeutet, dass sie außerhalb des Spannungstrichters des Erders (R_E) der RCD-Schutzschaltung gesetzt wird.

Der Abstand Erder zur Sonde soll mindestens 20 m betragen. Die Sonde wird mit einem berührungsgeschützten Stecker mit 4 mm Durchmesser angeschlossen.

In den meisten Fällen werden Sie diese Messung ohne Sonde ausführen.

Achtung!

Die Sonde ist Teil des Messkreises und kann nach VDE 0413 einen Strom bis maximal 3,5 mA führen.

Sie können die Spannungsfreiheit einer Sonde mit der Funktion U_{SONDE} überprüfen, siehe auch Kap. 11.1 auf Seite 40.

12.1 Messen der (auf Nennfehlerstrom bezogenen) Berührungsspannung mit 1/3 des Nennfehlerstromes und Auslöseprüfung mit Nennfehlerstrom

Messfunktion wählen

Ancohluce

Parameter einstellen für $I_{\Delta N}$

1) Messung der Berührungsspannung ohne Auslösen des RCDs

Messverfahren

Zur Ermittlung der bei Nennfehlerstrom auftretenden Berührungsspannung U_{I Δ N} misst das Gerät mit einem Strom, der nur ca. 1/3 des Nennfehlerstromes beträgt. Dadurch wird verhindert, dass dabei der RCD-Schutzschalter auslöst.

Der besondere Vorteil dieses Messverfahrens liegt darin, dass Sie an jeder Steckdose die Berührungsspannung einfach und schnell messen können, ohne dass der RCD-Schutzschalter auslöst.

Die sonst übliche und umständliche Messmethode, die Wirksamkeit der RCD-Schutzeinrichtung an einer Stelle zu prüfen und nachzuweisen, dass alle anderen zu schützenden Anlagenteile über den PE-Leiter mit dieser Messstelle niederohmig und zuverlässig verbunden sind, kann entfallen.

N-PE-Vertauscherprüfung

Es findet eine zusätzliche Prüfung statt, in der ermittelt wird, ob N und PE vertauscht sind. Im Fall einer Vertauschung erscheint das nebenstehende Pop-up.

Achtung!

Um Datenverlust bei Datenverarbeitungsanlagen zu vermeiden, sichern Sie vorher Ihre Daten und schalten am besten alle Verbraucher ab.

Messung starten

Im Anzeigefeld werden u. a. die Berührungsspannung $U_{\text{I}\Delta N}$ und der berechnete Erdungswiderstand R_{E} angezeigt.

Hinweis

Der Messwert des Erdungswiderstandes R_E wird nur mit einem geringen Strom ermittelt. Genauere Werte erhalten Sie in der Schalterstellung R_E .

Bei Anlagen mit RCD-Schutzschalter kann dort die Funktion DC + A gewählt werden.

Unbeabsichtigtes Auslösen des RCDs durch Vorströme in der Anlage

Eventuell auftretende Vorströme können gemäß Kap. 18.1 auf Seite 76 mithilfe eines Zangenstromwandlers ermittelt werden. Sind die Vorströme in der Anlage recht groß oder wurde ein zu hoher Prüfstrom für den Schalter gewählt, so kann es zum Auslösen des RCD-Schalters während der Prüfung der Berührungsspannung kommen.

Nachdem Sie die Berührungsspannung gemessen haben, können Sie mit dem Gerät prüfen, ob der RCD-Schutzschalter bei Nennfehlerstrom innerhalb seiner eingestellten Grenzwerte auslöst.

Unbeabsichtigtes Auslösen des RCDs durch Ableitströme im Messkreis

Bei der Messung der Berührungsspannung mit 30% des Nennfehlerstroms, löst ein RCD-Schalter normalerweise nicht aus. Durch bereits vorhandene Ableitströme im Messkreis, z. B. durch angeschlossene Verbraucher mit EMV-Beschaltung z. B. Frequenzumrichter, PCs, kann trotzdem die Abschaltgrenze überschritten werden.

2) Auslöseprüfung nach dem Messen der Berührungsspannung

 \Rightarrow Drücken Sie die Taste I_{ΔN}.

Die Auslöseprüfung ist für jeden RCD-Schutzschalter nur an einer Messstelle erforderlich.

Löst der RCD-Schutzschalter beim Nennfehlerstrom aus,

dann blinkt die LED MAINS/NETZ rot (Netzspannung wurde abgeschaltet) und im Anzeigefeld werden u. a. die Auslösezeit t_a und der Erdungswiderstand R_E angezeigt.

Löst der RCD-Schutzschalter beim Nennfehlerstrom nicht aus, dann leuchtet die LED RCD/FI rot.

Berührungsspannung zu hoch

Ist die mit 1/3 des Nennfehlerstromes I_{\Delta N} gemessene und auf I_{\Delta N} hochgerechnete Berührungsspannung U_{I\Delta N} > 50 V (> 25 V), dann leuchtet die LED U_L/R_L rot.

Wird während des Messvorganges der Grenzwert der Berührungsspannung überschritten U_{IΔN} > 50 V (> 25 V), dann erfolgt eine Sicherheitsabschaltung für Deutschland (für Österreich gelten normativ 65 V; Norm: ÖVE/ÖNORM E 8001-1 Kap. 5.3).

Hinweis

Sicherheitsabschaltung: Bis 70 V erfolgt die Sicherheitsabschaltung innerhalb von 3 s nach IEC 61010.

Die Berührungsspannungen werden bis 70 V angezeigt. Ist der Wert größer, wird $U_{\rm I\Delta N}>$ 70 V angezeigt.

Grenzwerte für dauernd zulässige Berührungsspannungen

Die Grenze für die dauernd zulässige Berührungsspannung beträgt bei Wechselspannung U_L = 50 V (internationale Vereinbarung). Für besondere Anwendungsfälle sind niedrigere Werte vorgeschrieben (z. B. medizinische Anwendungen U_L = 25 V).

Achtung!

Wenn die Berührungsspannung zu hoch ist oder der RCD-Schutzschalter nicht auslöst, dann ist die Anlage zu reparieren (z. B. zu hoher Erdungswiderstand, defekter RCD-Schutzschalter usw.)!

Drehstromanschlüsse

Bei Drehstromanschlüssen muss zur einwandfreien Kontrolle der RCD-Schutzeinrichtung die Auslöseprüfung in Verbindung mit einem der drei Außenleiter (L1, L2 und L3) ausgeführt werden.

Induktive Verbraucher

Werden bei der Abschaltprüfung eines RCDs induktive Verbraucher mit abgeschaltet, so kann es beim Abschalten zu Spannungsspitzen im Kreis kommen. Das Prüfgerät zeigt dann evtl. keinen Messwert (– – –) an. Schalten Sie in diesem Fall alle Verbraucher vor der Auslöseprüfung ab. In extremen Fällen kann eine der Sicherungen im Prüfgerät auslösen und/oder das Prüfgerät beschädigt werden.

- 12.2 Spezielle Prüfungen von Anlagen bzw. RCD-Schutzschaltern
- 12.2.1 Prüfen von Anlagen bzw. RCD-Schutzschaltern mit ansteigendem Fehlerstrom (Wechselstrom) für RCDs vom Typ AC, A/F, B/B+ und EV/MI (nur PROFITEST MF TECH)

Messverfahren

Zur Prüfung der RCD-Schutzschaltung erzeugt das Gerät im Netz einen kontinuierlich steigenden Fehlerstrom von (0,3 ... 1,3) × I_{ΔN}. Das Gerät speichert die im Auslösemoment des RCD-Schutzschalters vorhandenen Werte der Berührungsspannung und des Auslösestromes und zeigt sie an.

Bei der Messung mit steigendem Fehlerstrom können Sie zwischen den Berührungsspannungsgrenzen U_L = 25 V und U_L = 50 V/65 V wählen.

Messfunktion wählen

Anschluss

Parameter einstellen für IFA

Messablauf

Nachdem der Messablauf gestartet ist, steigt der vom Gerät erzeugte Prüfstrom vom 0,3-fachen Nennfehlerstrom stetig an, bis der RCD-Schutzschalter auslöst. Dies kann an der fortschreitenden Füllung des Dreiecks bei I Δ beobachtet werden. Erreicht die Berührungsspannung den gewählten Grenzwert (U_L = 65 V, 50 V bzw. 25 V), bevor der RCD-Schutzschalter auslöst, dann wird eine Sicherheitsabschaltung ausgelöst. Die LED U_L/R₁ leuchtet rot.

Sicherheitsabschaltung: Bis 70 V erfolgt die Sicherheitsabschaltung innerhalb von 3 s nach IEC 61010.

Löst der RCD-Schutzschalter nicht aus, bevor der ansteigende Strom den Nennfehlerstrom $I_{\Delta N}$ erreicht, dann leuchtet die LED RCD/FI rot.

Achtung!

Ein Vorstrom in der Anlage wird bei der Messung dem Fehlerstrom, der vom Gerät erzeugt wird, überlagert und beeinflusst die gemessenen Werte von Berührungsspannung und Auslösestrom. Siehe auch Kap. 12.1.

Beurteilung

Zur Beurteilung einer Fehlerstrom-Schutzeinrichtung muss jedoch gemäß DIN VDE 0100-600 mit ansteigendem Fehlerstrom gemessen und aus den gemessenen Werten die Berührungsspannung für den Nennfehlerstrom I_{ΔN} berechnet werden. Die schnellere und einfachere Messmethode siehe Kapitel 12.1 ist aus diesen Gründen vorzuziehen.

12.2.2 Prüfen von Anlagen bzw. RCD-Schutzschaltern mit ansteigendem Fehlerstrom (Gleichstrom) für RCDs vom Typ B/B+ und EV/MI (PROFITEST MF TECH,)

Gemäß VDE 0413-6 muss nachgewiesen werden, dass bei glattem Gleichstrom der Auslösefehlerstrom höchstens den zweifachen Wert des Bemessungsfehlerstroms I_{ΔN} annimmt. Dazu muss ein kontinuierlich ansteigender Gleichstrom, beginnend mit dem 0,2-fachen des Bemessungsfehlerstroms I_{ΔN}, angelegt werden. Steigt der Strom linear an, darf der Anstieg den 2-fachen Wert von I_{ΔN} innerhalb von 5 s nicht übersteigen. Die Überprüfung mit geglättetem Gleichstrom muss in beiden

Die Uberprüfung mit geglättetem Gleichstrom muss in beider Richtungen des Prüfstroms möglich sein.

12.2.3 Prüfen von RCD-Schutzschaltern mit 5 × $I_{\Lambda N}$

Die Messung der Auslösezeit erfolgt hier mit 5-fachem Nennfehlerstrom.

Hinweis

Messungen mit 5-fachem Nennfehlerstrom werden für die Fertigungsprüfung von RCD-Schutzschalter S und G gefordert. Darüber hinaus werden diese beim Personenschutz angewandt.

Sie haben die Möglichkeit die Messung bei der positiven Halbwelle "0° " oder bei der negativen Halbwelle "180° " zu starten. Nehmen Sie beide Messungen vor. Die längere Abschaltzeit ist das Maß für den Zustand des geprüften RCD-Schutzschalters. Beide Werte müssen < 40 ms sein.

Messfunktion wählen

Parameter einstellen – Start mit positiver oder negativer Halbwelle

Parameter einstellen – 5-facher Nennstrom

🐼 Hinweis

Es gelten folgende Einschränkungen bei der Auswahl der x-fachen Auslöseströme in Abhängigkeit vom Nennstrom: 500 mA: 1 × I_{ΔN} , 2 × I_{ΔN}

Messung starten

12.2.4 Prüfen von RCD-Schutzschaltern, die für pulsierende Gleichfehlerströme geeignet sind

Hierzu können die RCD-Schutzschalter mit positiven oder negativen Halbwellen geprüft werden. Die Auslösung erfolgt normgerecht mit 1,4-fachem Nennstrom.

Messfunktion wählen

Parameter einstellen – positive oder negative Halbwelle

Parameter einstellen – Prüfung mit und ohne "Nichtauslöseprüfung"

Nicht-Auslöseprüfung

Falls der RCD beim 1 s dauernden Nichtauslösetest mit 50% $I_{\Delta N}$ zu früh, d. h. vor der eigentlichen Auslöseprüfung auslöst, erscheint das nebenstehende Pop-Up:

Hinweis

Es gelten folgende Einschränkungen bei der Auswahl der x-fachen Auslöseströme in Abhängigkeit vom Nennstrom: 500 mA: doppelter und fünffacher Nennstrom sind hier nicht möglich.

Hinweis

Nach DIN EN 50178 (VDE 160) müssen bei Betriebsmitteln > 4 kVA, die glatte Gleichfehlerströme erzeugen können (z. B. Frequenzumrichter) RCD-Schutzschalter Typ B (allstromsensitive) verwendet werden.

Für die Prüfungen von diesen Schutzschaltern ist eine Prüfung nur mit pulsierenden Gleichfehlerströmen ungeeignet. Hier muss auch mit glattem Gleichfehlerstrom geprüft werden.

🚱 Hinweis

Bei der Fertigungsprüfung von RCD-Schaltern wird mit positiven und negativen Halbwellen gemessen. Wird ein Stromkreis mit pulsierendem Gleichstrom belastet, so kann die Funktion des RCD-Schutzschalters mit dieser Prüfung durchgeführt werden, um sicherzustellen, dass der RCD-Schalter durch den pulsierenden Gleichstrom nicht in die Sättigung gefahren wird und somit nicht mehr auslöst.

12.3 Prüfen spezieller RCD-Schutzschalter

12.3.1 Anlagen mit selektiven RCD-Schutzschaltern vom Typ RCD-S

In Anlagen in denen zwei in Serie geschaltete RCD-Schutzschalter eingesetzt werden, die im Fehlerfall nicht gleichzeitig auslösen sollen, verwendet man selektive RCD-Schutzschalter. Diese haben ein verzögertes Ansprechverhalten und werden mit dem Symbol S gekennzeichnet.

Messverfahren

Das Messverfahren entspricht dem für normale RCD-Schutzschalter (siehe Kapitel 12.1 auf Seite 42 und 12.2.1 auf Seite 44). Werden selektive RCD-Schutzschalter verwendet, dann darf der Erdungswiderstand nur halb so groß sein wie der beim Einsatz von normalen RCD-Schutzschaltern.

Das Gerät zeigt aus diesem Grunde den doppelten Wert der gemessenen Berührungsspannung an.

Messfunktion wählen

Parameter einstellen – selektiv

Messung starten

ON START

Auslöseprüfung

Die Auslöseprüfung ist für jeden RCD-Schutzschalter nur an einer Messstelle erforderlich.

IVVI

RCD		BAT (RCD - S A
U ΙΔΝ		0,3 V	2 × IAN
$\overset{ ext{ta}}{\sim}$	>60m	is <200ms S	LIMITS
RE		2Ω	
	V f	U7	

🐼 Hinweis

Selektive RCD-Schutzschalter haben ein verzögertes Abschaltverhalten. Durch die Vorbelastung bei der Messung der Berührungsspannung wird das Abschaltverhalten kurzzeitig (bis zu 30 s) beeinflusst. Um die Vorbelastung, durch die Messung der Berührungsspannung zu eliminieren, ist vor der Auslöseprüfung eine Wartezeit notwendig. Nach dem Starten des Messablaufes (Auslöseprüfung) werden für ca. 30 s blinkende Balken dargestellt. Auslösezeiten bis 1000 ms sind zulässig. Durch nochmaliges Drücken der Taste I_{ΔN} wird die Auslöseprüfung sofort durchgeführt.

12.3.2 PRCDs mit nicht linearen Elementen vom Typ PRCD-K

Der PRCD-K ist eine, als Schnurzwischengerät allpolig (L/N/PE) schaltende, ortsveränderliche Differenzstromeinrichtung mit elektronischer Fehlerstromauswertung. Zusätzlich ist im PRCD-K eine Unterspannungsauslösung und Schutzleiterüberwachung integriert.

Der PRCD-K hat eine Unterspannungsauslösung und muss deshalb an Netzspannung betrieben werden, die Messungen sind nur im eingeschalteten Zustand (PRCD-K schaltet allpolig) durchzuführen.

Begriffe (aus DIN VDE 0661)

Ortsveränderliche Schutzeinrichtungen sind Schutzschalter, die über genormte Steckvorrichtungen zwischen Verbrauchergeräte und eine fest installierte Steckdose geschaltet werden können. Eine wiederanschließbare, ortsveränderliche Schutzeinrichtung ist eine Schutzeinrichtung, die so gebaut ist, dass sie den Anschluss an bewegliche Leitungen erlaubt.

Bitte beachten Sie, dass bei ortsveränderlichen RCDs in der Regel ein nicht lineares Element im Schutzleiter eingebaut ist, das bei einer U_{LA}-Messung sofort zu einer Überschreitung der höchstzulässigen Berührungsspannung führt (U_{LA} größer 50 V).

Ortsveränderliche RCDs, die kein nicht lineares Element im Schutzleiter besitzen, müssen gemäß Kap. 12.3.3 auf Seite 47 geprüft werden.

Zweck (aus DIN VDE 0661)

Die ortsveränderlichen Schutzeinrichtungen (PRCDs) dienen dem Schutz von Personen und Sachen. Durch sie kann eine Schutzpegelerhöhung der in elektrischen Anlagen angewendeten Schutzmaßnahmen gegen elektrischen Schlag im Sinne von DIN VDE 0100-410 erreicht werden. Sie sind so zu gestalten, dass sie durch einen unmittelbar angebauten Stecker an der Schutzvorrichtung bzw. über einen Stecker mit kurzer Zuleitung betrieben werden.

Messverfahren

Je nach Messverfahren können gemessen werden:

oder

- die Auslösezeit t_A bei Auslöseprüfung mit Nennfehlerstrom $I_{\Delta N}$ (der PRCD-K muss bereits bei halbem Nennstrom auslösen)
- der Auslösestrom I_ Δ bei Prüfung mit steigendem Fehlerstrom I_F

Messfunktion wählen

Anschluss

Parameter einstellen – PRCD mit nicht linearen Elementen

Messung starten

12.3.3 SRCD, PRCD-S (SCHUKOMAT, SIDOS oder ähnliche)

RCD-Schutzschalter der Serie SCHUKOMAT, SIDOS oder solche, die elektrisch baugleich mit diesen sind, müssen nach entsprechender Parameterauswahl geprüft werden.

Bei RCD-Schutzschaltern dieser Typen findet eine Überwachung des PE-Leiters statt. Dieser ist mit in den Summenstromwandler einbezogen. Bei einem Fehlerstrom von L nach PE ist deshalb der Auslösestrom nur halb so hoch, d. h. der RCD muss bereits beim halben Nennfehlerstrom I_{\Delta N} auslösen.

Die Baugleichheit von ortsveränderlichen RCDs mit SRCDs kann durch Messung der Berührungsspannung U_{IΔN} überprüft werden. Wird eine Berührspannung U_{IΔN} in einer ansonsten intakten Anlage am PRCD > 70 V angezeigt, so liegt mit großer Wahrscheinlichkeit ein PRCD mit nicht linearem Element vor.

PRCD-S

PRCD-S (Portable Residual Current Device – Safety) ist eine spezielle ortsveränderliche Schutzeinrichtung mit Schutzleitererkennung bzw. Schutzleiterüberwachung. Das Gerät dient dem Schutz von Personen vor Elektrounfällen im Niederspannungsbereich (130 ... 1000 V). Ein PRCD-S muss für den gewerblichen Einsatz geeignet sein und wird wie ein Verlängerungskabel zwischen einen elektrischen Verbraucher – i. d. R. ein Elektrowerkzeug – und einer Steckdose installiert.

Messfunktion wählen

Parameter einstellen - SRCD / PRCD

Messung starten	RCD	PE C N		BAT	30mA SRCD A
	υ ΙΔΝ			V	1 × IAN
START	$\overset{ ext{ta}}{\sim}$		>0ms	<300ms	LIMITS
	RE			Ω	
	U	V	f	Hz	

12.3.4 RCD-Schalter des Typs G oder R

Mithilfe des Prüfgerätes ist es möglich, neben den üblichen und selektiven RCD-Schutzschaltern die speziellen Eigenschaften eines G-Schalters zu überprüfen.

Der G-Schalter ist eine österreichische Besonderheit und entspricht der Gerätenorm ÖVE/ÖNORM E 8601. Durch seine höhere Stromfestigkeit und Kurzzeitverzögerung werden Fehlauslösungen minimiert.

Messfunktion wählen

Parameter einstellen – Typ G/R (VSK)

Berührungsspannung und Auslösezeit können mittels G/R-RCD-Schalter-Einstellung gemessen werden.

Hinweis

Bei der Messung der Auslösezeit bei Nennfehlerstrom ist darauf zu achten, dass bei G-Schaltern Auslösezeiten von bis zu 1000 ms zulässig sind. Stellen Sie den entsprechenden Grenzwert ein.

Stellen Sie anschließend im Menü 5 × I_{∆N} ein (wird bei der Auswahl von G/R automatisch eingestellt) und wiederholen Sie die Auslöseprüfung beginnend mit der positiven Halbwelle 0° und der negativen Halbwelle 180°. Die längere Abschaltzeit ist das Maß für den Zustand des geprüften RCD-Schutzschalters.

Parameter einstellen – Start mit positiver oder negativer Halbwelle

1 × IAN 0°: 0°: Start mit positiver Halbwelle 180°: 180°: NEG: NKG: <t

Parameter einstellen – 5-facher Nennstrom

Hinweis

Es gelten folgende Einschränkungen bei der Auswahl der x-fachen Auslöseströme in Abhängigkeit vom Nennstrom: 500 mA: 1 ×, 2 × $I_{\Delta N}$

Die Auslösezeit muss in beiden Fällen zwischen 10 ms (Mindestverzögerungszeit des G-Schalters!) und 40 ms liegen. G-Schalter mit anderen Nennfehlerströmen messen Sie mit der entsprechenden Parametereinstellung im Menüpunkt I_{ΔN}. Auch hier müssen Sie den Grenzwert entsprechend einstellen.

Hinweis

Die Parametereinstellung RCD S für selektive Schalter ist für G-Schalter nicht geeignet.

12.4 Prüfen von Fehlerstrom (RCD-) Schutzschaltungen in TN-S-Netzen

Anschluss

Ein RCD-Schalter kann nur in einem TN-S-Netz eingesetzt werden. In einem TN-C-Netz würde ein RCD-Schalter nicht funktionieren, da der PE nicht am RCD-Schalter vorbei geführt ist, sondern direkt in der Steckdose mit dem N-Leiter verbunden ist. So würde ein Fehlerstrom durch den RCD-Schalter zurückfließen und keinen Differenzstrom erzeugen, der zum Auslösen des RCD-Schalters führt.

Die Anzeige der Berührungsspannung wird in der Regel ebenfalls 0,1 V sein, da der Nennfehlerstrom von 30 mA zusammen mit dem niedrigen Schleifenwiderstand eine sehr kleine Spannung ergibt:

 $U_{I\Delta N} = R_E \times I_{\Delta N} = 1 \ \Omega \times 30 \text{ mA} = 30 \text{ mV} = 0.03 \text{V}$

12.5 Prüfen von Fehlerstrom (RCD-) Schutzschaltungen in IT-Netzen mit hoher Leitungskapazität (z. B. in Norwegen)

Bei den RCD-Prüfungen U_{IΔN} (I_{ΔN}, t_a) und der Erdungsmessung (R_E) kann die Netzform (TN/TT oder IT) eingestellt werden. Bei Messung im IT-Netz ist eine Sonde zwingend erforderlich, da die auftretende Berührspannung U_{IΔN} ohne Sonde nicht gemessen werden kann.

Wird auf IT-Netz umgestellt, so wird automatisch die Anschlussart mit Sonde ausgewählt.

Parameter einstellen – Netzform wählen

Messung starten

12.6 Prüfen von 6 mA Fehlerstrom-Schutzeinrichtungen RDC-DD / RCMB

Die DIN VDE 0100-722 (Errichtungsbestimmung für Ladeeinrichtungen der Elektromobilität) sieht vor, dass jede Steckdose zum Laden eines E-Fahrzeuges mit einer separaten Fehlerstromschutzeinrichtung FI/RCD abgesichert werden muss. Des Weiteren ist ein zusätzlicher Schutz bei mehrphasigem Laden von glatten Gleichfehlerströmen vorgeschrieben. Dieser kann entweder mit einem RCD/FI vom Typ B, einem RDC-DD (Residual Direct Current – Detecting Device) oder einem RCMB (Residual Current Monitoring Module) ausgeführt werden.

Messfunktion wählen

Parameter einstellen – Typ RDC

Parameter einstellen – Auslösezeit

🚱 Hinweis

Die Überprüfung des RDC-DD erfolgt mit den Nennfehlerströmen 6 bis 200 mA.

Parameter einstellen – Typ RCMB

Parameter einstellen – Auslösezeit

Hinweis

Die Überprüfung des RCMB erfolgt mit den Nennfehlerströmen 6 bis 300 mA.

13 Prüfen der Abschaltbedingungen von Überstrom-Schutzeinrichtungen, Messen der Schleifenimpedanz und Ermitteln des Kurzschlussstromes (Funktion ZL-PE und I_{k})

Das Prüfen von Überstrom-Schutzeinrichtungen umfasst Besichtigen und Messen.

Messverfahren

Die Schleifenimpedanz Z_{L-PE} wird gemessen und der Kurzschlussstrom I_K wird ermittelt, um zu prüfen, ob die Abschaltbedingungen der Schutzeinrichtungen eingehalten werden.

Die Schleifenimpedanz ist der Widerstand der Stromschleife (EVU-Station – Außenleiter – Schutzleiter) bei einem Körperschluss (leitende Verbindung zwischen Außenleiter und Schutzleiter). Der Wert der Schleifenimpedanz bestimmt die Größe des Kurzschlussstromes. Der Kurzschlussstrom I_K darf einen nach DIN VDE 0100 festgelegten Wert nicht unterschreiten, damit die Schutzeinrichtung einer Anlage (Sicherung, Sicherungsautomat) sicher abschaltet.

Aus diesem Grunde muss der gemessene Wert der Schleifenimpedanz kleiner sein als der maximal zulässige Wert.

Tabellen über die zulässigen Anzeigewerte für die Schleifenimpedanz sowie die Kurzschlussstrom-Mindestanzeigewerte für die Nennströme verschiedener Sicherungen und Schalter finden Sie in den Hilfe-Seiten sowie im Kap. 27 ab Seite 96. In diesen Tabellen ist der max. Gerätefehler gemäß VDE 0413 berücksichtigt. Siehe auch Kapitel 13.2.

Um die Schleifenimpedanz Z_{L-PE} zu messen, misst das Gerät, abhängig von der anliegenden Netzspannung und Netzfrequenz, mit einem Prüfstrom von 3,7 A bis 7 A (60 ... 550 V) und einer Prüfdauer von max. 1200 ms bei 16 Hz.

Wird während dieser Messung der Grenzwert der Berührungsspannung überschritten (> 50 V), dann erfolgt eine Sicherheitsabschaltung für Deutschland (65 V gelten normativ für Österreich, Norm: ÖVE/ÖNORM E 8001-1 Kap. 5.3).

Der Abschaltwert ist zwischen 25 V und 65 V einstellbar, siehe z. B. Kap. 10.8.

Aus der gemessenen Schleifenimpedanz Z_{L-PE} und der Netzspannung errechnet das Mess- und Prüfgerät den Kurzschlussstrom I_K. Bei Netzspannungen, die innerhalb der Nennspannungsbereiche für die Netz-Nennspannungen 120 V, 230 V und 400 V liegen, wird der Kurzschlussstrom auf diese Nennspannungen bezogen. Zwischen den Phasen L-L gilt dies auch bei 500 V. Liegt die Netzspannung außerhalb dieser Nennspannungsbereiche, dann errechnet das Gerät den Kurzschlussstrom I_K aus der anliegenden Netzspannung und der gemessenen Schleifenimpedanz Z_{L-PE}.

Messfunktion wählen

Anschluss Schuko/3-Pol-Adapter

Anschluss 2-Pol-Adapter

🐼 Hinweis

Der Schleifenwiderstand sollte je Stromkreis an der entferntesten Stelle gemessen werden, um die maximale Schleifenimpedanz der Anlage zu erfassen.

🐼 Hinweis

Beachten Sie die nationalen Vorschriften, z. B. die Notwendigkeit der Messung über RCD-Schalter hinweg in Österreich.

Drehstromanschlüsse

Bei Drehstromanschlüssen muss zur einwandfreien Kontrolle der Überstrom-Schutzeinrichtung die Messung der Schleifenimpedanz mit allen drei Außenleitern (L1, L2, und L3) gegen den Schutzleiter PE ausgeführt werden.

13.1 Messungen mit Unterdrückung der RCD-Auslösung (nur PROFITEST MF TECH)

Die Prüfgeräte ermöglichen die Messung der Schleifenimpedanz in TN-Netzen mit RCD-Schaltern vom Typ A \boxtimes , F \boxtimes MM und AC \bigcirc (10/30/100/300/500 mA Nennfehlerstrom).

Das Prüfgerät erzeuat hierzu einen Gleichstrom, der den magnetischen Kreis des RCD-Schalters in Sättigung bringt. Mit dem Prüfgerät wird dann ein Messstrom überlagert, der nur Halbwellen der gleichen Polarität besitzt. Der **RCD-Schalter kann** diesen Messstrom dann nicht mehr erkennen und löst

folglich während der Messung nicht mehr aus.

Die Messleitung vom Gerät zum Prüfstecker ist in Vierleitertechnik ausgeführt. Die Widerstände der Anschlussleitung und des Messadapters werden bei einer Messung automatisch kompensiert und gehen nicht in das Messergebnis ein.

🐼 Hinweis

Eine Schleifenimpedanzmessung, die nach dem Verfahren der Unterdrückung der RCD-Auslösung erfolgt, ist nur mit RCDs vom Typ A und F möglich.

🐼 Hinweis

Vormagnetisierung

Über den 2-Pol-Adapter sind nur AC-Messungen vorgesehen. Eine Unterdrückung der RCD-Auslösung über eine Vormagnetisierung durch Gleichstrom ist nur über den länderspezifischen Steckereinsatz z. B. SCHUKO oder den 3-Pol-Adapter (N-Leiter erforderlich) möglich.

Messen mit positiven Halbwellen 13.1.1 (nur PROFITEST MF TECH)

Die Messung mit Halbwellen plus DC ermöglicht es, Schleifenimpedanzen in Anlagen zu messen, die mit RCD-Schutzschaltern ausgerüstet sind.

Bei der DC Messung mit Halbwellen können Sie zwischen zwei Varianten wählen:

- DC-L: geringerer Vormagnetisierungsstrom, aber dafür schnellere Messung möglich
- höherer Vormagnetisierungsstrom und dafür größere DC-H: Sicherheit hinsichtlich der RCD-Nichtauslösung.

Messfunktion wählen

Parameter einstellen

Parameter, die nur der Protokollierung dienen, und keinen Einfluss auf die Messung haben

DC+Halbwelle

mit kleinem Nennstrom Einstellung für Stromkreise mit RCD

AUTO Messung mit länderspezifischem 1/1 Steckereinsatz ∎ 🛈 AUTO (z. B. Schuko) **⊨** () 2-Pol-Messung

Hinweis

Die Auswahl der Prüfsonde bzw. des Bezugs Lx-PE oder AUTO ist nur für die Protokollierung relevant.

Wahl der Polung Halbautomatische Messung Parameter AUTO siehe auch Kap. 10.9

ON S

Messung starten

Beurteilung der Messwerte 13.2

Aus der Tabelle 1 auf Seite 96 können Sie die maximal zulässigen Schleifenimpedanzen Z_{L-PE} ermitteln, die unter Berücksichtigung der maximalen Betriebsmess- und Eigenunsicherheiten des

Gerätes (bei normalen Messbedingungen) angezeigt werden dürfen. Zwischenwerte können Sie interpolieren.

Aus der Tabelle 6 auf Seite 97 können Sie, aufgrund des gemessenen Kurzschlussstromes, den maximal zulässigen Nennstrom des Schutzmittels (Sicherung bzw. Schutzschalter) für Netznennspannung 230 V, unter Berücksichtigung des maximalen

Gebrauchsfehlers des Gerätes, ermitteln (entspricht DIN VDE 0100-600).

Sonderfall Ausblendung des Grenzwertes

Der Grenzwert ist nicht ermittelbar. Der Prüfer wird aufgefordert, die Messwerte selbst zu beurteilen und über die Softkeytasten zu bestätigen oder zu verwerfen.

Messung bestanden: Taste

Messung nicht bestanden: Taste

Erst nach Ihrer Beurteilung kann der Messwert gespeichert werden.

<u>^/</u>	PE O N		BAT ELLE))	100A gl < 1s 1,5mm²
Z L-PE			1,19	Ω	N
ΙK			193	A	LIMITS UL: <50V IK: 2/3 Z
					L1-PE - ⊏ ≢⊙
U	230V f	N	50,	,0Hz	

13.3 Einstellungen zur Kurzschlussstrom-Berechnung – Parameter I_K

Der Kurzschlussstrom I_K dient zur Kontrolle der Abschaltung einer Überstrom-Schutzeinrichtung. Damit eine Überstrom-Schutzeinrichtung rechtzeitig auslöst, muss der Kurzschlussstrom I_K größer als der Auslösestrom Ia sein (siehe Tabelle 6 Kap. 27.1). Die über die Taste "Limits" wählbaren Varianten bedeuten:

- I_{K} : I_{a} zur Berechnung des I_{K} wird der angezeigte Messwert von $Z_{I_{-}PF}$ ohne jegliche Korrekturen übernommen
- ${\sf I}_{\sf K}: \ {\sf I}_a{+}\Delta\% \ {\sf zur \ {\sf Berechnung \ des \ }}_{\sf K} \ {\sf wird \ der \ angezeigte \ {\sf Messwert}} \\ {\sf von \ } {\sf Z}_{L{-}{\sf PE}} \ {\sf um \ die \ {\sf Betriebsmess- \ und \ Eigenunsicher-heiten \ des \ {\sf Prüfgeräts \ korrigiert}}$
- $\begin{array}{ll} I_K: \ 2/3\ Z & \mbox{zur Berechnung des } I_K \ \mbox{wird der angezeigte Messwert} \\ & \mbox{von } Z_{L-PE} \ \mbox{um alle möglichen Abweichungen korrigiert} \\ & \mbox{(in der VDE 0100-600 werden diese detailliert als} \\ & \ Z_{s(m)} \leq 2/3 \times U_0/I_a \ \mbox{definiert}) \end{array}$
- $I_{\rm K}: 3/4 \ Z \ Z_{\rm S(m)} \le 3/4 \times U_0/I_a$
- Z Schleifenimpedanz
- Ik Kurzschlussstrom
- ${\rm U}~$ Spannung an den Messspitzen; Anzeige "U $_{\rm N}$ ", wenn Spannung U $_{\rm max.}$ 10% von der Nennspannung abweicht
- f Frequenz der anliegenden Spannung; Anzeige "f_N", wenn die Frequenz f_{max.} 1% von der Nennfrequenz abweicht
- l_a Auslösestrom

(siehe Datenblätter der Leitungsschutzschalter/Sicherungen)

 $\Delta\%$ Eigenabweichung des Prüfgeräts

14 Messen der Netzimpedanz (Funktion Z_{I-N})

Messverfahren (Netzinnenwiderstandsmessung)

Die Netzimpedanz Z_{L-N} wird nach dem gleichen Messverfahren gemessen wie die Schleifenimpedanz $Z_{L,PE}$ (siehe Kapitel 13 auf Seite 51). Die Stromschleife wird hierbei über den Neutralleiter N gebildet und nicht wie bei der Schleifenimpedanzmessung über den Schutzleiter PE.

Messfunktion wählen

Anschluss Schuko

Parameter einstellen

Durch Drücken der nebenstehenden Softkey-Taste schalten Sie zwischen länderspezifischem Steckereinsatz z. B. SCHUKO und 2-Pol-Adapter um. Die gewählte Anschlussart wird invers dargestellt (weiß auf schwarz).

Einstellungen zur Kurzschlussstrom-Berechnung – Parameter I_K

Der Kurzschlussstrom I_K dient zur Kontrolle der Abschaltung einer Überstrom-Schutzeinrichtung. Damit eine Überstrom-Schutzeinrichtung rechtzeitig auslöst, muss der Kurzschlussstrom IK größer als der Auslösestrom I_a sein (siehe Tabelle 6 Kap. 27.1). Die über die Taste "Limits" wählbaren Varianten bedeuten:

- zur Berechnung des ${\rm I}_{\rm K}$ wird der angezeigte Messwert I_K: I_a von Z_{L-N} ohne jegliche Korrekturen übernommen
- $I_K:\ I_a+\Delta\%$ zur Berechnung des I_K wird der angezeigte Messwert von Z_{L-N} um die Betriebsmess- und Eigenunsicherheiten des Prüfgeräts korrigiert
- IK: 2/3 Z zur Berechnung des IK wird der angezeigte Messwert von Z_{L-N} um alle möglichen Abweichungen korrigiert (in der VDE 0100-600 werden diese detailliert als $\label{eq:linear} \begin{array}{l} & Z_{\text{s}(m)} \leq 2/3 \, \times \, U_0/I_a \text{ definiert}) \\ I_{\text{K}} : \ 3/4 \ Z \quad Z_{\text{s}(m)} \leq 3/4 \, \times \, U_0/I_a \end{array}$
- Schleifenimpedanz Ζ
- IK Kurzschlussstrom
- U Spannung an den Messspitzen; Anzeige "U_N", wenn Spannung U_{max.} 10% von der Nennspannung abweicht
- Frequenz der anliegenden Spannung; f Anzeige "fN", wenn die Frequenz fmax. 1% von der Nennfrequenz abweicht
- Auslösestrom
- (siehe Datenblätter der Leitungsschutzschalter/Sicherungen) Δ% Eigenabweichung des Prüfgeräts

Messung starten

Anzeige von U_{L-N} (U_N / f_N)

Liegt die gemessene Spannung im Bereich von $\pm 10\%$ um die jeweilige Netznennspannung von 120 V, 230 V oder 400 V, so wird jeweils die entsprechende Netznennspannung angezeigt. Bei Messwerten außerhalb der $\pm 10\%$ -Toleranzgrenze wird jeweils der tatsächliche Messwert angezeigt.

Sicherungstabelle aufrufen

Nach Durchführen der Messung werden die zulässigen Sicherungstypen auf Anforderung durch die Taste **HELP** angezeigt. Die Tabelle zeigt den maximal zulässigen Nennstrom in Abhängigkeit von Sicherungstyp und Abschaltbedingungen.

Legende: ${\rm I_a}$ Abschaltstrom, ${\rm I_K}$ Kurzschlussstrom, ${\rm I_N}$ Nennstrom ${\rm t_A}$ Auslösezeit

15 Messen des Erdungswiderstandes (Funktion R_E)

Der Erdungswiderstand R_E ist für die automatische Abschaltung in Anlagenteilen von Bedeutung. Er muss niederohmig sein, damit im Fehlerfall ein hoher Kurzschlussstrom fließt und so die Fehlerstromschutzschalter die Anlage sicher abschalten.

Messaufbau

Der Erdungswiderstand (R_E) ist die Summe aus dem Ausbreitungswiderstand des Erders und dem Widerstand der Erdungsleitung. Der Erdungswiderstand wird gemessen, in dem man über den Erdungsleiter, den Erder und den Erdausbreitwiderstand einen Wechselstrom leitet. Dieser Strom und die Spannung zwischen Erder und einer Sonde werden gemessen.

Die Sonde wird über einen berührungsgeschützten Stecker von 4 mm Durchmesser an der Sondenanschlussbuchse (17) angeschlossen.

Direkte Messung mit Sonde (netzbetriebene Erdungsmessung)

Die direkte Messung des Erdungswiderstandes R_E ist nur in einer Messschaltung mit Sonde möglich. Das setzt jedoch voraus, dass die Sonde das Potenzial der Bezugserde hat, d. h., dass sie außerhalb des Spannungstrichters des Erders gesetzt wird. Der Abstand zwischen Erder und Sonde soll mindestens 20 m sein.

Messung ohne Sonde (netzbetriebene Erdungsmessung)

In vielen Fällen, besonders in Gebieten mit enger Bebauung, ist es schwierig oder sogar unmöglich, eine Messsonde zu setzen. Sie können den Erdungswiderstand in diesen Fällen auch ohne Sonde ermitteln. Allerdings sind die Widerstandswerte des Betriebserders R_B und des Außenleiters L dann im Messergebnis enthalten.

Messverfahren (mit Sonde) (netzbetriebene Erdungsmessung)

Das Gerät misst den Erdungswiderstand R_E nach dem Strom-Spannungs-Messverfahren.

Der Widerstand R_E wird hierbei aus dem Quotienten von Spannung U_E und Strom I_E berechnet, wobei U_E zwischen Erder und Sonde liegt.

Der Messstrom, der dabei durch den Erdungswiderstand fließt, wird vom Gerät gesteuert, Werte hierzu siehe Kap. 5.5 "Technische Daten" auf Seite 10.

Es wird ein Spannungsabfall erzeugt, der dem Erdungswiderstand proportional ist.

Hinweis

Die Widerstände der Messleitung und des Messadapters werden bei der Messung automatisch kompensiert und gehen nicht in das Messergebnis ein.

Treten während der Messungen gefährliche Berührungsspannungen (> 50 V) auf, so wird die Messung abgebrochen und es erfolgt eine Sicherheitsabschaltung.

Der Sondenwiderstand geht nicht in das Messergebnis ein und kann maximal 50 k Ω betragen.

Achtung!

Die Sonde ist Teil des Messkreises und kann nach VDE 0413 einen Strom bis maximal 3,5 mA führen.

Messung mit oder ohne Erderspannung in Abhängigkeit von der Parametereingabe bzw. Wahl der Anschlussart:

RANGE	Anschluss			Messfunktionen
xx Ω / xx k Ω	2-P			keine Sondenmessung keine Messung U _E
10 Ω / U _E *	3-P		+	Sondenmessung aktiviert U _E wird gemessen
	3-P		+	Sondenmessung aktiviert keine Messung U _E
XX 32 / XX K32	SEL	3-P	8–	Zangenmessung aktiviert keine Messung U _E

dieser Parameter führt zur automatischen Einstellung auf Sondenanschluss

Messverfahren mit Unterdrückung der RCD-Auslösung (netzbetriebene Erdungsmessung) (nur PROFITEST MF TECH)

Das Prüfgerät ermöglicht die Messung des Erdungswiderstands in TN-Netzen mit RCD-Schaltern vom Typ A \boxtimes , F \boxtimes 10/30/100/300/500 mA Nennfehlerstrom).

Das Prüfgerät erzeugt hierzu einen Gleichstrom, der den magnetischen Kreis des RCD-Schalters in Sättigung bringt. Mit dem Prüfgerät wird dann ein Messstrom überlagert, der nur Halbwellen der gleichen Polarität besitzt. Der RCD-Schalter kann diesen Messstrom dann nicht mehr erkennen und

löst folglich während der Messung nicht mehr aus.

Die Messleitung vom Gerät zum Prüfstecker ist in Vierleitertechnik ausgeführt. Die Widerstände der Anschlussleitung und des Messadapters werden bei einer Messung automatisch kompensiert und gehen nicht in das Messergebnis ein.

🐼 Hinweis

Vormagnetisierung

Über den 2-Pol-Adapter sind nur AC-Messungen vorgesehen. Eine Unterdrückung der RCD-Auslösung über eine Vormagnetisierung durch Gleichstrom ist nur über den länderspezifischen Steckereinsatz z. B. SCHUKO oder den 3-Pol-Adapter (N-Leiter erforderlich) möglich.

Grenzwerte

Der Erdungswiderstand (Erdankoppelwiderstand) wird hauptsächlich bestimmt durch die Kontaktfläche der Elektrode und der Leitfähigkeit des umgebenden Erdreichs.

Der geforderte Grenzwert hängt von der Netzform und dessen Abschaltbedingungen unter Berücksichtigung der maximalen Berührungsspannung ab.

Beurteilung der Messwerte

Aus der Tabelle 2 auf Seite 96 können Sie die Widerstandswerte ermitteln, die unter Berücksichtigung des maximalen Gebrauchsfehlers des Gerätes (bei Nenngebrauchsbedingungen) höchstens angezeigt werden dürfen, um einen geforderten Erdungswiderstand nicht zu überschreiten. Zwischenwerte können interpoliert werden.

15.1 Erdungswiderstandsmessung – netzbetrieben

Folgende drei Messarten bzw. Anschlüsse sind möglich:

- 2 P 2-Pol-Messung über 2-Pol-Adapter
- 2 P
 2-Pol-Messung über Schukostecker (nicht im IT-Netz möglich)
- SEL 3 P ⅔ selektive Messung: 2-Pol-Messung mit Sonde und Zangenstromsensor

Bild links: Messadapter 2polig zum Abtasten der Messstel-

len PE und L

Bild rechts alternativ kann der Messadapter PRO-Schuko ver-

wendet werden

Messfunktion wählen

Betriebsart wählen

Die gewählte Betriebsart erscheint invers dargestellt: weiße Schrift mains~ auf schwarzem Hintergrund.

Sonderfall manuelle Messbereichswahl (Prüfstromauswahl)

(R ≠ AUTO, R = 10 kΩ (4 mA), 1 kΩ (40 mA), 100 Ω (0,4 A), 10 Ω (3,7 ... 7 A), 10 Ω/U_E)

Hinweis

Bei manueller Bereichswahl ist darauf zu achten, dass die Genauigkeitsangaben erst ab 5% vom Bereichsendwert gelten (außer 10 Ω -Bereich; separate Angabe für kleine Werte).

Parameter einstellen

□ Messbereich: AUTO,

10 k Ω (4 mA), 1 k Ω (40 mA), 100 Ω (0,4 A), 10 Ω (> 3,7 A) Bei Anlagen mit RCD-Schutzschalter muss der Widerstand bzw. der Prüfstrom so gewählt werden, dass dieser unterhalb des Auslösestroms (½ $\rm I_{AN}$) liegt.

- □ Berührungsspannung: UL < 25 V, < 50 V, < 65 V, frei einstellbare Spannung siehe Kap. 10.8
- □ Wandlerübersetzung: in Abhängigkeit vom eingesetzten Zangenstromsensor
- □ Anschlussart: 2-Pol-Adapter, 2-Pol-Adapter + Sonde, 2-Pol-Adapter + Zange
- □ Netzform: TN oder TT

Kurvenform Prüfstrom

Sinnvolle Parameter für die jeweilige Messart bzw. Anschlussart siehe Kapitel 15.4 bis Kapitel 15.6.

Messungen durchführen

Siehe Kapitel 15.4 bis Kapitel 15.6.

15.2 Erdungswiderstandsmessung – batteriebetrieben "Akkubetrieb" (nur PROFITEST MF XTRA)

Folgende fünf Messarten bzw. Anschlüsse sind möglich:

- SEL 4-P selektive Messung mit Zange (4-Pol-Messung) über Adapter PRO-RE
- 2-X XX 2-Zangen-Messung über Adapter PRO-RE/2
- <u>e</u>E <u>i</u> <u>i</u> <u>i</u> <u>i</u> <u>i</u> Bestimmung des spezifischen Widerstandes ρ_E über Adapter PRO-RE

Bild rechts:

Adapter PRO-RE zum Anschluss von Erder, Ersatzerder, Sonde und Hilfssonde an das Prüfgerät für 3-/4-Pol-Messung, selektive Messung und spezifische Widerstandsmessung

Bild rechts:

Messadapter PRO-RE/2 als Zubehör zum Anschluss der Generatorzange E-Clip 2 für die 2-Zangen- bzw. Erdschleifenwiderstandsmessung.

Messfunktion wählen

Betriebsart wählen

Die gewählte Betriebsart erscheint invers dargestellt: weißes Akkusymbol auf schwarzem Hintergrund.

Parameter einstellen

- $\hfill\square$ Messbereich: AUTO, 50 k $\Omega,$ 20 k $\Omega,$ 2 k $\Omega,$ 200 $\Omega,$ 20 Ω
- Wandlerübersetzung Zangenstromsensor:
- 1:1 (1V/A,) 1:10 (100mV/A), 1:100 (10mV/A), 1:1000 (1mV/A)
- \Box Anschlussart: 3-polig, 4-polig, selektiv, 2-Zangen, ρ_E (Rho)
- $\hfill\square$ Abstand d (für Messung ρ_{E}): xx m

Sinnvolle Parameter für die jeweilige Messart bzw. Anschlussart siehe Kapitel 15.7 bis Kapitel 15.11.

Messungen durchführen

Siehe Kapitel 15.7 bis Kapitel 15.11.

15.3 Erdungswiderstand netzbetrieben – 2-Pol-Messung mit 2-Pol-Adapter oder länderspezifischem Stecker (Schuko) ohne Sonde

Legende

- R_B Betriebserde
- R_E Erdungswiderstand
- Ri Innenwiderstand
- R_X Erdungswiderstand durch Systeme des Potenzialausgleichs
- Rs Sondenwiderstand
- PAS Potenzialausgleichsschiene
- RE Gesamterdungswiderstand (R_{E1}//R_{E2}//Wasserleitung)

In den Fällen, in denen es nicht möglich ist eine Sonde zu setzen, können Sie den Erdungswiderstand überschlägig durch eine "Erderschleifenwiderstandsmessung" ohne Sonde ermitteln.

Die Messung wird genauso ausgeführt wie im Kap. 15.4 "Erdungswiderstandsmessung netzbetrieben – 3-Pol-Messung: 2-Pol-Adapter mit Sonde" auf Seite 59 beschrieben. An der Sondenanschlussbuchse (17) ist jedoch keine Sonde angeschlossen. Der bei dieser Messmethode gemessene Widerstandswert R_{ESchl} enthält auch die Widerstandswerte des Betriebserders R_B und des Außenleiters L. Zur Ermittlung des Erdungswiderstandes sind diese beiden Werte vom gemessenen Wert abzuziehen. Legt man gleiche Leiterquerschnitte (Außenleiter L und Neutralleiter N) zugrunde, so ist der Widerstand des Außenleiters halb so groß wie die Netzimpedanz Z_{L-N} (Außenleiter + Neutralleiter). Die Netzimpedanz können Sie, wie im Kap. 14 ab Seite 54 beschrieben, messen. Der Betriebserder R_B darf gemäß DIN VDE 0100 "0 Ω bis 2 Ω" betragen.

- Z_{LN} entspricht $R_i = 2 \times R_L$ 1) Messung:

2) Messung: Z_{L-PE} entspricht R_{ESchl} 3) Berechnung: R_{E1} entspricht $Z_{L-PE} - \frac{1}{2} \times Z_{L-N}$; für $R_B = 0$

Bei der Berechnung des Erdungswiderstandes ist es sinnvoll den Widerstandswert der Betriebserde R_B nicht zu berücksichtigen, da dieser Wert im Allgemeinen nicht bekannt ist.

Der berechnete Widerstandswert beinhaltet dann als Sicherheitszuschlag den Widerstand der Betriebserde.

📲 🗊 😧 werden die In der Parameterauswahl 2 - P -Schritte 1) bis 3) vom Prüfgerät automatisch durchgeführt.

Messfunktion wählen

Betriebsart wählen

Parameter einstellen

- **Messbereich:** AUTO, 10 k Ω (4 mA), 1 k Ω (40 mA), 100 Ω (0,4 A), 10 Ω (3,7 ... 7 A). Bei Anlagen mit RCD-Schutzschalter muss der Widerstand bzw. der Prüfstrom so gewählt werden, dass dieser unterhalb des Auslösestroms (½ $\bar{I}_{\Delta N}$) liegt.
- Anschlussart: 2-Pol-Adapter
- □ Berührungsspannung: UL < 25 V, < 50 V, < 65 V
- Wellenform Prüfstrom: Sinus (Vollwelle), 15 mA-Sinus (Vollwelle), DC-Offset und positive Halbwelle
- Netzform: TN/TT, IT
- U Wandlerübersetzung: hier ohne Bedeutung

Messung starten

15.4 Erdungswiderstandsmessung netzbetrieben – 3-Pol-Messung: 2-Pol-Adapter mit Sonde

Legende

- R_B Betriebserder
- R_E Erdungswiderstand
- R_X Erdungswiderstand durch Systeme des Potenzialausgleichs
- R_S Sondenwiderstand
- PAS Potenzialausgleichsschiene
- $\mathsf{RE}_{\fbox} \quad \mathsf{Gesamterdungswiderstand} \; (\mathsf{R}_{\mathsf{E1}} / / \mathsf{R}_{\mathsf{E2}} / / \mathsf{Wasserleitung})$

$\textbf{Messung R}_{E} \left(\textbf{R}_{E1} = \frac{\textbf{U}_{Sonde}}{\textbf{I}} \right)$

Messfunktion wählen

Betriebsart wählen

Anschluss

Angeschlossen werden: 2-Pol-Adapter und Sonde

Parameter einstellen

□ Messbereich: AUTO,

10 k Ω (4 mA), 1 k Ω (40 mA), 100 Ω (0,4 A), 10 Ω (3,7 ... 7 A) Bei Anlagen mit RCD-Schutzschalter muss der Widerstand bzw. der Prüfstrom so gewählt werden, dass dieser unterhalb des Auslösestroms ($\frac{1}{2}$ I_{Δ N}) liegt.

- □ Anschlussart: 2-Pol-Adapter + Sonde
- □ Berührungsspannung: UL < 25 V, < 50 V, < 65 V, frei einstellbare Spannung siehe Kap. 10.8
- Wellenform Prüfstrom: Sinus (Vollwelle), 15 mA-Sinus (Vollwelle), DC-Offset und positive Halbwelle
- □ Netzform: TN/TT, IT
- □ Wandlerübersetzung: hier ohne Bedeutung

🐼 Hinweis

Bei falschem Anschluss des 2-Pol-Adapters wird folgendes Diagramm eingeblendet.

Erdungswiderstandsmessung netzbetrieben – Messen der Erderspannung (Funktion U_F) 15.5

Diese Messung ist nur mit Sonde möglich, siehe Kap. 15.4. Die Erderspannung UE ist die Spannung die am Erder zwischen dem Erderanschluss und der Bezugserde auftritt, wenn zwischen Außenleiter und Erder ein Kurzschluss auftritt. Die Ermittlung der Erderspannung ist in der Schweizer Norm NIV/NIN SEV 1000 vorgeschrieben.

Messverfahren

Zur Ermittlung der Erderspannung misst das Gerät zunächst den Erder-Schleifenwiderstand R_{ESchl}, unmittelbar danach den Erdungswiderstand R_F. Das Gerät speichert beide Messwerte, errechnet daraus nach der Formel

$$U_{E} = \frac{U_{N} \cdot R_{E}}{R_{ESchl}}$$

die Erderspannung und zeigt sie im Anzeigefeld an.

Messfunktion wählen

Anschluss

RANGE

10 Ω/UE

Parameter einstellen

- **D** Messbereich: 10 Ω / U_E
- Anschlussart: 2-Pol-Adapter + Sonde
- □ Berührungsspannung: UL < 25 V, < 50 V, < 65 V, frei einstellbare Spannung siehe Kap. 10.8
- U Wellenform Prüfstrom: hier nur Sinus (Vollwelle) !
- □ Netzform: TN/TT, IT

eingeblendet.

U Wandlerübersetzung: hier ohne Bedeutung

Angeschlossen werden: 2-Pol-Adapter und Sonde

Gossen Metrawatt GmbH

15.6 Erdungswiderstandsmessung netzbetrieben – Selektive Erdungswiderstandsmessung mit Zangenstromsensor als Zubehör

Alternativ zur klassischen Messmethode kann auch eine Messung mit Zangenstromsensor durchgeführt werden.

Legende

- R_B Betriebserde
- R_E Erdungswiderstand
- R_I Leitungswiderstand
- R_X Erdungswiderstand durch Systeme des Potenzialausgleichs
- R_S Sondenwiderstand
- PAS Potenzialausgleichsschiene
- RE____ Gesamterdungswiderstand (R_{E1} // R_{E2} // Wasserleitung)

'Sonde

Zange

Messung ohne Zange: $R_E = R_{E1} // R_{E2}$

Messung mit Zange:
$$R_E = R_{E2} = \begin{pmatrix} l \\ l \end{pmatrix}$$

Messfunktion wählen

Betriebsart wählen

Anschluss

					Ť	- L2 - L3
R _B	> 20m		RE -	X		- PE
	SEL	3-P	Å≁		0°: 🏲	
	START	- E				
						4/h

Angeschlossen werden: 2-Pol-Adapter, Zange und Sonde

Parameter einstellen am Prüfgerät

- Messbereich (Prüfstromauswahl): 1 kΩ (40 mA), 100 Ω (0,4 A), 10 Ω (3,7 ... 7 A) Bei Anlagen mit RCD-Schutzschalter kann die Funktion DC-Offset und positive Halbwelle (DC +) gewählt werden (nur im Bereich 10 Ω und nur mit METRAFLEX P300).
- Anschlussart: 2-Pol-Adapter + Zange nach Parameterauswahl: automatische Einstellung auf Messbereich 10 Ω und Wandlerübersetzung 1 V/A bzw. 1000 mV/A
- □ Berührungsspannung: UL < 25 V, < 50 V, < 65 V, frei einstellbare Spannung siehe Kap. 10.8
- U Wellenform Prüfstrom:

Sinus (Vollwelle), DC-Offset und positive Halbwelle (DC + ____) Netzform: TN/TT, IT

Wandlerübersetzung Zangenstromsensor: siehe Tabelle unten

Parameter einstellen am Zangenstromsensor

□ Messbereich Zangenstromsensor: siehe Tabelle unten

Messbereich am Zangenstromsensor wählen

Prüfgerät	Zange METRAFLEX	Prüfgerät	
Parameter Wandlerübersetzung	Schalter	Mess- bereich	Messbereich
1:1 1 V / A	3 A (1 V/A)	3 A	0,5 100 mA
1:10 100 mV / A	30 A (100 mV/A)	30 A	5 999 mA
1:100 10 mV / A	300 A (10 mV/A)	300 A	0,05 10 A

Wichtige Hinweise für den Einsatz des Zangenstromsensors

- Verwenden Sie für diese Messung ausschließlich den Zangenstromsensor METRAFLEX P300 oder die Z3512A.
- Lesen und beachten Sie unbedingt die Bedienungsanleitung zum Zangenstromsensor METRAFLEX P300 und die darin beschriebenen Sicherheitshinweise.
- Beachten Sie unbedingt die Stromrichtung, siehe Pfeil auf dem Zangenstromsensor.
- Betreiben Sie die Zange fest angeschlossen. Der Sensor darf während der Messung nicht bewegt werden.
- Der Zangenstromsensor darf nur bei ausreichendem Abstand von starken Fremdfeldern eingesetzt werden.
- Untersuchen Sie vor dem Einsatz immer das Elektronikgehäuse, das Verbindungskabel und den flexiblen Stromsensor auf Beschädigungen.
- Zur Vermeidung von elektrischem Schlag halten Sie die METRAF-LEX sauber und frei von Verschmutzung der Oberfläche.
- Stellen Sie sicher, dass vor Verwendung der flexible Stromsensor, das Verbindungskabel und das Elektronikgehäuse trocken sind.

Messung starten

Sofern Sie die Wandlerübersetzung im Prüfgerät verändert haben, wird ein Popup-Fenster mit dem Hinweis eingeblendet, diese neue Einstellung auch am angeschlossenen Zangenstromsensor vorzunehmen.

 $\mathsf{RE}_{\mathsf{Zange}}$: selektiver Erdungswiderstand über Zange gemessen RE_{Sonde}: Gesamt-Erdungswiderstand über Sonde gemessen, Vergleichswert

Hinweis

Bei falschem Anschluss des 2-Pol-Adapters wird folgendes Diagramm eingeblendet.

15.7 Erdungswiderstandsmessung batteriebetrieben "Akkubetrieb" – 3-polig (nur PROFITEST MF XTRA)

Dreileiterverfahren

Messung des Erdungswiderstandes nach dem Dreileiterverfahren

Anschluss

- Setzen Sie die Spieße f
 ür Sonde und Hilfserder in mindestens 20 m bzw. 40 m Entfernung vom Erder, siehe Bild oben.
- Stellen Sie sicher, dass nicht zu hohe Übergangswiderstände zwischen Sonde und Erdreich vorliegen.
- Montieren Sie den Adapter PRO-RE (Z501S) auf den Pr
 üfstecker.
- Schließen Sie die Sonde, Hilfserder und Erder über die 4-mm-Bananenbuchsen des Adapters PRO-RE an. Achten Sie hierbei auf die Beschriftung der Bananenbuchsen! Der Anschluss ES/P1 bleibt frei.

Der Widerstand der Messleitung zum Erder geht unmittelbar in das Messergebnis ein.

Um den Fehler, der durch den Widerstand der Messleitung verursacht wird, möglichst klein zu halten, sollten Sie bei diesem Messverfahren eine kurze Verbindungsleitung zwischen Erder und Anschluss **E** mit großem Querschnitt verwenden.

🐼 Hinweis

Um Nebenschlüsse zu vermeiden müssen die Messleitungen gut isoliert sein. Die Messleitungen sollten sich nicht kreuzen oder über lange Strecken parallel laufen, um den Einfluss von Verkopplungen auf ein Mindestmaß zu begrenzen. Messfunktion wählen

Betriebsart wählen

Die gewählte Betriebsart erscheint invers dargestellt: weißes Akkusymbol auf schwarzem Hintergrund.

Parameter einstellen

- $\hfill\square$ Messbereich: AUTO, 50 kΩ, 20 kΩ, 2 kΩ, 200 Ω, 20 Ω
- □ Anschlussart: 3-polig
- □ Wandlerübersetzung: hier ohne Bedeutung
- □ Abstand d (für Messung p_E): hier ohne Bedeutung

Messung starten

••		ິຄ		AUTO
	R E		<10,0Ω Ω	3-P ■■■ 1 V/A ►
				LIMITS
				mains ~
ART	U H U S	V V f I	M Hz	

15.8 Erdungswiderstandsmessung batteriebetrieben "Akkubetrieb" – 4-polig (nur PROFITEST MF XTRA)

Vierleiterverfahren

Das Vierleiterverfahren wird eingesetzt bei einem hohen Zuleitungswiderstand vom Erder zum Geräteanschluss.

Bei dieser Schaltung wird der Widerstand der Zuleitung vom Erder zur Klemme "E" des Gerätes nicht mitgemessen.

Anschluss

- \Box Setzen Sie die Spieße für Sonde und Hilfserder in mindestens 20 m bzw. 40 m Entfernung vom Erder, siehe Bild oben.
- \Box Stellen Sie sicher, dass nicht zu hohe Übergangswiderstände zwischen Sonde und Erdreich vorliegen.
- Montieren Sie den Adapter PRO-RE (Z501S) auf den Prüfstecker. \Box
- Schließen Sie die Sonden, Hilfserder und Erder über die 4- \Box mm-Bananenbuchsen des Adapters PRO-RE an. Achten Sie hierbei auf die Beschriftung der Bananenbuchsen!

F Hinweis

Der Erder wird beim Vierleiterverfahren mit zwei getrennten Messleitungen mit den Klemmen "E" bzw. "ES" verbunden, die Sonde an die Klemme "S" und der Hilfserder an die Klemme "H" angeschlossen.

F Hinweis

Um Nebenschlüsse zu vermeiden müssen die Messleitungen gut isoliert sein. Die Messleitungen sollten sich nicht kreuzen oder über lange Strecken parallel laufen, um den Einfluss von Verkopplungen auf ein Mindestmaß zu begrenzen.

Messfunktion wählen

Betriebsart wählen

Die gewählte Betriebsart erscheint invers dargestellt: weißes Akkusymbol auf schwarzem Hintergrund.

Parameter einstellen

- $\hfill \hfill \hfill$
- □ Anschlussart: 4-polig
- □ Wandlerübersetzung: hier ohne Bedeutung
- \Box Abstand d (für Messung ρ_{E}): hier ohne Bedeutung

Messung starten

Spannungstrichter

Über die geeigneten Standorte von Sonde und Hilfserder erhalten Sie Aufschluss, wenn Sie den Verlauf von Spannung bzw. Ausbreitungswiderstand im Erdreich beachten.

Der vom Erdungsmessgerät über Erder und Hilfserder geschickte Messstrom erzeugt um den Erder und den Hilfserder eine Potenzialverteilung in Form eines Spannungstrichters (vgl. Seite 65). Analog zur Spannungsverteilung verläuft die Widerstandsverteilung.

Die Ausbreitungswiderstände von Erder und Hilfserder sind in der Regel unterschiedlich. Die beiden Spannungs- bzw. Widerstandstrichter sind deshalb nicht symmetrisch.

Ausbreitungswiderstand von Erdern kleiner Ausdehnung

Für das richtige Erfassen des Ausbreitungswiderstandes von Erdern ist die Anordnung der Sonde und Hilfserder sehr wesentlich.

Die Sonde muss zwischen Erder und Hilfserder in der sogenannten neutralen Zone (Bezugserde) eingesetzt werden (vgl. Seite 65).

Die Spannungs- bzw. Widerstandskurve verläuft deshalb innerhalb der neutralen Zone nahezu horizontal.

Für die Wahl der geeigneten Sonden- und Hilfserderwiderstände verfahren Sie wie folgt:

- Hilfserder in einem Abstand von ca. 40 m vom Erder einschla-⊳ gen.
- ⊳ Sonde in der Mitte der Verbindungslinie Erder – Hilfserder einsetzen und den Erdungswiderstand bestimmen.
- ⊳ Sondenabstand 2 ... 3 m in Richtung Erder, dann 2 ... 3 m in Richtung Hilfserder gegenüber dem ursprünglichen Standort verändern und Erdungswiderstand messen.

Ergeben die 3 Messungen den gleichen Messwert, dann ist dies der gesuchte Erdungswiderstand. Die Sonde befindet sich in der neutralen Zone.

Sind die drei Messwerte für den Erdungswiderstand jedoch voneinander abweichend, dann befindet sich der Sondenstandort entweder nicht in der neutralen Zone oder die Spannungs- bzw. Widerstandskurve verläuft im Sondeneinstechpunkt nicht horizontal.

Richtige Messergebnisse können in solchen Fällen entweder durch Vergrößern des Abstandes Hilfserder – Erder oder durch Versetzen der Sonde auf der Mittelsenkrechten zwischen Hilfserder und Erder (vgl.) erreicht werden. Durch Versetzen der Sonde auf der Mittelsenkrechten wandert der Sondenpunkt aus dem Einflussbereich der beiden Spannungstrichter von Erder und Hilfserder heraus.

Ausbreitungswiderstand von Erdungsanlagen größerer Ausdehnung

Für das Messen ausgedehnter Erdungsanlagen sind wesentlich größere Abstände zu Sonde und Hilfserder erforderlich; man rechnet hier mit dem 2,5- bzw. 5-fachen Wert der größten Diagonale der Erdungsanlage.

Solche ausgedehnten Erdungsanlagen weisen oft Ausbreitungswiderstände in der Größenordnung von nur einigen Ohm und weniger auf, so dass es besonders wichtig ist, die Messsonde in der neutralen Zone einzusetzen.

Die Richtung für Sonde und Hilfserder sollten Sie im rechten Winkel zur größten Längenausdehnung der Erdungsanlage wählen. Der Ausbreitungswiderstand muss klein gehalten werden; notfalls müssen dazu mehrere Erdspieße verwendet (Abstand 1 ... 2 m) und untereinander verbunden werden.

In der Praxis lassen sich große Messabstände wegen Geländeschwierigkeiten jedoch oft nicht erreichen.

In diesem Fall verfahren Sie wie in dargestellt.

- Der Hilfserder H wird im größtmöglichen Abstand von der Erdungsanlage eingesetzt.
- Mit der Sonde tastet man in gleich großen Schritten den Bereich zwischen Erder und Hilfserder ab (Schrittweite ca. 5 m).
- Die gemessenen Widerstände werden tabellarisch und anschließend grafisch, wie in dargestellt aufgetragen (Kurve I).

Legt man durch den Wendepunkt S1 eine Parallele zur Abszisse, so teilt diese Linie die Widerstandskurve in zwei Teile.

Der untere Teil ergibt, an der Ordinate gemessen, den gesuchten Ausbreitungswiderstand des Erders $R_{A/E}$; der obere Wert ist der Ausbreitungswiderstand des Hilfserders $R_{A/H}$.

Der Ausbreitungswiderstand des Hilfserders soll bei einer derartigen Messanordnung kleiner sein als das 100-fache des Ausbreitungswiderstandes des Erders. Bei Widerstandskurven ohne ausgeprägten horizontalen Bereich sollte die Messung mit verändertem Standort des Hilfserders kontrolliert werden. Diese weitere Widerstandskurve ist mit geänderten Abszissen-Maßstab so in das erste Diagramm einzutragen, dass beide Hilfserderstandorte zusammenfallen. Mit dem Wendepunkt S2 kann der zuerst ermittelte Ausbreitungswiderstand kontrolliert werden.

Hinweise für Messungen im ungünstigen Gelände

In sehr ungünstigem Gelände (z. B. Sandboden nach längerer Trockenperiode) können durch Begießen der Erde um Hilfserder und Sonde mit Soda- oder Salzwasser der Hilfserder- und Sondenwiderstand auf zulässige Werte verringert werden. Reicht diese Maßnahme noch nicht aus, dann können zum Hilfserder mehrere Erdspieße parallel geschaltet werden.

Im gebirgigen Gelände oder bei sehr steinigem Untergrund, wo das Einschlagen von Erdspießen nicht möglich ist, können auch Drahtgitter mit 1 cm Maschenweite und ca. 2 m² Fläche verwendet werden. Diese Gitter sind flach auf den Boden zu legen, mit Soda- oder Salzwasser zu übergießen und eventuell mit feuchten, erdgefüllten Säcken zu beschweren.

Erdungswiderstandsmessung batteriebetrieben "Akkubetrieb" - selektiv (4-polia) 15.9 mit Zangenstromsensor sowie Messadapter PRO-RE als Zubehör (nur PROFITEST MF XTRA)

Allgemeines

In Anlagen mit mehreren parallel geschalteten Erdern wird bei Messungen des Erdungswiderstandes der Gesamtwiderstand der Erdungsanlage gemessen.

Bei der Messung werden zwei Erdspieße (Hilfserder und Sonde) gesetzt. Der Messstrom wird zwischen Erder und Hilfserder eingespeist und der Spannungsfall zwischen Erder und Sonde gemessen.

Die Stromzange wird um den zu messenden Erder gelegt und damit nur der Teil des Messstromes gemessen, der tatsächlich durch den Erder fließt.

Anschluss

- \Box Setzen Sie die Spieße für Sonde und Hilfserder in mindestens 20 m bzw. 40 m Entfernung vom Erder, siehe Bild oben.
- Stellen Sie sicher, dass nicht zu hohe Übergangswiderstände \Box zwischen Sonde und Erdreich vorliegen.
- Montieren Sie den Adapter PRO-RE (Z501S) auf den Prüfste- \Box cker.
- Schließen Sie die Sonden, Hilfserder und Erder über die 4- \Box mm-Bananenbuchsen des Adapters PRO-RE an. Achten Sie hierbei auf die Beschriftung der Bananenbuchsen!
- Schließen Sie den Zangenstromsensor Z3512A an die Buch- \Box sen (15) und (16) am Prüfgerät an.
- Fixieren Sie den Zangenstromsensor auf dem Erder. \Box

Messfunktion wählen

Betriebsart wählen

Die gewählte Betriebsart erscheint invers dargestellt: weißes Akkusymbol auf schwarzem Hintergrund.

Parameter einstellen am Prüfgerät

 \Box Messbereich: 200 Ω

Hinweis

Bei Umschaltung auf selektive Messung, wird automatisch auf den Messbereich AUTO umgeschaltet, wenn ein Messbereich größer als 200 Ω eingestellt war.

Anschlussart: selektiv

- U Wandlerübersetzung Zangenstromsensor:
 - 1:1 (1V/A,) 1:10 (100mV/A), 1:100 (10mV/A)
- **Abstand d (für Messung** $\rho_{\rm F}$): hier ohne Bedeutung

Parameter einstellen am Zangenstromsensor

Messbereich Zangenstromsensor: siehe Tabelle unten

Messbereich am Zangenstromsensor wählen

Drüfgoröt	Zongo Z	05104
Pruigerat	Zange Za	DIZA
Parameter Wandlerübersetzung	Schalter	Messbereich
1:1 1 V / A	1 A / × 1	1 A
1:10 100 mV / A	10 A / × 10	10 A
1:100 10 mV / A	100 A / × 100	100 A

Wichtige Hinweise für den Einsatz des Zangenstromsensors

- Verwenden Sie für diese Messung ausschließlich den Zangenstromsensor Z3512A.
- Betreiben Sie die Zange fest angeschlossen. Der Sensor darf während der Messung nicht bewegt werden.
- Der Zangenstromsensor darf nur bei ausreichendem Abstand von starken Fremdfeldern eingesetzt werden.
- Achten Sie darauf, dass die Anschlussleitung des Zangenstromsensors möglichst getrennt von den Sondenleitungen verlegt ist.

Messung starten

15.10 Erdungswiderstandsmessung batteriebetrieben "Akkubetrieb" – Erdschleifenmessung (mit Zangenstromsensor und -wandler sowie Messadapter PRO-RE/2 als Zubehör) (nur PROFITEST MF XTRA)

Methode 2-Zangen-Messung

Bei Erdungsanlagen, die aus mehreren miteinander verbundenen Erdern (R1 ... Rx) bestehen, kann der Erdungswiderstand eines einzelnen Erders (Rx) mithilfe von 2 Stromzangen ermittelt werden, ohne Rx abzutrennen oder Spieße zu setzen. Diese Messmethode eignet

sich besonders bei Gebäuden oder Anlagen, bei denen Sonden und Hilfserder nicht gesetzt werden können oder Erder nicht aufgetrennt werden dürfen.

Darüber hinaus wird diese "spießlose" Messung als eine von drei Messungen an Blitzschutzsystemen durchgeführt, um zu Prüfen, ob Ströme abgeleitet werden können.

Bild rechts:

Messadapter PRO-RE/2 als Zubehör zum Anschluss der Generatorstromzange E-Clip 2

Anschluss

- Sonden und Hilfserder brauchen nicht gesetzt werden. \Box
- Das Auftrennen des Erders entfällt ebenfalls \Box
- \Box Montieren Sie den Adapter PRO-RE/2 (Z502T) auf den Prüfstecker.
- \Box Schließen Sie die Generatorzange (Zangenstromwandler) E-Clip 2 über die 4-mm-Sicherheitsstecker des Adapters PRO-RE/2 an.
- Schließen Sie den Zangenstromsensor Z3512A an die Buch- \Box sen (15) und (16) am Prüfgerät an.
- \Box Fixieren Sie die 2 Zangen an einem Erder (Erdspieß) in unterschiedlichen Höhen mit einem Abstand größer oder gleich 30 cm.

Messfunktion wählen

Betriebsart wählen

Die gewählte Betriebsart erscheint invers dargestellt: weißes Akkusymbol auf schwarzem Hintergrund.

Parameter einstellen am Prüfgerät

Messbereich: hier generell AUTO

R Hinweis

Bei Umschaltung auf 2-Zangen-Messung wird automatisch in den Bereich AUTO geschaltet. Dieser Bereich ist dann nicht veränderbar!

- □ Anschlussart: 2-Zangen
- Wandlerübersetzung Zangenstromsensor:
- 1:1 (1V/A), 1:10 (100mV/A), 1:100 (10mV/A)
- **Abstand d (für Messung** $\rho_{\rm F}$): hier ohne Bedeutung

Parameter einstellen am Zangenstromsensor

□ Messbereich Zangenstromsensor: siehe Tabelle unten

Messbereich am Zangenstromsensor wählen

Prüfgerät	Zange Z3512A			
Parameter Wandlerübersetzung	Schalter	Messbereich		
1:1 1 V / A	1 A / × 1	1 A		
1:10 100 mV / A	10 A / × 10	10 A		
1:100 10 mV / A	100 A / × 100	100 A		

Wichtige Hinweise für den Einsatz des Zangenstromsensors

- Verwenden Sie für diese Messung ausschließlich den Zangenstromsensor Z3512A.
- Betreiben Sie die Zange fest angeschlossen. Der Sensor darf während der Messung nicht bewegt werden.
- Der Zangenstromsensor darf nur bei ausreichendem Abstand von starken Fremdfeldern eingesetzt werden.
- Achten Sie darauf, dass die Anschlussleitungen der 2 Zangen möglichst getrennt voneinander verlegt sind.

Messung starten

15.11 Erdungswiderstandsmessung batteriebetrieben "Akkubetrieb" – Messung des spezifischen Erdungswiderstands $\rho_{\rm F}$ (nur PROFITEST MF XTRA)

Allgemeines

Die Bestimmung des spezifischen Erdungswiderstands ist zur Planung von Erdungsanlagen erforderlich. Hierbei sollen verlässliche Werte ermittelt werden, die selbst schlechteste Bedingungen berücksichtigen, siehe "Geologische Auswertung" auf Seite 68.

Maßgebend für die Größe des Ausbreitungswiderstandes eines Erders ist der spezifische Widerstand der Erde. Dieser kann mit dem Prüfgerät nach der Methode von Wenner gemessen werden. Im Abstand d werden in gerader Linie vier möglichst lange Erd-

spieße in den Boden getrieben und mit dem Erdungsmessgerät verbunden, siehe Bild oben.

Die übliche Länge der Erdspieße ist 30 bis 50 cm; bei schlechtleitendem Erdreich (Sandboden etc.) können längere Erdspieße verwendet werden. Die Einschlagtiefe der Erdspieße darf höchstens 1/20 des Abstandes d betragen.

🚱 Hinweis

Es besteht die Gefahr von Fehlmessungen, wenn parallel zur Messanordnung Rohrleitungen, Kabel oder andere unterirdische metallene Leitungen verlaufen.

Der spezifische Erdwiderstand errechnet sich nach der Formel: $\rho_E = 2\pi \cdot d \cdot R$

- dabei ist: $\pi = 3,1416$
- d = Abstand zwischen zwei Erdspießen in m
- R = ermittelter Widerstandswert in Ω (dieser Wert entspricht R_F ermittelt mit der 4-Leitermessung)

Anschluss

- Setzen Sie die Spieße für Sonde und Hilfserder in jeweils glei- \Box chem Abstand, siehe Bild oben.
- Stellen Sie sicher, dass nicht zu hohe Übergangswiderstände \Box zwischen Sonde und Erdreich vorliegen.
- Montieren Sie den Adapter PRO-RE (Z501S) auf den Prüfste- \Box cker.
- Schließen Sie die Sonden, Hilfserder und Erder über die 4- \Box mm-Bananenbuchsen des Adapters PRO-RE an. Achten Sie hierbei auf die Beschriftung der Bananenbuchsen!

Messfunktion wählen

Betriebsart wählen

Die gewählte Betriebsart erscheint invers dargestellt: weißes Akkusymbol auf schwarzem Hintergrund.

Parameter einstellen

- **D** Messbereich: AUTO, 50 k Ω , 20 k Ω , 2 k Ω , 200 Ω , 20 Ω
- **Anschlussart:** ρ_{F} (Rho)
- U Wandlerübersetzung: hier ohne Bedeutung
- **Abstand d für Messung** $\rho_{\rm F}$: von 0,1 m bis 999 m editierbar

Messung starten

Geologische Auswertung

Von Extremfällen abgesehen, erfasst die Messung den zu untersuchenden Boden bis zu einer Tiefe, die ungefähr gleich dem Sondenabstand d ist.

Es ist also möglich, durch Variation des Sondenabstandes Aufschluss über die Schichtung des Untergrundes zu erhalten. Gut leitende Schichten (Grundwasserspiegel), in welche Erder verlegt werden sollen, lassen sich so aus einer schlecht leitenden Umgebung herausfinden.

Spezifische Erdwiderstände sind großen Schwankungen unterworfen, die verschiedene Ursachen haben können, wie Porosität, Durchfeuchtung, Lösungskonzentration von Salzen im Grundwasser und klimatische Schwankungen.

Der Verlauf des spezifischen Erdwiderstandes ρ_E in Abhängigkeit von der Jahreszeit (der Bodentemperatur sowie dem negativen Temperaturkoeffizienten des Bodens) kann mit recht guter Annäherung durch eine Sinuskurve dargestellt werden.

Spezifische Erdwiderstände pE in Abhängigkeit von der Jahreszeit ohne Beeinflussung durch Niederschläge (Eingrabtiefe des Erders < 1,5 m)

In der folgenden Tabelle sind einige typische spezifische Erdwiderstände für verschiedene Böden zusammengestellt.

Art des Erdreichs	spezifischer Erdwiderstand ρ_{E} [Ω m]
nasser Moorboden	8 60
Ackerboden, Lehm- und Tonboden, feuchter Kies	20 300
feuchter Sandboden	200 600
trockener Sandboden, trockener Kies	200 2000
steiniger Boden	300 8000
Felsen	10 ⁴ 10 ¹⁰

Berechnen von Ausbreitungswiderständen

Für die geläufigen Erderformen sind in dieser Tabelle die Formeln für die Berechnung der Ausbreitungswiderstände angegeben. Für die Praxis genügen diese Faustformeln durchaus.

Nummer	Erder	Faustformel	Hilfsgröße
1	Banderder (Strahlenerder)	$R_{A} = \frac{2 \cdot \rho_{E}}{I}$	_
2	Staberder (Tiefenerder)	$R_A = \frac{\rho_E}{I}$	_
3	Ringerder	$R_{A} = \frac{2 \cdot \rho_{E}}{3D}$	$D = 1,13 \cdot \sqrt[2]{F}$
4	Maschenerder	$R_{A} = \frac{2 \cdot \rho_{E}}{2D}$	$D = 1.13 \cdot \sqrt[2]{F}$
5	Plattenerder	$R_{A} = \frac{2 \cdot \rho_{E}}{4,5 \cdot a}$	_
6	Halbkugelerder	$R_A = \frac{\rho_E}{\pi \cdot D}$	$D = 1,57 \cdot \sqrt[3]{J}$

 R_A = Ausbreitungswiderstand (Ω)

 ρ_{E} = Spezifischer Widerstand (Ω m)

I = Länge des Erders (m)

D = Durchmesser eines Ringerders, Durchmesser der Ersatzkreisfläche eines Maschenerders oder Durchmesser eines Halbkugelerders (m)

 $F = Fläche (m^2) der umschlossenen Fläche eines Ring- oder Maschenerders$

- a = Kantenlänge (m) einer quadratischen Erderplatte; bei Rechteckplatten ist für a einzusetzen: $\sqrt{b \times c}$, wobei b und c die beiden Rechteckseiten sind.
- J = Inhalt (m³) eines Einzelfundamentes

Achtung!

lsolationswiderstände dürfen nur an spannungsfreien Objekten gemessen werden.

16.1 Allgemein

Messfunktion wählen

Anschluss

2-Pol-Adapter oder Prüfstecker

🕼 Hinweis

Das Prüfgerät misst die Isolation immer zwischen den Kontakten L und PE.

Bei Anlagen ohne RCD muss N und PE aufgetrennt werden.

Hinweis

Überprüfen der Messleitungen vor einer Messreihe

Vor der Isolationsmessung sollte durch Kurzschließen der Messleitungen an den Prüfspitzen überprüft werden, ob das Gerät < 1 k Ω anzeigt. Hierdurch kann ein falscher Anschluss vermieden oder eine Unterbrechung bei den Messleitungen festgestellt werden.

Parameter einstellen

frei einstellbare Spannung siehe Kap. 10.8

Auswahl der Polung

²E / L+N-PE / Lx-N / Lx-Ly / AUTO* mit x. v = 1. 2. 3

Parameter AUTO siehe Kap. 10.9

Durchbruchströme für Rampenfunktion

Hinweis

Die Abschaltung beim jeweils eingestellten Durchbruchstrom I_{lim} erfolgt erst bei Überschreiten einer Mindestspannung von 5 V, um den Einfluss von Parallelkapazitäten am Messobjekt beim Start der Messung zu unterdrücken.

Grenzwerte für Durchbruchspannung

Grenzwerte für konstante Prüfspannung

Prüfspannung

Für Messungen an empfindlichen Bauteilen sowie bei Anlagen mit spannungsbegrenzenden Bauteilen kann eine von der Nennspannung abweichende, meist niedrigere, Prüfspannung eingestellt werden.

Spannungsform

Die Funktion **ansteigende Prüfspannung (Rampenfunktion)** "U_{ISO}" dient zum Aufspüren von Schwachstellen in der Isolation sowie zum Ermitteln der Ansprechspannung von spannungsbegrenzenden Bauelementen. Nach Drücken der Taste **ON/START** V, wird die Prüfspannung kontinuierlich bis zur vorgegebenen Nennspannung U_N erhöht. **U** ist die während und nach der Prüfung gemessene Spannung an den Prüfspitzen. Diese fällt nach der Messung auf einen Wert unter 10 V ab, siehe Abschnitt "Messobjekt entladen".

Die Isolationsmessung mit ansteigender Prüfspannung wird beendet:

 sobald die maximal eingestellte Pr
üfspannung U_N erreicht wird und der Messwert stabil ist

oder

• sobald der eingestellte Prüfstrom erreicht wird

(z. B. nach einem Überschlag bei der Durchbruchspannung). Für ${\bf U}_{\rm ISO}$ wird die maximal eingestellte Prüfspannung U_N oder eine evtl. vorhandene Ansprech- bzw. Durchbruchspannung angezeigt.

Die Funktion konstante Prüfspannung bietet zwei Möglichkeiten:

Nach kurzem Drücken der Taste ON/START ▼ wird die eingestellte Prüfspannung U_N ausgegeben und der Isolationswiderstand R_{ISO} gemessen. Sobald der Messwert stabil ist (bei hohen Leitungskapazitäten kann die Einschwingzeit einige Sekunden betragen) wird die Messung beendet und der letzte Messwert für R_{ISO} und U_{ISO} angezeigt. U ist die während und nach der Prüfung gemessene Spannung an den Prüfspitzen. Diese fällt nach der Messung auf einen Wert unter 10 V ab, siehe Abschnitt "Messobjekt entladen".

oder

Solange Sie die Taste ON/START ▼ drücken, wird die Prüfspannung U_N ausgegeben und der Isolationswiderstand R_{ISO} gemessen. Lassen Sie die Taste erst Ios, wenn der Messwert stabil ist (bei hohen Leitungskapazitäten kann die Einschwingzeit einige Sekunden betragen). Die während der Prüfung gemessene Spannung U entspricht dabei der Spannung U_{ISO}. Nach Loslassen der Taste ON/START ▼ wird die Messung beendet und der letzte Messwert für R_{ISO} und U_{ISO} angezeigt. U fällt nach der Messung auf einen Wert unter 10 V ab, siehe Abschnitt "Messobjekt entladen".

D Protokollierung der Polauswahl

Nur zur Protokollierung können hier die Pole angegeben werden, zwischen denen geprüft wird. Die Eingabe hat keinen Einfluss auf die tatsächliche Prüfspitzen- bzw. Polauswahl.

Limits – Einstellen des Grenzwertes

Sie können den Grenzwert des Isolationswiderstandes einstellen. Treten Messwerte unterhalb dieses Grenzwertes auf, so leuchtet die rote LED U_L/R_L. Es steht eine Auswahl von Grenzwerten zwischen 0,5 MΩ und 10 MΩ zur Verfügung. Der Grenzwert wird oberhalb des Messwertes eingeblendet.

Messung starten - ansteigende Prüfspannung (Rampenfunktion)

der Polungen, falls

Parameter auf AUTO eingestellt: 01/10 ... 10/10: L1-PE ... L1-L3

Bei Auswahl von **Halbautomatischem Polwechsel** (siehe Kap. 10.9) wird anstelle der Rampe das Symbol für halb automatischen Polwechsel dargestellt.

Allgemeine Hinweise zur Isolationsmessung mit Rampenfunktion

Die Isolationsmessung mit Rampenfunktion dient folgenden Zwecken:

- Aufspüren von Schwachstellen in der Isolation der Messobjekte

Die Messspannung des Prüfgerätes steigt bei dieser Messfunktion kontinuierlich an, maximal bis zur gewählten Grenzspannung. Der Messvorgang wird über die Taste **ON/START** ▼ gestartet und läuft selbstständig ab bis eins der folgende Ereignisse eintritt:

- gewählte Grenzspannung wird erreicht,
- eingestellter Grenzstrom wird erreicht,

oder

Eintritt eines Durchbruches (bei Funkenstrecken).

Folgende drei Vorgehensweisen bei der Isolationsmessung mit Rampenfunktion werden unterschieden:

Überprüfen von Überspannungsbegrenzern oder Varistoren bzw. Ermitteln deren Ansprechspannung:

- Wahl der Maximalspannung so, dass die zu erwartende Durchbruchsspannung des Messobjektes etwa im zweiten Drittel der Maximalspannung liegt (ggf. Datenblatt des Herstellers beachten).
- Wahl der Grenzstromstärke nach Erfordernis bzw. Angaben im Datenblatt des Herstellers (Kennlinie des Messobjektes).

Ermittlung der Ansprechspannung von Funkenstrecken:

- Wahl der Maximalspannung so, dass die zu erwartende Durchbruchsspannung des Messobjektes etwa im zweiten Drittel der Maximalspannung liegt (ggf. Datenblatt des Herstellers beachten).
- Wahl der Grenzstromstärke nach Erfordernis im Bereich 5 ... 10 μA (bei größeren Grenzströmen ist hierbei das Ansprechverhalten zu instabil, so dass es zu fehlerhaften Messergebnissen kommen kann).

Aufspüren von Schwachstellen in der Isolation:

- Wahl der Maximalspannung so, dass diese die zulässige Isolationsspannung des Messobjektes nicht übersteigt; kann davon ausgegangen werden, dass ein Isolationsfehler bereits bei deutlich kleinerer Spannung auftritt, sollte die Maximalspannung entsprechend kleiner gewählt werden (mindestens jedoch größer als die zu erwartende Durchbruchsspannung) – die Steigung der Rampe ist dadurch geringer (Erhöhung der Messgenauigkeit).
- Wahl der Grenzstromstärke nach Erfordernis im Bereich 5 ... 10 µA (vgl. Einstellung bei Funkenstrecken).

Messung starten - konstante Prüfspannung

Schnelles Umschalten der Polungen, falls Parameter auf AUTO eingestellt: 01/10 \dots 10/10: L1-PE \dots L1-L3

😥 Hinweis

Bei der Isolationswiderstandsmessung werden die Akkus des Gerätes stark belastet. Drücken Sie die Taste Start ▼ bei der Funktion **konstante Prüfspannung** nur so lange (sofern Dauermessung erforderlich ist), bis die Anzeige stabil ist.

[🐼] Hinweis

Besondere Bedingungen bei der Isolationswiderstandsmessung

/! Achtung!

Isolationswiderstände können nur an spannungsfreien Objekten gemessen werden.

Ist der gemessene Isolationswiderstand kleiner als der eingestellte Grenzwert, so leuchtet die LED **UL/RL**.

Ist in der Anlage eine Fremdspannung von ≥ 25 V vorhanden, so wird der Isolationswiderstand nicht gemessen. Es leuchtet die LED **MAINS/NETZ** und das Pop-up-Fenster **Fremdspannung vorhanden** wird eingeblendet.

Sämtliche Leitungen (L1, L2, L3 und N) müssen gegen PE gemessen werden!

/! Achtung!

Berühren Sie nicht die Anschlusskontakte des Gerätes, wenn eine Isolationswiderstandsmessung läuft!

Sind die Anschlusskontakte frei oder zur Messung an einem ohmschen Verbraucher angeschlossen, dann würde bei einer Spannung von 1000 V ein Strom von ca. 1 mA über Ihren Körper flie-Ben. Durch den spürbaren Stromschlag ist eine Verletzungsgefahr (z. B. Folge durch Erschrecken usw.) gegeben.

Messobjekt entladen

Achtung!

Messen Sie an einem kapazitiven Objekt, z. B. an einem langen Kabel, so wird sich dieses bis auf ca. 1000 V aufladen! **Das Berühren ist dann lebensgefährlich!**

Wenn Sie an kapazitiven Objekten den Isolationswiderstand gemessen haben, so entlädt sich das Messobjekt automatisch über das Gerät nach Beenden der Messung. Der Kontakt zum Objekt muss dafür weiterhin bestehen. Das Absinken der Spannung wird über U sichtbar.

∕!∖

Trennen Sie den Anschluss erst, wenn für U < 10 V angezeigt wird!

Beurteilung der Messwerte

Achtung!

Damit die in den DIN VDE-Bestimmungen geforderten Grenzwerte des Isolationswiderstandes nicht unterschritten werden, muss der Messfehler des Gerätes berücksichtigt werden. Aus der Tabelle 3 auf Seite 96 können Sie die erforderlichen Mindestanzeigewerte für Isolationswiderstände ermitteln. Die Werte berücksichtigen den maximalen Fehler (bei Nenngebrauchsbedingungen) des Gerätes. Zwischenwerte können Sie interpolieren.

16.2 Sonderfall Erdableitwiderstand (R_{EISO})

Diese Messung wird durchgeführt, um die Ableitfähigkeit elektrostatischer Ladungen für Bodenbeläge nach EN 1081 zu ermitteln.

Messfunktion wählen

Parameter einstellen

Anschluss und Messaufbau

- Reiben Sie den Bodenbelag an der zu pr
 üfenden Stelle mit einem trockenen Tuch ab.
- Setzen Sie die Fußbodensonde 1081 auf und belasten Sie diese mit einem Gewicht von mindestens 300 N (30 kg).
- Stellen Sie eine leitende Verbindung zwischen Messelektrode und Prüfspitze her und verbinden Sie den Messadapter (2-polig) mit der Erdanschlussstelle, z. B. Schutzkontakt einer Netzsteckdose, Zentralheizung; Voraussetzung sichere Erdverbindung.

Die Höhe des Grenzwertes des Erdableitwiderstands richtet sich nach den relevanten Bestimmungen.
17 Messen niederohmiger Widerstände bis 200 Ohm (Schutzleiter und Schutzpotenzialausgleichsleiter)

Die Messung niederohmiger Widerstände von Schutzleitern, Erdungsleitern oder Potenzialausgleichsleitern muss laut Vorschrift mit (automatischer) Umpolung der Messspannung oder mit Stromfluss in der einen (+ Pol an PE) und in der anderen Richtung (– Pol an PE) durchgeführt werden.

Achtung!

Niederohmige Widerstände dürfen nur an spannungsfreien Objekten gemessen werden.

Messfunktion wählen

Anschluss

nur über 2-Pol-Adapter!

Parameter einstellen

ROFFSET ON/OFF

– Berücksichtigen von Messleitungen bis 10 Ω

Bei der Verwendung von Messleitungen oder Verlängerungsleitungen kann deren ohmscher Widerstand automatisch vom Messergebnis subtrahiert werden. Gehen Sie hierzu folgendermaßen vor:

- Stellen Sie ROFFSET von OFF auf ON. Roffset = 0.00 W wird in der Fußzeile eingeblendet.
- ➡ Wählen Sie eine Polung oder die automatische Umpolung aus.
- Schließen Sie das Ende der verlängerten Pr
 üfleitung mit der zweiten Pr
 üfspitze des Pr
 üfger
 äts kurz.
- Lösen Sie die Messung des Offsetwiderstands mit I_{AN} aus.

Zunächst ertönt ein Intervall-Warnton und ein blinkender Hinweis wird eingeblendet, um zu verhindern, dass ein bereits gespeicherter Offsetwert aus Versehen gelöscht wird.

Starten Sie durch nochmaliges Drücken der Auslösetaste die Offsetmessung oder brechen Sie diese durch Drücken der Taste **0N/START ▼** (hier = **ESC**) ab.

Hinweis

Wird die Offsetmessung durch ein Fehler-Popup **Roffset > 10 W bzw. Differenz zwischen RLO+ und RLO- größer als 10% Gestoppt, dann bleibt der zuletzt gemessene Offsetwert erhalten. Ein versehentliches Löschen des einmal ermittelten Offsetwertes wird dadurch Nahezu ausgeschlossen! Im anderen Fall wird der Jeweils kleinere Wert als Offsetwert abgespeichert. Der maximale Offset beträgt 10,0 \Omega. Durch den Offset können Negative Widerstandswerte resultieren.**

In der Fußzeile des Displays erscheint nun die Meldung **Roffset x.xx W**, wobei x.xx einen Wert zwischen 0,00 und 10,0 Ω annehmen kann. Dieser Wert wird nun bei allen nachfolgenden R_{LO}^- Messungen vom eigentlichen Messergebnis subtrahiert, sofern Sie die Softkey-Taste **Roffset ON/OFF** auf **ON** geschaltet haben.

ROFFSET muss in folgenden Fällen erneut ermittelt werden:

bei Wechsel zwischen den Polungsarten

• nach Umschalten von **ON** nach **OFF** und zurück.

Sie können den Offsetwert bewusst löschen, indem Sie $\ensuremath{\text{RofFSET}}$ von $\ensuremath{\text{OFF}}$ nach $\ensuremath{\text{ON}}$ schalten.

🐼 Hinweis

Verwenden Sie diese Funktion ausschließlich, wenn Sie mit Verlängerungsleitungen arbeiten. Bei Einsatz unterschiedlicher Verlängerungsleitungen, muss der zuvor beschriebene Vorgang grundsätzlich wiederholt werden.

Typ / Polung

Hier kann die Stromflussrichtung eingestellt werden.

□ Limits – Einstellen des Grenzwertes

Sie können den Grenzwert des Widerstandes einstellen. Treten Messwerte oberhalb dieses Grenzwertes auf, so leuchtet die rote LED **UL/RL**. Grenzwerte können zwischen 0,10 Ω und 10,0 Ω gewählt werden (editierbar). Der Grenzwert wird oberhalb des Messwertes eingeblendet.

17.1 Messung mit konstantem Prüfstrom

Messung starten

gedrückt halten

\bigcirc	e S	ВАТ () МЕМ ()		
R LO		-1,00Ω 0,97 Ω	± -	, PI
			LIMJ	ITS
			R OFF	SET
			ON	0FF
R OFFSET		0,05Ω	lu	

Â

Achtung!

Sie sollten immer zuerst die Prüfspitzen auf das Messobjekt aufsetzen bevor Sie die Taste Start ▼ drücken. Steht das Objekt unter Spannung, dann wird die Messung gesperrt, wenn Sie zuerst die Prüfspitzen aufsetzen. Wenn Sie zuerst die Taste Start ▼ drücken und anschließend die Prüfspitzen aufsetzen, löst die Sicherung aus. Welche der beiden Sicherungen ausgelöst hat, wird im Pop-Up-Fenster der Fehlermeldung durch Pfeil signalisiert.

Bei einpoliger Messung wird der jeweilige Wert als R_{LO} in die Datenbank übernommen.

Auswahl der Polung	Anzeige	Bedingung
+ Pol gegen PE	RLO+	keine
– Pol gegen PE	RLO-	keine
	RLO	falls Δ RLO \leq 10 %
± Pol gegen PE	RLO+ RLO-	falls Δ RL0 > 10 %

Automatische Umpolung

Nach dem Start des Messablaufes misst das Gerät bei automatischer Umpolung zuerst in der einen, dann in der anderen Stromrichtung. Bei Dauermessung (Taste **0N/START** ▼ gedrückt halten) erfolgt die Umpolung im Sekundentakt.

Ist bei der automatischen Umpolung die Differenz zwischen RLO+ und RLO- größer als 10%, so werden die Werte RLO+ und RLOstatt RLO eingeblendet. Der jeweils größere Wert von RLO+ und RLO- steht oben und wird als Wert RLO in die Datenbank übernommen.

Bewertung der Messergebnisse

Unterschiedliche Ergebnisse bei der Messung in beiden Stromrichtungen weisen auf Spannung am Messobjekt hin (z. B. Thermospannungen oder Elementspannungen).

Besonders in Anlagen, in denen die Schutzmaßnahme Überstrom-Schutzeinrichtung" (früher Nullung) ohne getrennten Schutzleiter angewendet wird, können die Messergebnisse durch parallel geschaltete Impedanzen von Betriebsstromkreisen und durch Ausgleichsströme verfälscht werden. Auch Widerstände die sich während der Messung ändern (z. B. Induktivitäten) oder auch ein schlechter Kontakt können die Ursache für eine fehlerhafte Messung sein (Doppelanzeige).

Damit Sie eindeutige Messergebnisse erreichen, ist es notwendig, dass die Fehlerursache erkannt und beseitigt wird.

Messen Sie, um die Ursache für den Messfehler zu finden, den Widerstand in beiden Stromrichtungen.

Bei der Widerstandsmessung werden die Akkus des Gerätes stark belastet. Drücken Sie bei der Messung mit Stromfluss in einer Richtung die Taste **ON/START** ▼nur so lange, wie für die Messung erforderlich.

🕼 Hinweis

Messen niederohmiger Widerstände Die Widerstände von Messleitung und Messadapter (2polig) werden durch die Messung in Vierleitertechnik automatisch kompensiert und gehen nicht in das Messergebnis ein. Verwenden Sie jedoch eine Verlängerungsleitung, so müssen Sie deren Widerstand messen und ihn vom Messergebnis abziehen.

Widerstände, die erst nach einem "Einschwingvorgang" einen stabilen Wert erreichen, sollten Sie nicht mit automatischer Umpolung messen, sondern nacheinander mit positiver und negativer Polarität.

Widerstände, deren Werte sich bei einer Messung verändern können, sind zum Beispiel:

- Widerstände von Glühlampen, deren Werte sich aufgrund der Erwärmung durch den Messstrom verändern
- Widerstände mit einem hohen induktiven Anteil
- Übergangswiderstände an Kontaktstellen

Beurteilung der Messwerte

Siehe Tabelle 4 auf Seite 96.

Ermitteln von Leitungslängen gängiger Kupferleitungen

Wird nach der Widerstandsmessung die Taste **HELP** gedrückt, so werden für gängige Querschnitte die entsprechenden Leitungslängen berechnet und angezeigt.

	R_LO:		0,08Ω	
	ø			
	[mm ²]	[m]	[mm²]	[m]
	0.14:	< 1	2.5:	< 12
	0.25:	< 1	4.0:	< 20
	0.50:	< 2	6.0:	< 30
	0.75:	< 4	10.0:	< 50
HELP	1.00:	< 5	16.0:	< 80
	1.50:	< 7	25.0:	< 124
				1/3

Bei unterschiedlichen Ergebnissen in beiden Stromrichtungen entfällt die Anzeige von Leitungslängen. In diesem Fall liegen offensichtlich kapazitive oder induktive Anteile vor, welche die Berechnung verfälschen.

Diese Tabelle gilt ausschließlich für Leitungen aus handelsüblichem Leitungskupfer und kann nicht für andere Materialien (z. B. Aluminium) verwendet werden!

17.2 Schutzleiterwiderstandsmessung mit Rampenverlauf (nur PROFITEST MF XTRA)

Anwendung

Bei bestimmten Typen von PRCDs wird der Schutzleiterstrom überwacht. Eine direkte Zu- bzw. Abschaltung des für Schutzleiterwiderstandsmessungen erforderlichen Prüfstromes von mindestens 200 mA führt zum Auslösen des PRCDs und folglich zur Trennung der Schutzleiterverbindung. Eine Schutzleitermessung ist in diesem Fall nicht mehr möglich.

Ein spezieller Rampenverlauf für die Prüfstromzu- bzw. -abschaltung in Verbindung mit dem Prüfadapter PROFITEST PRCD ermöglicht eine Schutzleiterwiderstandsmessung ohne Auslösen des PRCDs.

Zeitlicher Ablauf der Rampenfunktion

Bedingt durch die physikalischen Eigenschaften des PRCDs liegen die Messzeiten bei dieser Rampenfunktion im Bereich von mehreren Sekunden.

Bei einer Umpolung des Prüfstromes ist darüber hinaus eine zusätzliche Wartezeit während der Umpolung erforderlich. Diese ist in der Betriebsart "automatische Umpolung"

im Prüfablauf einprogrammiert. P0L →

Schalten Sie die Polrichtung manuell um, z. B. von "+Pol mit Rampe" + nach "–Pol mit Rampe" POL →

🧖, so erkennt das Prüf-P0L →

gerat die Anderung der Stromflussrichtung, blockiert die Messung für die erforderliche Wartezeit und zeigt gleichzeitig eine entsprechenden Hinweis an, siehe Bild rechts.

Auslösen eines PRCDs durch mangelhafte Kontaktierung

Während der Messung ist auf eine sichere Kontaktierung der Prüfspitzen des 2-Pol-Adapters mit dem Prüfobjekt bzw. den Buchsen am Prüfadapter PROFITEST PRCD zu achten. Unterbrechungen können zu starken Schwankungen des Prüfstromes führen, die im ungünstigen Fall den PRCD auslösen lassen.

In diesem Fall wird die Auslösung des PRCDs vom Prüfgerät ebenfalls automatisch erkannt und durch eine entsprechende Fehlermeldung

signalisiert, siehe Bild rechts. Auch in diesem Fall berücksichtigt das Prüfgerät automatisch eine anschließend erforderliche Wartezeit, bevor Sie den PRCD wieder aktivieren und die Messung erneut starten können.

Anschluss

Lesen Sie die Bedienungsanleitung zum Adapter PROFITEST \Box PRCD und hier speziell das Kap. 4.1. Dort finden Sie auch die Anschlusshinweise für die Offsetmessung sowie für die Schutzleiterwiderstandsmessung.

Polungsparameter wählen

Wählen Sie den gewünschten Polungspa- \Box rameter mit Rampe.

ROFFSET messen

Führen Sie die Offsetmessung wie auf Seite 73 beschrieben \Box durch, damit die Anschlusskontakte des Prüfadapters nicht mit in das Messergebnis eingehen.

🚱 Hinweis

Der Offset bleibt nur solange gespeichert, wie Sie den Polungsparameter nicht ändern. Führen Sie die Messung mit manueller Umpolung (+Pol oder -Pol) durch, müssen Sie die Offsetmessung vor jeder Messung in einer anderen Polarität wiederholen.

Schutzleiterwiderstand messen

- Ď Prüfen Sie, ob der PRCD aktiviert ist. Wenn nicht, aktivieren Sie diesen.
- Führen Sie die Schutzleitermessung wie im Kap. 17.1 zuvor \Box beschrieben durch. Starten Sie den Prüfablauf durch kurzes Drücken der Taste **ON/START** ▼. Durch Gedrückthalten der Taste **ON/START** ▼ können Sie die voreingestellte Dauer der Messphase verlängern.

Messung starten

Während der Magnetisierungsphase (Kurvenanstieg) und der anschließenden Messphase (konstanter Strom) wird das Symbol rechts eingeblendet. Sofern Sie die Messung bereits während der

Anstiegsphase abbrechen, kann kein Messergebnis ermittelt und angezeigt werden.

Nach der Messung wird die Entmagnetisierungsphase (Kurvenabfall) und eine anschließende Wartezeit durch das invertierte Symbol rechts signalisiert. Während dieser Zeit kann keine neue Messung gestartet werden.

Erst wenn das nebenstehende Symbol eingeblendet wird, kann das Messergebnis abgelesen und die Messung in derselben oder einer anderen Polarität gestartet werden.

18 Messungen mit Sensoren als Zubehör

18.1 Strommessung mithilfe eines Zangenstromsensors

Vor-, Ableit- und Ausgleichsströme bis 1 A sowie Arbeitsströme bis 1000 A können Sie mithilfe spezieller Zangenstromsensoren messen, die Sie hierzu über die Buchsen (15) und (16) anschließen.

∕!∖ Achtung!

Gefahr durch hohe Spannungen!

Verwenden Sie nur die als Zubehör angegebenen Zangenstromsensoren der Gossen Metrawatt GmbH. Andere Zangenstromsensoren sind auf der Sekundärseite möglicherweise nicht durch eine Bürde abgeschlossen. Gefährlich hohe Spannungen können in diesem Fall den Anwender und das Prüfgerät gefährden.

Achtung!

Maximale Eingangsspannung am Prüfgerät!

Messen Sie keine größeren Ströme, als für den Messbereich der jeweiligen Zange maximal angegeben ist. Die maximale Eingangsspannung an den Zangenanschlüssen (15) und (16) des Prüfgeräts darf 1 V nicht überschreiten!

Achtung!

Lesen und beachten Sie unbedingt die Bedienungsanleitungen der Zangenstromsensoren und die darin beschriebenen Sicherheitshinweise besonders in Bezug auf die zugelassene Messkategorie.

Messfunktion wählen

Messbereich am Zangenstromsensor wählen

Prüfgerät Zangen			Prüfgerät		
Parameter Wandler- übersetzung	Schalter Schalter Messbe- reich Messbe- reich Messbe- reich WZ12C Z3512A WZ12C Z3512A		Messbe- reich		
1:1 1 V / A	1 mV / mA	x 1000 [mV/A]	1 mA… 15 A	0 1 A	5 999 mA
1:10 100 mV / A	_	x 100 [mV/A]	_	0 10 A	0,05 10 A
1:100 10 mV / A	_	x 10 [mV/A]	_	0 100 A	0,5 100 A
1:1000 1 mV / A	1 mV / A	x 1 [mV/A]	1 A 150 A	0 1000 A	5 150 A/999 A

Prüfgerät	Zai	Prüfgerät	
Parameter Wandlerübersetzung	Schalter Messbereich METRAFLEX P300 METRAFLEX P300		Messbereich
1:1 1 V / A	3 A (1 V/A)	3 A	5 999 mA
1:10 100 mV / A	30 A (100 mV/A)	30 A	0,05 10 A
1:100 10 mV / A	300 A (10 mV/A)	300 A	0,5 100 A

Parameter einstellen

In Abhängigkeit von dem jeweils eingestellten Messbereich am Zangenströmsensor muss der Parameter Wandlerübersetzung entsprechend am Prüfgerät eingestellt werden.

Die Vorgabe von Grenzwerten führt zu einer automatischen Bewertung am Ende der Messung.

B

Messung starten

	\square	ON 🔽 START
<u> </u>	N	

Drücken Sie die Taste erneut, um d Messung zu stoppen.

	R	PE C N	BAT MEM		- X	
	I L/AMP		^{>0,10A} 9,	<10,0A	SETTING V/A	S
J					LIMITS	
	i	8	1000	mV/A		
lie						

Anschluss

19 Sonderfunktionen – Schalterstellung EXTRA

Schalterstellung EXTRA wählen

Übersicht der Sonderfunktionen

Softkey-Taste	Bedeutung / Sonder- funktion	PROFITEST MF TECH	PROFITEST MF XTRA	Kapitel/ Seite
tion ΔU	Spannungsfall- Messung	1	1	Kap. 19.1 Seite 78
z _{تا} رک	Standortisolations- impedanz	1	1	Kap. 19.2 Seite 79
kwn kWh	Prüfung des Zähleranlaufs Funktion kWh	1	1	Kap. 19.3 Seite 80
, O	Ableitstrommessung Funktion I_{L}	_	1	Kap. 19.4 Seite 81
™D IMD	lsolationswächter prüfen Funktion IMD	_	1	Kap. 19.5 Seite 82
⊆U RES	Restspannungs- prüfung Funktion Ures	_	1	Kap. 19.6 Seite 84
<mark>⊡</mark> ta+I∆	Intelligente Rampe Funktion ta + I Δ	_	1	Kap. 19.7 Seite 85
ecm ecm	RCM Residual Current Monitor Funktion RCM	_	1	Kap. 19.8 Seite 86
⊒ ,"	Überprüfung der Betriebszu- stände eines Elektro- fahrzeugs an E-Ladesäulen nach IEC 61851-1	1	1	Kap. 19.9 Seite 87
PRCD	Protokollierung von Fehlersimulationen an PRCDs mit dem Adapter PROFITEST PRCD	_	1	Kap. 19.10 Seite 88

Auswahl der Sonderfunktionen

Durch Drücken der obersten Softkey-Taste gelangen Sie zur Liste der Sonderfunktionen. Wählen Sie die gewünschte Funktion über ihr Symbol aus.

19.1 Spannungsfall-Messung (bei $Z_{LN})$ – Funktion ${\bigtriangleup} U$

Bedeutung und Anzeige von ${\bigtriangleup}U$ (nach DIN VDE 100-600)

Der Spannungsfall vom Schnittpunkt zwischen Verteilungsnetz und Verbraucheranlage bis zum Anschlusspunkt eines elektrischen Verbrauchsmittels (Steckdose oder Geräteanschlussklemme) soll nicht größer als 4% der Nennspannung des Netzes sein. Berechnung des Spannungsfalls (ohne Offset): $\Delta U = Z_{L-N} \times Nennstrom der Sicherung$

Berechnung des Spannungsfalls (mit Offset):

 $\Delta U = (Z_{L-N} - Z_{OFFSET}) \times Nennstrom \ der \ Sicherung$

 ΔU in % = 100 × ΔU / $U_{L\text{-}N}$

Zum Messverfahren und Anschluss siehe auch Kapitel 14.

Anschluss und Messaufbau

Parameter einstellen

🐼 Hinweis

Bei Änderung des Nennstroms I_{N} mit vorhandenem ΔU_{OFFSET} wird der Offsetwert automatisch angepasst.

Grenzwert nach NIV: $\Delta U < 5\%$

Messung ohne OFFSET

Gehen Sie hierzu folgendermaßen vor:

Stellen Sie OFFSET von ON auf OFF.

OFFSET (in %) ermitteln

Gehen Sie hierzu folgendermaßen vor:

- Stellen Sie OFFSET von OFF auf ON. ∆UOFFSET = 0.00 % wird eingeblendet.
- Schließen Sie die Pr
 üfsonde an den
 Übergabepunkt (Messeinrichtung/Z
 ähler) an.

Lösen Sie die Messung des Offsets mit IA_N aus.

Zunächst ertönt ein Intervall-Warnton und ein blinkender Hinweis wird eingeblendet, um zu verhindern, dass ein bereits gespeicherter Offsetwert aus Versehen gelöscht wird.

 Starten Sie durch nochmaliges Drücken der Auslösetaste die Offset-

messung oder brechen Sie diese durch Drücken der Taste ON/ START ▼

(hier = ESC) ab.

 $\Delta \text{UofFSET}$ x.xx % wird angezeigt, wobei x.xx einen Wert zwischen 0,00 und 99,9 % annehmen kann.

Eine Fehlermeldung erscheint durch Pop-Up-Fenster bei Z > 9,99 $\Omega.$

Messung mit OFFSET starten

NL

19.2 Messen der Impedanz isolierender Fußböden und Wände (Standortisolationsimpedanz) – Funktion Z_{ST}

Messung starten

Messverfahren

Das Gerät misst die Impedanz zwischen einer belasteten Metallplatte und der Erde. Als Wechselspannungsquelle wird die am Messort vorhandene Netzspannung verwendet. Die Ersatzschaltung von $Z_{\rm ST}$ wird als Parallelschaltung betrachtet.

Anschluss und Messaufbau

🚱 Hinweis

Verwenden Sie den Messaufbau wie unter Kap. 16.2 (Dreiecksonde) oder den nachfolgend beschriebenen.

- Bedecken Sie den Fußboden bzw. die Wand an ungünstigen Stellen, z. B. an Fugen oder Stoßstellen von Fußbodenbelägen, mit einem feuchten Tuch von ca. 270 mm × 270 mm.
- Bringen Sie auf das feuchte Tuch die Sonde 1081 und belasten diese bei Fußböden mit einem Gewicht von 750 N/75 kg (eine Person) oder bei Wänden mit 250 N/25 kg (z. B. mit der durch einen Handschuh isolierten Hand gegen die Wand drücken).
- Stellen Sie eine leitende Verbindung mit der Sonde 1081 her und verbinden Sie den Anschluss mit der Sondenanschlussbuchse des Gerätes.
- Schließen Sie das Gerät mit dem Prüfstecker an einer Netzdose an.

Achtung!

Berühren Sie die Metallplatte oder das feuchte Tuch nicht mit bloßen Händen.

An diesen Teilen kann maximal die halbe Netzspannung anliegen! Es kann ein Strom bis max. 3,5 mA fließen! Außerdem würde der Messwert verfälscht.

Messwert beurteilen

Nach Ablauf der Messung müssen Sie den Messwert bewerten:

Die Widerstandswerte sind an mehreren Stellen zu messen, damit eine ausreichende Beurteilung möglich ist. Der gemessene Widerstand darf an keiner Stelle den Wert von 50 k Ω unterschreiten. Ist der gemessene Widerstand größer als 30 M Ω , so wird im Anzeigefeld immer $Z_{ST} > 30.0$ M Ω angezeigt.

Bei Bewertung mit "NOT OK" erfolgt eine Fehlersignalisierung über die rot leuchtende LED **UL/RL**.

Zur Beurteilung der Messwerte siehe auch Tabelle 5 auf Seite 97.

Erst nach Ihrer Bewertung kann der Messwert gespeichert und damit ins Messprotokoll aufgenommen werden.

Messwert speichern

Prüfung des Zähleranlaufs mit Schutzkontaktstecker 19.3 - Funktion kWh

Der Anlauf von Energieverbrauchszählern kann hier getestet werden.

Messung starten

ON

Der Zähler wird mithilfe eines internen Lastwiderstands und einem Prüfstrom von ca. 250 mA geprüft. Nach Drücken der Taste Start wird die Prüfleistung angezeigt und Sie können innerhalb der nächsten 5 s prüfen, ob der Zähler ordnungsgemäß anläuft. Das Rädchen für die laufende Messung dreht sicht.

TN-Netze: Es müssen nacheinander alle 3 Phasen (Außenleiter) gegen N geprüft werden.

In anderen Netzen müssen alle Außenleiter (aktive Leiter) gegeneinander geprüft werden.

Hinweis

Wird eine Mindestleistung nicht erreicht, so wird die Prüfung nicht gestartet oder abgebrochen.

Messwert beurteilen

Nach Ablauf der Messung müssen Sie den Messwert bewerten:

Bei Bewertung mit "NOT OK" erfolgt eine Fehlersignalisierung über die rot leuchtende LED UL/RL.

Erst nach Ihrer Bewertung kann der Messwert gespeichert und damit ins Messprotokoll aufgenommen werden.

Messwert speichern

Sonderfall

Der Anlauf von Energieverbrauchszählern, die zwischen L-L oder L-N geschaltet sind, kann hier getestet werden.

Anschluss L – L

P Hinweis

Falls keine Schutzkontaktsteckdosen verfügbar sind, können Sie den 2-Pol-Adapter verwenden. Hierbei müssen Sie die Prüfspitze PE (L2) mit N kontaktieren und die Messung starten.

Falls Sie die Prüfspitze PE (L2) bei der Zähleranlaufmessung mit PE kontaktieren, fließen ca. 250 mA über den Schutzleiter und ein evtl. vorgelagerter RCD schaltet ab.

19.4 Ableitstrommessung mit Ableitstrommessadapter PRO-AB als Zubehör – Funktion I, (nur PROFITEST MF XTRA)

Anwendung

Die Messung der Berührspannung nach DIN VDE 0107-10 und die Messung von dauernd fließenden Ableit- und Patientenhilfsströmen gemäß IEC 62353 (VDE 0750-1) / IEC 601-1 /

EN 60601-1 ist mit dem Zubehör Ableitstrommessadapter PRO-AB als Vorschaltgerät für das Prüfgerät möglich.

Gemäß o.g. Vorschriften sind mit diesem Messadapter Ströme bis zu 10 mA zu messen. Um diesen Strommessbereich vollständig mit dem am Prüfgerät vorhandenen Messeingang (2-poliger Zangenmesseingang) abdecken zu können, verfügt das Messgerät über eine Bereichsumschaltung mit den Übertragungsverhältnissen 10:1 und 1:1. Im Bereich 10:1 erfolgt eine Spannungsteilung in demselben Verhältnis.

Anschluss und Messaufbau

Zur Ableitstrommessung muss der Adapter mit seinen Messausgängen in die linksseitig am Prüfgerät liegenden Messeingänge (2-poliger Zangeneingang und Sondeneingang), eingesteckt werden.

Ein beliebiger Eingang des Ableitstrommessadapters wird mit einer Messleitung mit der Bezugserde (z. B. sicherer Erder/Potenzialausgleich) verbunden. Der andere Eingang wird mittels einer weiteren Messleitung mit dem metallischen Gehäuse (berührbares Teil) des Messobjektes kontaktiert (Prüfspitze/Krokodilklemme).

Test des Adapters PRO-AB

Vor Einsatz des Adapters und in regelmäßigen Abständen sollten Sie diesen testen, siehe Bedienungsanleitung zum Adapter.

Messablauf

Für die Durchführung der Messung siehe auch die Bedienungsanleitung zum Ableitstrommessadapter PRO-AB.

Achtung!

Während der Ableitstrommessung sollte sich der Prüfstecker im Aufnahmeschacht befinden. Dieser darf keinesfalls mit Anlagenteilen (auch nicht PE/Erdpotenzial) verbunden werden (Messwerte können sonst verfälscht werden.

Mit der Taste **ON/START** ▼ wird die Messung gestartet bzw. wieder gestoppt. Die Ableitstrommessung ist eine Dauermessung, d. h. diese läuft solange, bis sie vom Anwender wieder beendet wird. Während der Messung wird permanent der aktuelle Messwert angezeigt.

Hinweis

Zur Durchführung der Messung muss der Selbsttest im Menü (Funktionstaste TEST 0N/0FF) deaktiviert (0FF) sein.

Beginnen Sie immer mit dem großen Messbereich (10:1) außer bei sicher zu erwartenden kleinen Messwerten mit dem kleinen Messbereich (1:1). Der Messbereich muss sowohl am Messadapter als auch im Menü mit der entsprechenden Funktionstaste (RANGE) eingestellt werden. Es ist sicherzustellen, dass die Bereichseinstellungen am Adapter und Prüfgerät immer identisch sind, um das Messergebnis nicht zu verfälschen.

Je nach Größe der Messwerte kann bzw. muss (bei Bereichsüberlauf) die Bereichseinstellung am Messadapter und am Prüfgerät manuell korrigiert werden.

Über die Funktionstaste Limits lassen sich individuelle Grenzwerte einstellen. Eine Überschreitung wird durch die rote Grenzwert-LED am Prüfgerät signalisiert.

19.5 Prüfen von Isolationsüberwachungsgeräten – Funktion IMD (nur PROFITEST MF XTRA)

Anwendung

Isolationsüberwachungsgeräte IMDs (Insulation Monitoring Device) oder Erdschlussanzeigeeinrichtungen (Earthfault Detection System) werden in IT-Netzen eingesetzt, um die Einhaltung eines minimalen Isolationswiderstandes zu überwachen, wie in DIN VDE 0100-410 gefordert.

Sie werden in Stromversorgungen eingesetzt, bei denen ein einpoliger Erdschluss nicht zum Ausfall der Stromversorgung führen darf z. B. bei Operationssälen oder Fotovoltaikanlagen.

Die Isolationswächter können mithilfe dieser Sonderfunktion überprüft werden. Hierzu wird ein einstellbarer Isolationswiderstand nach Drücken der Taste **ON/START** ▼ zwischen eine der zwei Phasen des zu überwachenden IT-Netzes und Erde geschaltet. Der Widerstand kann während der Prüfung in der Betriebsart manueller Ablauf **MAN±** über die Softkey-Tasten + oder – verändert oder in der Betriebsart **AUT0** automatisch von R_{max} bis R_{min} variiert werden. Die Prüfung wird durch abermaliges Drücken der Taste **ON/START** ▼ beendet.

Die Zeit, innerhalb welcher der aktuelle Widerstandswert seit der Wertänderung am Netz war, wird angezeigt. Das Anzeige- und Ansprechverhalten des IMD kann abschließend über die Softkey-Tasten **0K** oder **NOT 0K** bewertet und protokolliert werden.

Berücksichtigen Sie bei der Einstellung des Prüfwiderstands, dass ein zu hoher Prüfstrom empfindliche Anlagenteile beschädigen kann.

Parameter einstellen

Messablauf (1)

Es gibt zwei Möglichkeiten, die Prüfung durchzuführen:

- MAN: Der Widerstand wird manuell durch Drücken von Softkeytasten geändert
- AUT0: Die Widerstandsänderung erfolgt automatisch nach 2 s, beginnend bei RSTART

Widerstand RSTART (3)

Zur Einstellung des Widerstands **Rstart**, mit dem die Messung beginnt, stehen zahlreiche Parameter zur Verfügung.

eiterbezug/ Widerstandsbereich (2)

- Leiterbezug: Zur Protokollierung des Messpunkts ist der entsprechende Leiterbezug wählbar.
- Widerstandsbereich: F
 ür die
 Überpr
 üfung der Widerstandsanzeige des IMDs ist ein Wertebereich einstellbar.

Die Parametrierung erfolgt prozentual in Bezug auf den aktuell durch das Prüfgerät eingebrachten Widerstand.

Unterer und oberer Grenzwert werden in der Messansicht angezeigt.

Messablauf:

- Stellen Sie die Parameter ein.
- Start: Drücken Sie die Taste ON/START ▼.
- Ein Widerstand wird zwischen Außen- und Schutzleiter eingebracht und die Zeitmessung wird gestartet
- Manuelle Prüfung MAN + -: Drücken Sie die Softkeytasten
 und zur Erhöhung bzw. Erniedrigung des Prüfwiderstands RL-PE
- Automatische Pr
 üfung AUT0: Der Widerstandswert wird automatisch ge
 ändert.
- Bei jeder Widerstandsänderung wird die Auslösezeit ta neu gestartet.
- ⇒ Zum Leiterbezugswechsel: Dr
 ücken Sie I∆_N.
- ♀ Ende der Messung: Drücken Sie ON/START ▼, sobald der IMD eine Unterschreitung des Isolationswiderstands signalisiert.
- ♀ Anzeige der Messwerte
- Beurteilungsabfrage: Messung ok?
- Seurteilung NOT OK: LED UL/ RL leuchtet rot.
- Speichern: Durch Drücken der Softkey-Taste.

Die Messung kann durch Drücken von **ON/START** \checkmark oder **ESC** abgebrochen werden.

Folgende Messwerte werden angezeigt:

- RL-PE: Aktiver Prüfwiderstand mit oberem und unterem Grenzwert
- t_a: Ansprechzeit (= Zeit, in welcher der aktuelle Widerstand bis zum Anhalten der Messung zugeschaltet ist)
- R_{min} R_{max}: Statusanzeige des aktuellen Widerstands bezogen auf die Anzahl der möglichen Widerstände
- U_{L1PE}: Aktuelle Spannung an den Messspitzen zwischen Außenleiter L1 und Schutzleiter PE
- U_{L2PE}: Aktuelle Spannung an den Messspitzen zwischen Außenleiter L2 und Schutzleiter PE
- U_{L1L2}: Aktuelle Spannung an den Messspitzen zwischen den Außenleitern L1 und L2
- ILPE: Prüfstrom, der durch den aktiven Widerstand fließt
- f: Frequenz der anliegenden Spannung

Beurteilung

Damit die Messung beurteilt werden kann, muss diese gestoppt werden. Dies gilt für die manuelle wie für die automatische Messung. Hierzu drücken Sie die Taste **ON/START** ▼ oder **ESC**. Die Stoppuhr wird angehalten und der Beurteilungs-Bildschirm eingeblendet.

l	MD 7	PE ×		BAT 🛄 MEM 💭	\square	₽.	IMD
R L-PE		>4	45,0kΩ	<	55,0kΩ	MA	N. ±
				50,0	kΩ	AUT	10
ta						R	START
				3,00	S	50	,0kΩ
						1.1	I DE
R min		18/65			<u>R max</u>	± L.	10 0%
J L1PE		4,7V	I LPE		A	_	10,00
J L2PE		225V				Ē	
J L1L2		228V			J, 1Hz		

Aufruf gespeicherter Messwerte

Erst nach Ihrer Bewertung kann der Messwert gespeichert und damit ins Messprotokoll aufgenommen werden, siehe auch Kapitel 9.4.

Über die nebenstehende Taste (MW: Messwert/PA: Parameter) können Sie sich die Einstellparameter zu dieser Messung anzeigen lassen.

MW PA

19.6 Restspannungsprüfung – Funktion U_{res} (nur PROFITEST MF XTRA)

Anwendung

Die Vorschrift EN 60204 fordert, dass an jedem berührbaren aktiven Teil einer Maschine, an welchem während des Betriebs eine Spannung von mehr als 60 V anliegt, nach dem Abschalten der Versorgungsspannung die Restspannung innerhalb von 5 s auf einen Wert von 60 V oder weniger abgesunken sein muss.

Mit dem Prüfgerät erfolgt die Prüfung auf Spannungsfreiheit durch eine Spannungsmessung, bei der die Entladezeit tu gemessen wird wie folgt:

Bei Spannungseinbrüchen von mehr als 5% (innerhalb von 0,7 s) der aktuellen Netzspannung wird die Stoppuhr gestartet und nach 5 s die aktuelle Unterspannung durch U_{res} angezeigt und durch die rote Diode UL/RL signalisiert.

Nach 30 s wird die Funktion beendet und mittels der Taste ESC können die Daten von Ures und tu gelöscht und die Funktion hierdurch erneut gestartet werden.

Anschluss

Limits

Grenzwerte einstellen

Messablauf - Dauermessung

Die Prüfung ist als Dauermessung eingestellt, da die Restspannungsprüfung automatisch getriggert wird und die Spannungsmes sung aus Sicherheitsgründen immer aktiv bleibt.

S	\bigcirc		BAT 🛄		U I	RES
in-	U		227	۷		
rü-	U res		0,3	<60V	LIMITS	
nd es-	tU		0,2	<1s S		
ner		f	5(Ð,0Hz	e -	

Hinweis

Werden z. B. beim Abschalten einer Maschine – z. B. durch das Trennen von Steckverbindungen – Leiter freigelegt, die nicht gegen direktes Berühren geschützt sind, so beträgt die maximal zulässige Entladezeit 1 s!

19.7 Intelligente Rampe – Funktion ta+I∆ (nur PROFITEST MF XTRA)

Messung der Berührspannung starten

Anwendung

Der Vorteil dieser Messfunktion gegenüber den Einzelmessungen von I_{\Delta N} und t_A ist die gleichzeitige Messung von Abschaltzeit und Abschaltstrom durch stufenförmig ansteigenden Prüfstrom, wobei der RCD nur ein einziges mal ausgelöst werden muss.

Die intelligente Rampe wird zwischen Stromanfangswert ($35\% I_{\Delta N}$) und Stromendwert ($130\% I_{\Delta N}$) in zeitliche Abschnitte zu je 300 ms unterteilt. Hieraus ergibt sich eine Stufung, wobei jede Stufe einem

konstanten Prüfstrom entspricht, der maximal 300 ms lang fließt, sofern keine Auslösung stattfindet.

Als Ergebnis wird der Auslösestrom als auch die Auslösezeit gemessen und angezeigt. Die Messgrößen werden mit reduzierter Genauigkeit erfasst.

Anschluss

Parameter einstellen

Auslöseprüfung starten

	\bigcirc		BAT	💼 ta+I∆
	υ ΙΔΝ		0,1 V	30mA RCD A
	$^{\scriptscriptstyle \mathrm{t}}$ $^{\scriptscriptstyle \mathrm{t}}$	>0ms	<300ms	LIMITS
	IΔ	>15,0mA	<30,0mA	
START	RE		4 Ω	
	UN	230V f N	50,0Hz	

Ein vorzeitiger Abbruch des Messablaufs ist jederzeit durch Drücken der Taste **ON/START** \blacktriangledown möglich.

Messergebnis

\bigcirc		BAT MEM	⊡ ta+I∆
υ ίδν		<50V	30mA
		0,5 V	RCD A
ta	>0ms	<300ms	
\sim		95 ms	LIMITS
IΔ	>15,0mA	<30,0mA	
		19,5 mA	
RE		15 Ω	
UN	230V f N	50,0Hz	

Prüfen von Differenzstrom-Überwachungsgeräten 19.8 - Funktion RCM (nurPROFITEST MF XTRÅ)

Allgemeines

Differenzstrom-Überwachungsgeräte RCMs (Residual Current Monitor) überwachen den Differenzstrom in elektrischen Anlagen und zeigen diesen kontinuierlich an. Wie bei Fehlerstromschutzeinrichtungen können externe Schalteinrichtungen angesteuert werden, um die Spannungsversorgung bei Überschreiten eines bestimmten Differenzstroms abzuschalten.

Der Vorteil eines RCMs liegt jedoch darin, dass der Anwender rechtzeitig über Fehlerströme in der Anlage informiert wird, bevor es zur Abschaltung kommt.

Gegenüber den Ein-

zelmessungen von $I_{\Delta N}$ und t_A muss hier das Messergebnis manuell beurteilt werden.

Wird ein RCM in Verbindung mit einer externen Schalteinrichtung betrieben, so ist diese Kombination wie ein RCD zu prüfen.

Anschluss

Berührungsspannung messen

	RCM	PE N	BAT 🔲 MEM 💭		RCM
	υ ΙΔΝ		0,2	<50V V	30mA ► 1/2 I∆N
	$\overset{ ext{ta}}{\sim}$			- S	LIMITS
	IΔ			mA	
ON V START	R E U N	230V f	N	<3 Ω 50,0Hz	

Nichtauslöseprüfung mit $\frac{1}{2} \times I_{AN}$ und 10 s

RCM		BAT ETT	
υ ΙΔΝ		0,2 \	30mA Ν 1/2 ΙΔΝ
$\overset{ ext{ta}}{\sim}$		2,0 s	LIMITS
 ΙΔ		15,0m/	<u>ــــــــــــــــــــــــــــــــــــ</u>
R E U N	230V f N	<3 50,01	

Nach Ablauf von 10 s darf kein Fehlerstrom signalisiert werden. Anschließend muss die Messung bewertet werden. Bei Bewertung mit NOT OK (falls Fehlalarm) erfolgt eine Fehlersignalisierung über die rot leuchtende LED UL/RL.

Erst nach Ihrer Bewertung kann der Messwert gespeichert und damit ins Messprotokoll aufgenommen werden.

Auslöseprüfung mit 1 × $I_{\Delta N}$

- Messung von Signal-Ansprechzeit (Stoppuhrfunktion) mit dem vom Prüfgerät erzeugten Fehlerstrom

Die Messung muss unmittelbar nach der Signalisierung des Fehlerstroms manuell über die Taste **ON/START** ▼ oder I_{AN} gestoppt werden, um die Auslösezeit zu dokumentieren.

Bei Bewertung mit NOT OK erfolgt eine Fehlersignalisierung über die rot leuchtende LED UL/RL.

Erst nach Ihrer Bewertung kann der Messwert gespeichert und damit ins Messprotokoll aufgenommen werden.

Parameter einstellen für I_F⊿

19.9 Überprüfung der Betriebszustände eines Elektrofahrzeugs an E-Ladesäulen nach IEC 61851-1PROFITEST MF XTRA)

Eine Ladestation ist ein zum Laden von Elektrofahrzeugen vorgesehenes Betriebsmittel gemäß IEC 61851-1, das als wesentliche Elemente die Steckvorrichtung, einen Leitungsschutz, eine Fehlerstrom-Schutzeinrichtung (RCD), einen Leistungsschalter sowie eine Sicherheits-Kommunikationseinrichtung (PWM) enthält. Abhängig vom Einsatzort können ggf. noch weitere Funktionseinheiten wie Netzanschluss und Zählung hinzukommen.

Auswahl des Adapters (Prüfbox)

Simulation der Betriebszustände nach IEC 61851-1 mit der Prüfbox von MENNEKES

(Status A - E)

Die MENNEKES Prüfbox dient ausschließlich zur Simulation der unterschiedlichen Betriebszustände eines fiktiv angeschlossenen Elektrofahrzeuges an einer Ladeeinrichtung. Die Einstellungen zu den simulierten Betriebszuständen sind der Bedienungsanleitung der Prüfbox zu entnehmen.

Am Prüfgerät können die simulierten Betriebszustände als Sichtprüfung gespeichert und in der IZYTRONIQ dokumentiert werden. Den jeweils zu prüfenden Betriebszustand (Status) wählen Sie über die Taste **SECLECT STATUS** am Prüfgerät.

Status A – Ladeleitung nur mit Ladepunkt verbunden

- CP-Signal wird eingeschaltet,
- Spannung zwischen PE und CP beträgt 12 V.

Status B – Ladeleitung mit Ladepunkt und Fahrzeug verbunden

- Ladeleitung wird am Ladepunkt und im Fahrzeug verriegelt,
- Noch keine Ladebereitschaft am Fahrzeug,
- Spannung zwischen PE und CP +9 V / -12 V.

Status C – Nicht gasendes Fahrzeug erkannt

- Ladebereitschaft vom Fahrzeug / Leistung wird zugeschaltet,
- Spannung zwischen PE und CP +6 V / -12 V.

Status D – Gasendes Fahrzeug erkannt

- Ladebereitschaft vom Fahrzeug / Leistung wird zugeschaltet,
- Spannung zwischen PE und CP +3 V / -12 V.

Status E – Leitung wird beschädigt

- Kurzschluss zwischen PE und CP,
- Ladeleitung wird am Ladepunkt entriegelt,
- Spannung zwischen PE und CP +0 V.

Halbautomatischer Wechsel der Betriebszustände (Status)

Alternativ zum manuellen Statuswechsel über das Parametermenü der Softkey-Taste **SECLECT STATUS** am Prüfgerät ist eine schnelle und komfortable Umschaltung zwischen den Status möglich.

				-	
ູ"		BAT 🛄 MEM 💭	\square		Ĵ
Â	[₿] ^{A/₿} ^E	OL1 OL2 OL3		0k?	\times
i	STATUS A			01/05 AUT	0

Hierzu müssen Sie den Statusparameter **AUT0** auswählen. Nach jedem Beantworten und Speichern einer Sichtprüfung wird automatisch zum nächsten Status umgeschaltet, wobei die Tasteneinblendung **01/05** A/E entspricht (**01** = A, **02** = B, **03** = C, **04** = D, **05** = E).

Ein Überspringen von Statusvarianten ist durch Drücken der Taste $I_{\Delta N}$ am Prüfgerät oder am Prüfstecker möglich.

19.10 Prüfabläufe zur Protokollierung von Fehlersimulationen an PRCDs mit dem Adapter PROFITEST PRCD (nur PROFITEST MF XTRA)

Der Prüfadapter PROFITEST PRCD kann in Kombination mit dem Prüfgerät genutzt werden.

/! Achtung!

Lesen Sie vor Verwendung des PROFITEST PRCD dessen Bedienungsanleitung.

Messungen mit Anschluss des PROFITEST PRCD an das Prüfgerät:

- Messen des Isolationswiderstands des PRCDs durch die Funktion R_{ISO} am Prüfgerät, siehe Kapitel 16.
- Messen des Schutzleiterwiderstands des PRCDs durch die Funktion R_{LO} am Pr
 üfger
 ät. Beachten Sie, dass es sich bei der Schutzleitermessung um eine modifizierte RLO-Messung mit Rampenverlauf f
 ür PRCDs handelt, siehe Kapitel 17.
- Auslöseprüfung mit Nennfehlerstrom durch die Funktion I_F am Prüfgerät, siehe Kapitel 12.3.
- Messung der Auslösezeit durch die Funktion I_{ΔN} am Pr
 üfger
 ät, siehe Kapitel 12.3.
- Varistorprüfung beim PRCD-K: Messung über ISO-Rampe, siehe Kapitel 16.

Die Prüfung durch Simulation von Fehlerfällen wird ohne Anschluss an das Prüfgerät durchgeführt, aber durch das Prüfgerät begleitet und dokumentiert. Sie rufen dabei den Prüfablauf im Prüfgerät auf und führen die angegebenen Schritte am PROFI-TEST PRCD aus. Anschließend erfolgt am Prüfgerät die Bewertung und Beurteilung eines jeden Prüfschritts (OK/nicht OK) für eine spätere Protokollierung.

Drei Prüfabläufe sind voreingestellt:

- PRCD-S (1-phasig/3-polig): 11 Prüfschritte
- PRCD-K (1-phasig/3-polig): 4 Prüfschritte
- PRCD-S (3-phasig/5-polig): 18 Prüfschritte

19.10.1 Fehlersimulation

Das Vorgehen am PROFITEST PRCD inkl. dem Vorgehen mit dem Prüfling wird in der Bedienungsanleitung des PROFITEST PRCD beschrieben. In diesem Kapitel wird die Vorgehensweise am Prüfgerät beschrieben.

Ablauf

- ➡ Bereiten Sie die Fehlersimulation am PROFITEST PRCD vor. Siehe Bedienungsanleitung PROFITEST PRCD.
- Sie den Prüfablauf am Prüfgerät aus.
- Führen Sie die Schritte des Pr
 üfablaufs am PROFITEST PRCD durch und dokumentieren Sie dabei am Pr
 üfger
 ät die Bewertung und Beurteilung

Auswahl des zu prüfenden PRCDs

Zusammenspiel PROFITEST PRCD und Prüfgerät

Schalter-	Darstellung im		Bedeutung
stellung	Prüfgerät		
am	Prüf-	Symbol	
PROFI-	schritt		
TEST			
PRCD			
	ON	1~0N	1-phasigen PRCD aktivieren
ON	ON	3~0N	3-phasigen PRCD ist aktivieren
۰⊪۰	BREAK Lx	ı-{}}-	Leitertrennung
à	Lx <-> PE	$\boldsymbol{\alpha}$	Leitertausch zwischen Außen-
$\mathbf{\mathcal{V}}$	Lx <-> N	\sim	leiter und PE oder Neutralleiter
PE-U _{ext}	Uext -> PE	PE-U EXT	PE an Phase
ON	PROBE		Taste 0N am PRCD mit Sonde kontaktieren
ON 🗧	PRCD-lp	on X	Schutzleiterstrommessung mit Zangenstromwandler
-	AUT0	AUT0	Halbautomatischer Wechsel der Fehlersimulationen

Im Prüfgerät werden die Prüfschritte dargestellt. Deren Bedeutung und zugehörige Schalterstellung am PROFITEST PRCD entnehmen Sie der obigen Tabelle.

Übersicht der Prüfabläufe und ihre Prüfschritte

PRCD-S 1-phasig: 11 Prüfschritte

PRCD-S 3-phasig: 18 Prüfschritte

Auswahlbeispiele Prüfablauf PRCD-S (1-phasig) – 11 Prüfschritte Simulation Unterbrechung (Schritte 1 bis 6)

Simulation Leitertausch (Schritt 7)

Simulation PE an Phase (Schritt 8)

Mit Sonde Taste ON am PRCD kontaktieren (Schritt 10)

Messung des Schutzleiterstroms mithilfe eines Zangenstromwandlers (Schritt 11)

PRCD-K 1-phasig: 5 Prüfschritte

Auswahlbeispiele Prüfablauf PRCD-S (3-phasig) – 18 Prüfschritte Simulation Unterbrechung (Schritte 1 bis 10)

Simulation Leitertausch (Schritte 11 bis 16)

Simulation PE an Phase (Schritt 17)

Messung des Schutzleiterstroms über Zangenstromwandler (Schritte 18)

Halbautomatischer Wechsel der Fehlersimulationen (Status)

Alternativ zum manuellen Wechsel zwischen den Fehlersimulationen über das Parametermenü der jeweiligen PRCD-Auswahl PRCD-S 1~, PRCD-K 1~ oder PRCD-S 3~ am Prüfgerät ist eine schnelle und

komfortable Umschaltung zwischen den Fehlersimulationen möglich. Hierzu müssen Sie den Statusparameter **AUT0** auswählen. Nach jedem Beantworten und Speichern einer Sichtprüfung wird automatisch zur nächsten Fehlersimulation umgeschaltet..

Überspringen vom Prüfschritten

Ein Überspringen von Prüfschritten während der Fehlersimulation ist durch Drücken der Taste ${\rm I}_{\Delta N}$ am Prüfgerät oder am Prüfstecker möglich

20 Prüfsequenzen (Automatische Prüfabläufe) – Funktion AUTO

Schalterstellung AUTO am Prüfgerät wählen

In der Drehschalterstellung AUTO werden alle im Gerät vorhanden Prüfsequenzen angezeigt, siehe .

Sind keine Prüfsequenzen im Gerät vorhanden, erscheint die Meldung NO DATA.

20.1 Allgemein (Aufbau von Prüfsequenzen)

Soll nacheinander immer wieder die gleiche Abfolge von Prüfungen mit anschließender Protokollierung durchgeführt werden, wie dies z. B. bei Normen vorgeschrieben ist, empfiehlt sich der Einsatz von Prüfsequenzen.

Mithilfe von Prüfsequenzen können aus den manuellen Einzelmessungen automatische Prüfabläufe zusammengestellt werden. Eine Prüfsequenz besteht aus bis zu 200 Einzelschritten, die nacheinander abgearbeitet werden.

Es wird grundsätzlich zwischen drei Arten von Einzelschritten unterschieden:

 Hinweis (Prüfschritt Sichtprüfung): der Prüfablauf wird durch Einblendung eines Hinweises als Pop-Up für den Prüfer unterbrochen. Erst nach Bestätigen des Hinweises wird der Prüfablauf fortgesetzt.

Beispiel Hinweis vor der Isolationswiderstandsmessung: "Trennen Sie das Gerät vom Netz!"

- Besichtigung, Erprobung und Protokollierung: der Pr
 üfablauf wird durch Einblendung einer Bestanden/Nicht-Bestanden-Bewertung unterbrochen, Kommentar und Ergebnis der Bewertung werden in der Datenbank abgespeichert
- Messung (Pr
 üfschritt "benutzerbewertete Messung"): Messung wie bei den Einzelmessungen der Pr
 üfger
 äte mit Speicherung und Parametrisierung

20.2 Erstellen von Prüfsequenzen mit IZYTRONIQ

Die Prüfsequenzen werden (ab Prüfgeräte-Firmware-Version 3.0.0) mithilfe des Programms IZYTRONIQ am PC erstellt und anschließend zum Prüfgerät übertragen. Es können beliebig viele Prüfsequenzen erstellt und auf dem PC in IZYTRONIQ gespeichert werden. An das Prüfgerät können maximal 10 ausgewählte Prüfsequenzen übertragen werden.

Eine Rückübertragung von Prüfsequenzen vom Prüfgerät zum PC ist nicht vorgesehen, da diese ausschließlich am PC erstellt, verwaltet und gespeichert werden.

Allgemeine Hinweise zur Erstellung von Prüfsequenzen finden Sie auch in der Online-Hilfe zur IZYTRONIQ.

Erstellen und übertragen von Prüfsequenzen mit IZYTRONIQ (Schritt für Schritt Anleitung)

- ▷ Wählen Sie ORTSFESTE OBJEKTE
- ▷ Wählen Sie hier das Menü SEQUENZEN
- Wählen Sie das Symbol HINZUFÜGEN An. Das Feld NEUE SE-QUENZ ERSTELLEN wird eingeblendet. Geben Sie die Parameter SEQUENZNAME, PRÜFUNGSART und NORM ein und wählen Sie FÜR GERÄT Ihr aktuell angeschlossenes Gerät an. Bestätigen Sie durch Anwahl von HINZUFÜGEN.
- Speichern Sie die Einstellungen mit 🗸 ab.
- Wählen Sie den neuen Eintrag aus und anschließend Sequenzeditor an. Das Editiermenü mit SCHRITTAUSWAHL und DESIGNFORTSCHRITT öffnet sich.
- Wählen Sie das in der SCHRITTAUSWAHL angezeigte Prüfgerät aus. Sichtprüfung und Benutzerbewertete Messung werden eingeblendet.
- Durch ziehen von Sichtprüfung in das Feld DESIGNFORTSCHRITT öffnet sich der PRÜFSCHRITT: SICHTPRÜFUNG im linken unteren Fenster. Hier müssen die Parameter bzw. Details zum jeweiligen Prüfschritt eingegeben werden.

- Speichern Sie die Einstellungen mit 🗸 ab.
- Durch ziehen von Benutzerbewertete Messung in das Feld DE-SIGNFORTSCHRITT öffnet sich der PRÜFSCHRITT: BENUTZERBE-WERTETE MESSUNG im linken unteren Fenster. Hier müssen die Parameter bzw. Details zum jeweiligen Prüfschritt eingegeben werden.
- Speichern Sie die Einstellungen ab.
- Wiederholen Sie die Pr
 üfschritte sooft, bis die Pr
 üfsequenz vollst
 ändig ist.
- Speichern Sie die Einstellungen mit 🗸 ab.
- ▷ Wählen Sie erneut ORTSFESTE OBJEKTE (an.
- ➡ Wählen Sie hier die Funktion EXPORTIEREN → an. Der Exportassistent öffnet sich.
- Wählen Sie das gewünschte Prüfgerät aus und setzen Sie einen Haken bei SEQUENZEN. Wählen Sie EXPORTIEREN aus. Das Menü SEQUENZEN EXPORTIEREN (MAX10) öffnet sich.
- ▷ Markieren Sie hier die zu exportierenden Sequenzen und wählen das Symbol ZUM PRÜFGERÄT EXPORTIEREN → an.

Achtung!

Die ins Prüfgerät geladenen Prüfsequenzen werden durch folgende Aktionen im Prüfgerät gelöscht:

- durch Empfang neuer Prüfsequenzen vom PC
- durch Wechsel der Anwendersprache
- durch Löschen der gesamtem Datenbank im Prüfgerät
- durch Rücksetzen auf Werkseinstellungen
- durch Firmware-Update

Während der Übertragung der Prüfsequenzen wird ein Fortschritts-Bargraph am PC eingeblendet und die nebenstehende Darstellung auf dem Display des Prüfgeräts.

Anschließend erscheint eine Information auf dem PC über den erfolgreichen Export durch IZYTRONIQ zum Prüfgerät.

Alle zuvor im Prüfgerät abgelegten Prüfsequenzen werden gelöscht. Es werden immer nur die Prüfsequenzen im Prüfgerät gespeichert, die zuletzt zusammenhängend aus IZYTRONIQ importiert wurden.

20.3 Prüfsequenzen verwenden

Prüfsequenzbefehle

Hinweis bestätigenEreignis verwerfenEreignis bestätigenzum vorherigen/
zum nächsten SchrittMessergebnis speichern

Die Parametrierung von Messungen erfolgt ebenfalls am PC. Die Parameter können aber noch während des Prüfablaufs vor Start der jeweiligen Messung im Prüfgerät verändert werden.

Nach einem wiederholten Start des Prüfschrittes werden wieder die in der IZYTRONIQ definierten Parametereinstellungen geladen.

🐼 Hinweis

Eine Plausibilitätsprüfung der Parameter wird im Programm IZYTRONIQ nicht durchgeführt. Testen Sie daher die neu erstellte Prüfsequenz zunächst am Prüfgerät, bevor Sie diese in Ihrer Datenbank dauerhaft ablegen.

Grenzwerte werden z. Zt. nicht in der IZYTRONIQ festgelegt, sondern müssen während des automatischen Prüfablaufs angepasst werden.

Prüfsequenz am Prüfgerät auswählen und starten

Mit der Taste **ON/START** \checkmark wird die ausgewählte Prüfsequenz (hier: **SEQU.1**) gestartet.

Bei Ausführung eines Prüfschrittes der Art Messung wird der von den Einzelmessungen bekannte Bildschirmaufbau angezeigt. Statt des Speicher- und Akkusymbols wird in der Kopfzeile die aktuelle Prüfschrittnummer dargestellt. Nach zweimaligem Drücken der Taste **Speichern** wird der nächste Prüfschritt eingeblendet.

Parameter und Grenzwerte einstellen

Parameter und Grenzwerte können auch während des Ablaufs einer Prüfsequenz bzw. vor Start der jeweiligen Messung geändert werden. Die jeweilige Änderung greift nur in den aktiven Prüfablauf ein und wird nicht gespeichert.

Überspringen von Prüfschritten

Zum Überspringen von Prüfschritten bzw. Einzelmessungen gibt es zwei Möglichkeiten:

- Anwahl der Pr
 üfsequenz, Wechsel mithilfe des Cursors in die rechte Spalte Pr
 üfschritte, Auswahl des x-ten Pr
 üfschritts und dr
 ücken der Taste ON/START ▼.
- Innerhalb einer Pr
 üfsequenz wird durch Dr
 ücken der Navigationstaste Cursor links-rechts das Navigationsmen
 ü aufgerufen.

Mit den jetzt getrennt eingeblendeten Cursortasten kann zum vorherigen oder nächsten Prüfschritt gesprungen werden. Mit **ESC** kann das Navigationsmenü wieder verlassen und der aktuelle Prüfschritt wieder aufgerufen werden.

Prüfsequenz abbrechen oder beenden

Eine aktive Sequenz wird durch **ESC** mit anschließender Bestätigung abgebrochen.

Nach Ablauf des letzten Prüfschritts wird **Sequenz beendet** eingeblendet. Durch Bestätigen dieser Meldung wird wieder das Ausgangsmenü **Liste der Prüfsequenzen** angezeigt.

21 Zurücksetzen (Werkseinstellungen)

Sie können das Gerät auf 2 Arten zurücksetzen. Das Prüfgerät wird dann in den Zustand nach Werksauslieferung zurückgesetzt.

Achtung!

```
Sämtliche Strukturen (Datenbank), Daten und Sequenzen wer-
den gelöscht!
```

Sichern Sie vor dem Zurücksetzen Ihre Strukturen, Messdaten und Sequenzen auf einen PC.

Über das Menü kann das Prüfgerät zurückgesetzt werden, wenn es sich in einem kontrollierten Zustand befindet. Zum Beispiel um es "neu aufzusetzen".

Reagiert das Gerät nicht mehr, müssen Sie den Reset-Knopf verwenden.

Menü

Wählen Sie die Schalterstellung SETUP am Prüfgerät. Wählen Sie im Menü SETTINGS die Taste FACTORY SETTINGS an.

Durch Betätigen dieser Taste wird das Prüfgerät in den Zustand nach Werksauslieferung zurückgesetzt.

Reset-Knopf

Das Prüfgerät verfügt über einen Reset-Knopf, der im Gehäuse versenkt ist, damit er nicht unabsichtlich betätigt wird.

Sie benötigen einen langen, dünnen Gegenstand wie bspw. eine Büroklammer.

Führen Sie den Gegenstand vorsichtig in das Loch des Reset-Knopfs ein, bis sie diesen erreichen und betätigen ihn vorsichtig. Das Prüfgerät wird in den Zustand nach Werksauslieferung zurückgesetzt.

22 Wartung

22.1 Prüfgeräte-Firmware/Software

Der Aufbau der Prüfgeräte ermöglicht das Anpassen der Gerätesoftware an die neuesten Normen und Vorschriften. Darüber hinaus führen Anregungen von Kunden zu einer ständigen Verbesserung der Prüfgerätesoftware und zu neuen Funktionalitäten.

Stand abfragen

- Drehschalterstellung **SETUP** wählen.
- Drücken Sie die Taste SW-Info CALIBRATION.

SW-INFO					
CALIBRATION					
	Syst	eminfo			LIZENZEN
	Тур	M534H	SW-Dist	tro 1.0).0
	S-Nr.	GJ7449140002	HW-Rev:	ision gmo	c-pt-next 1.0
	SW 1	04.00.00	HW 1	A01	
	SW 2	407a0432c	HW 2	143.10.0	
	SW 3	1ddb3bdce	HW 3	948.12.4	
	SW 4	4.12.2	HW 4	950.20.4	
	Kalib. AbglI	-Datum Datum		04.10.20 30.09.20)22)22

Durch Drücken einer beliebigen Taste gelangen Sie zurück zum Hauptmenü.

Update

Ein Update der internen Firmware/Software des Prüfgerätes kann mithilfe eines PCs und eines Schnittstellenkabels über die USB-Schnittstelle erfolgen.

Mit Hilfe des wird die Firmware/Software mit der gewünschten Version zum Prüfgerät übertragen. Die aktuelle Prüfgerät-Firmware/Software wird hierbei überschrieben.

können Sie kostenlos laden von www.gossenmetrawatt.com. Es ist eine Registrierung bei myGMC erforderlich. Sie finden dort auch eine Bedienungsanleitung zum Firmware Update Tool.

🐼 Hinweis

Voraussetzung für die Übertragung:

Der Funktionsdrehschalter befindet sich <u>nicht</u> in Drehschalterstellung ${\boldsymbol{\mathsf{U}}}.$

- Stellen Sie die USB-Verbindung zwischen PC und Pr
 üfger
 ät her.
- Schalten Sie beide Geräte ein.
- Folgen Sie den Anweisungen des und seiner Bedienungsanleitung.

22.1.1 Akkupflege

Überzeugen Sie sich in regelmäßigen kurzen Abständen oder nach längerer Lagerung Ihres Gerätes, dass die Akkus nicht ausgelaufen sind.

🐼 Hinweis

Entfernen Sie vor längeren Betriebspausen (z. B. Urlaub), die Akkus. Hierdurch verhindern Sie Tiefentladung oder Auslaufen, welches zur Beschädigung Ihres Prüfgerätes führen kann.

22.2 Sicherung auswechseln

Hat aufgrund einer Überlastung eine Sicherung ausgelöst, so erscheint eine entsprechende Fehlermeldung im Anzeigefeld. Die Spannungsmessbereiche des Gerätes sind aber weiterhin in Funktion.

- Trennen Sie das Gerät allpolig vom Messkreis!
- Lösen Sie die Schlitzschrauben der Sicherungsfachdeckel neben der Netzanschlussleitung mit einem Schraubendreher. Die Sicherungen sind jetzt zugänglich.

 Ersatzsicherungen finden Sie nach Öffnen des Akkufachdeckels.

Achtung!

 Falsche Sicherungen können das Messgerät schwer beschädigen.
 Es dürfen nur die Originalsicherungen von Gossen Metrawatt GmbH (Bestell-Nr. 3-578-285-01 / SIBA 7012540.3,15 SI-EINSATZ FF 3,15/500 6,3X32) verwendet werden.
 Nur Originalsicherungen gewährleisten den erforderlichen Schutz durch geeignete Auslösecharakteristika.
 Sicherungen zu überbrücken bzw. zu reparieren ist unzulässig und lebensgefährlich!
 Bei Verwendung von Sicherungen mit anderem Nennstrom, anderem Schaltvermögen oder anderer Auslösecharakteristik besteht die Gefahr der Beschädigung des Gerätes!

- Nehmen Sie die defekte Sicherung heraus und ersetzen Sie sie durch eine neue.
- Setzen Sie den Sicherungsfachdeckel mit der neuen Sicherung wieder ein und verriegeln Sie diesen durch Rechtsdrehung.

22.3 Gehäuse

Eine besondere Wartung des Gehäuses ist nicht nötig. Achten Sie auf eine saubere Oberfläche. Verwenden Sie zur Reinigung ein leicht feuchtes Tuch. Besonders für die Gummischutzflanken empfehlen wir ein feuchtes flusenfreies Mikrofasertuch. Vermeiden Sie den Einsatz von Putz-, Scheuer- und Lösungsmitteln.

22.4 Kalibrierung

Der Gebrauch Ihres Gerätes und die dabei auftretende Beanspruchung beeinflussen das Gerät und führen zu Abweichungen von der zugesicherten Genauigkeit.

Bei hohen Anforderungen an die Messgenauigkeit sowie starker Beanspruchung (z.B. stärkere klimatische oder mechanische Beanspruchungen) empfehlen wir ein relativ kurzes Kalibrierintervall von 1 Jahr. Ist dies nicht der Falls, reicht in der Regel ein Kalibrierintervall von 2–3 Jahren.

Für Kalibrierungen wenden Sie sich bitte an die GMC-I Service GmbH, siehe Kap. 23 "Kontakt, Support und Service" auf Seite 94.

Als Hilfe finden Sie auf dem Gerät einen Aufkleber mit einem gerätespezifischen Richtwert für das Kalibrierintervall und Informationen zum Dienstleister.

Hinweis

Datum auf Kalibierschein / Kalibrierungsintervall beginnt mit Erhalt

Ihr Gerät wird mit einem Kalibrierschein ausgeliefert, auf dem ein Datum vermerkt ist. Dieses Datum kann länger zurückliegen, falls Ihr Gerät vor dem Verkauf für eine gewisse Zeit gelagert wurde.

Die Geräte werden gemäß den vorgegebenen Bedingungen gelagert. Die Drift ist daher für den Zeitraum von 1 Jahr vernachlässigbar; längere Lagerungszeiten treten in der Regel nicht auf.

Die Eigenschaften des Gerätes liegen somit innerhalb der Spezifikationen und Sie können das erste Kalibrierintervall ab Erhalt festlegen.

23 Kontakt, Support und Service

Gossen Metrawatt GmbH erreichen Sie direkt und unkompliziert, wir haben eine Nummer für alles! Ob Support, Schulung oder individuelle Anfrage, hier beantworten wir jedes Anliegen:

+49 911 8602-0

Montag – Donnerstag:	08:00 Uhr – 16:00 Uhr
Freitag:	08:00 Uhr – 14:00 Uhr

auch per E-Mail erreichbar: info@gossenmetrawatt.com

Sie bevorzugen Support per E-Mail?

Mess- und Prüftechnik:

support@gossenmetrawatt.com

Industrielle Messtechnik:

support.industrie@gossenmetrawatt.com

Schulungen und Seminare können Sie ebenfalls per E-Mail und online anfragen:

training@gossenmetrawatt.com

https://www.gossenmetrawatt.com/training

Für Reparaturen, Ersatzteile und Kalibrierungen¹⁾ wenden Sie sich bitte an die GMC-I Service GmbH:

+49 911 817718-0

service@gossenmetrawatt.com

www.gmci-service.com

Beuthener Straße 41 90471 Nürnberg Deutschland

24 Wichtige Informationen zu Lizenzen

Dieses Prüfgerät unterliegt Lizenzbedingungen.

Neben der von Gossen Metrawatt GmbH entwickelten Software kommt in diesem Prüfgerät auch Software zum Einsatz, die unter verschiedene Open Source Lizenzen fällt. Für diese Software gelten zusätzlich und vorrangig die Nutzungsbedingungen der jeweiligen Open Source Lizenz.

Detaillierte Informationen zu beiden Themen entnehmen Sie dem im Lieferumfang enthaltenen Beiblatt "Wichtige Informationen zu Serie PROFITEST MF" (3-447-156-01) bzw. finden Sie im Internet unter <u>docs.gossenmetrawatt.com/profitest-mf-swl/</u>.

Open Source Software Lizenzen am Prüfgerät einsehen

- Drehschalterstellung SETUP wählen.
- Staste SW-Info CALIBRATION wählen.
- Staste LIZENZEN wählen.
- Service Servic

Mit den obersten und untersten Softkeys (rechte Seite) können Sie innerhalb des angezeigten Lizenzdokuments scrollen. Über die Taste **ESC** verlassen Sie den Lizenz Viewer.

Hinweis

Nach verlassen des Lizenz Viewers startet das Prüfgerät automatisch neu. Es erscheint wieder das **SETUP** Menü.

25 CE-Erklärung

Das Gerät erfüllt die Anforderungen der geltenden EU-Richtlinien und nationalen Vorschriften. Dies bestätigen wir durch die CE-Kennzeichnung. Sie erhalten die CE-Erklärung auf Anfrage. Ein Kalibrierschein liegt dem Gerät bei.

DAkkS-Kalibrierlabor nach DIN EN ISO/IEC 17025.
 Bei der Deutschen Akkreditierungsstelle GmbH unter der Nummer D-K-15080-01-01 akkreditiert.

26 Entsorgung und Umweltschutz

Mit der sachgemäßen Entsorgung leisten Sie einen wichtigen Beitrag zum Schutz unserer Umwelt und zum schonenden Umgang mit natürlichen Ressourcen.

Achtung! Umweltschäden

Bei nicht sachgerechter Entsorgung entstehen Umweltschäden.

Befolgen Sie die Informationen zu Rücknahme und Entsorgung in diesem Kapitel.

Die folgenden Ausführungen beziehen sich grundsätzlich auf die Rechtslage in der Bundesrepublik Deutschland. Besitzer oder Endnutzer, die abweichenden nationalen Vorgaben unterliegen, sind zur Einhaltung der jeweils anwendbaren nationalen Vorgaben und deren korrekte Umsetzung vor Ort verpflichtet. Informationen hierzu sind z.B. bei den zuständigen nationalen Behörden oder den nationalen Vertreibern erhältlich.

Elektro-Altgeräte, elektrisches oder elektronisches Zubehör, sowie Altbatterien (inkl. Akkus)

Elektrogeräte und Batterien (Batterien und Akkus) enthalten wertvolle Rohstoffe, die wiederverwendet werden können, mitunter aber auch gefährliche Stoffe, die der Gesundheit und der Umwelt schweren Schaden zufügen können, so dass diese korrekt zu verwerten und entsorgen sind.

Das nebenstehende Symbol der durchgestrichenen Abfalltonne auf Rädern verweist auf die gesetzliche Verpflichtung des Besitzers bzw. Endnutzers (Elektro- und Elektronikgerätegesetzes ElektroG und Batteriegesetz

Elektronikgerategesetzes ElektroG und Batteriegesetz BattG), Elektro-Altgeräte und Altbatterien nicht mit dem unsortierten Siedlungsabfall ("Hausmüll") zu entsorgen. Die Altbatterien sind dem Altgerät (wo möglich) zerstörungsfrei zu entnehmen und das Altgerät sowie die Altbatterien getrennt zur Entsorgung abzugeben. Der Typ und das chemische System der Batterie ergeben sich aus deren Kennzeichnung. Sind die chemischen Zeichen "Pb" für Blei, "Cd" für Cadmium oder "Hg" für Quecksilber genannt, so überschreitet die Batterie den Grenzwert für das jeweilige Metall.

Bitte beachten Sie die Eigenverantwortung des Besitzers bzw. Endnutzers im Hinblick auf das Löschen personenbezogener Daten und ggf. weiterer sensibler Daten auf den zu entsorgenden Altgeräten vor dessen Abgabe.

Sie können Ihr in Deutschland genutztes Altgerät, elektrisches oder elektronisches Zubehör sowie Altbatterien (inkl. Akkus) unter Einhaltung der geltenden Vorgaben, insbesondere des Verpackungs- und Gefahrgutrechts, unentgeltlich zur Entsorgung an Gossen Metrawatt GmbH bzw. den beauftragten Dienstleister zurückgeben. Nähere Informationen zur Rücknahme finden Sie auf unserer Website.

Umgang mit Verpackungsmaterial

Für den Fall, dass Sie einen Service bzw. Kalibrierdienst in Anspruch nehmen möchten, empfehlen wir die Verpackungen vorerst nicht zu entsorgen.

Achtung!

Erstickungsgefahr durch Folien und andere Verpackungsmaterialien

Kinder und andere gefährdete Personen können ersticken, wenn Sie sich in Verpackungsmaterialien bzw. deren Teile oder Folien einwickeln oder sich diese über den Kopf ziehen oder diese verschlucken. Halten Sie die Verpackungsmaterialien bzw. deren Teile und Folien fern von Babys, Kindern und anderen gefährdeten Personen.

Nach dem Verpackungsgesetz (VerpackG) sind Sie verpflichtet, Verpackungen und deren Teile vom unsortierten Siedlungsabfall ("Hausmüll") getrennt korrekt zu entsorgen.

Private Endverbraucher können Verpackungen unentgeltlich bei der zuständigen Sammelstelle abgeben. Die Rücknahme sog. nicht systembeteiligungspflichtiger Verpackungen erfolgt durch den beauftragten Dienstleister. Nähere Informationen zur Rücknahme finden Sie auf unserer Website.

27 Anhang

27.1 Tabellen zur Ermittlung der maximalen bzw. minimalen Anzeigewerte unter Berücksichtigung der maximalen Betriebsmessund Eigenunsicherheiten des Gerätes

Tabelle 3

Tabelle 1

Z _{L-PE.} (Vol	lwelle) / Z _{L-N} (Ω)	Z _{L-PE.} (+/	'- Halbwelle) (Ω)
Grenzwert	Max. Anzeigewert	Grenzwert	Max. Anzeigewert
0,10	0,07	0,10	0,05
0,15	0,11	0,15	0,10
0,20	0,16	0,20	0,14
0,25	0,20	0,25	0,18
0,30	0,25	0,30	0,22
0,35	0,30	0,35	0,27
0,40	0,34	0,40	0,31
0,45	0,39	0,45	0,35
0,50	0,43	0,50	0,39
0,60	0,51	0,60	0,48
0,70	0,60	0,70	0,56
0,80	0,70	0,80	0,65
0,90	0,79	0,90	0,73
1,00	0,88	1,00	0,82
1,50	1,40	1,50	1,33
2,00	1,87	2,00	1,79
2,50	2,35	2,50	2,24
3,00	2,82	3,00	2,70
3,50	3,30	3,50	3,15
4,00	3,78	4,00	3,60
4,50	4,25	4,50	4,06
5,00	4,73	5,00	4,51
6,00	5,68	6,00	5,42
7,00	6,63	7,00	6,33
8,00	7,59	8,00	7,24
9,00	8,54	9,00	8,15
9,99	9,48	9,99	9,05

\mathbf{R}_{ISO} M Ω Grenzwert Min. Grenzwert Min. Anzeigewert Anzeigewert 0,10 0,12 10,0 10,7 0,15 0,17 15,0 15,9 0,20 0,23 20,0 21,2 0,25 0,28 25,0 26,5 0,30 0,33 30,0 31,7 0,35 0,38 35,0 37,0 0,40 0,44 40,0 42,3 0,45 0,49 45,0 47,5 0,50 0,54 50,0 52,8 0,55 0,59 60,0 63,3 0,60 0,65 70,0 73,8 0,70 0,75 80,0 84,4 0,80 0,86 90,0 94,9 0,90 0,96 100 106 1,00 1,07 150 158 1,50 1,59 200 211 2,00 2,12 250 264 2,50 2,65 300 316 3,00 3,17 3,50 3,70 4,00 4,23 4,75 4,50 5,00 5,28 6,00 6,33 7,00 7,38 8,00 8,44 9,00 9,49

Tabelle 2

R _E / R _{ESchl.} (Ω)								
Grenzwert	Max.	Grenzwert	Max.	Grenz-	Max.			
	Anzeigewert		Anzeigewert	wert	Anzeigewert			
0,10	0,07	10,0	9,49	1,00 k	906			
0,15	0,11	15,0	13,6	1,50 k	1,36 k			
0,20	0,16	20,0	18,1	2,00 k	1,81 k			
0,25	0,20	25,0	22,7	2,50 k	2,27 k			
0,30	0,25	30,0	27,2	3,00 k	2,72 k			
0,35	0,30	35,0	31,7	3,50 k	3,17 k			
0,40	0,34	40,0	36,3	4,00 k	3,63 k			
0,45	0,39	45,0	40,8	4,50 k	4,08 k			
0,50	0,43	50,0	45,4	5,00 k	4,54 k			
0,60	0,51	60,0	54,5	6,00 k	5,45 k			
0,70	0,60	70,0	63,6	7,00 k	6,36 k			
0,80	0,70	80,0	72,7	8,00 k	7,27 k			
0,90	0,79	90,0	81,7	9,00 k	8,17 k			
1,00	0,88	100	90,8	9,99 k	9,08 k			
1,50	1,40	150	133					
2,00	1,87	200	179					
2,50	2,35	250	224					
3,00	2,82	300	270					
3,50	3,30	350	315					
4,00	3,78	400	360					
4,50	4,25	450	406					
5,00	4,73	500	451					
6,00	5,68	600	542					
7,00	6,63	700	633					
8,00	7,59	800	724					
9,00	8,54	900	815					

Tabelle 4

R _{L0} Ω								
Grenzwert	Max. Anzeigewert	Grenzwert	Max. Anzeigewert					
0,10	0,07	10,0	9,59					
0,15	0,12	15,0	14,4					
0,20	0,17	20,0	19,2					
0,25	0,22	25,0	24,0					
0,30	0,26	30,0	28,8					
0,35	0,31	35,0	33,6					
0,40	0,36	40,0	38,4					
0,45	0,41	45,0	43,2					
0,50	0,46	50,0	48,0					
0,60	0,55	60,0	57,6					
0,70	0,65	70,0	67,2					
0,80	0,75	80,0	76,9					
0,90	0,84	90,0	86,5					
1,00	0,94	99,9	96,0					
1,50	1,42							
2,00	1,90							
2,50	2,38							
3,00	2,86							
3,50	3,34							
4,00	3,82							
4,50	4,30							
5,00	4,78							
6,00	5,75							
7,00	6,71							
8,00	7,67							
9,00	8,63							

Tabelle 5

Z _{ST} kΩ					
Grenzwert	Min.				
	Anzeigewert				
10	14				
15	19				
20	25				
25	30				
30	36				
35	42				
40	47				
45	53				
50	58				
56	65				
60	69				
70	80				
80	92				
90	103				
100	114				
150	169				
200	253				
250	315				
300	378				
350	440				
400	503				
450	565				
500	628				
600	753				
700	878				
800	>999				

Tabelle 6

Kurzschlussstrom-Mindestanzeigewerte zur Ermittlung der Nennströme verschiedener Sicherungen und Schalter für Netze mit Nennspannung U_N=230 V

Nenn- strom I _N	Niederspannungssicherungen nach Normen der Reihe DIN VDE 0636			- Niederspannungssicherungen mit Leitungsschutzschalter und Leistungsschalter								
[A]	Charakteristik gL, gG, gM			·	Charakte (früh	eristik B/E ner L)	Charakt (frühe	eristik C er G, U)	Charakt	eristik D	Charakt	eristik K
	Abschalts	trom I _A 5 s	Abschaltst	rom I _A 0,4 s	Abschat 5 × I _N (< 0	tstrom I _A),2 s/0,4 s)	Abschal 10 × I _N (<	tstrom I _A 0,2 s/0,4 s)	Abschal 20 × I _N (<	tstrom I _A 0,2 s/0,4 s)	Abschal 14 × I _N (<	tstrom I _A 0,2 s/0,4 s)
	Grenzwert [A]	Min. Anzeige [A]	Grenzwert [A]	Min. Anzeige [A]	Grenzwert [A]	Min. Anzeige [A]	Grenzwert [A]	Min. Anzeige [A]	Grenzwert [A]	Min. Anzeige [A]	Grenzwert [A]	Min. Anzeige [A]
2	9,2	10	16	17	10	11	20	21	40	42	28	29
3	14,1	15	24	25	15	16	30	32	60	64	42	44
4	19	20	32	34	20	21	40	42	80	85	56	59
6	27	28	47	50	30	32	60	64	120	128	84	89
8	37	39	65	69	40	42	80	85	160	172	112	119
10	47	50	82	87	50	53	100	106	200	216	140	150
13	56	59	98	104	65	69	130	139	260	297	182	196
16	65	69	107	114	80	85	160	172	320	369	224	243
20	85	90	145	155	100	106	200	216	400	467	280	319
25	110	117	180	194	125	134	250	285	500	578	350	402
32	150	161	265	303	160	172	320	369	640	750	448	520
35	173	186	295	339	175	188	350	405	700	825	490	571
40	190	205	310	357	200	216	400	467	800	953	560	657
50	260	297	460	529	250	285	500	578	1000	1,22 k	700	834
63	320	369	550	639	315	363	630	737	1260	1,58 k	882	1,07 k
80	440	517									1120	1,40 k
100	580	675									1400	1,80 k
125	750	889									1750	2,34 k
160	930	1,12 k									2240	3,18 k

Beispiel

Anzeigewert 90,4 A \rightarrow nächstkleinerer Wert für Leitungsschutzschalter Charakteristik B aus Tabelle: 85 A \rightarrow Nennstrom (I_N) des Schutzelementes maximal 16 A

27.2 Bei welchen Werten soll/muss ein RCD eigentlich richtig auslösen? Anforderungen an eine Fehlerstromschutzeinrichtung (RCD)

Allgemeine Anforderungen:

- Die Auslösung muss spätestens bei Fließen des Bemessungsfehlerstroms (Nenndifferenzstroms ${\rm I}_{\Delta N}$) erfolgen. und
- Die maximale Zeit bis zur Auslösung darf nicht überschritten werden.

Erweiterte Anforderungen durch zu berücksichtigende Einflüsse auf den Auslösestrombereich und den Auslösezeitpunkt:

- Art bzw. Form des Fehlerstroms: hieraus ergibt sich ein zulässiger Auslösestrombereich
- Netzform und Netzspannung: hieraus ergibt sich eine maximale Auslösezeit
- Ausführung des RCDs (standard oder selektiv): hieraus ergibt sich eine maximale Auslösezeit

Hinweis zu RCCB:

Die normative Prüfung von RCCB erfolgt gemäß den Vorgaben nach DIN EN 61008-1 (VDE 0664-10) sowie DIN EN IEC 61008-2-1 (VDE 0664-1).

Definitionen der Anforderungen in den Normen

Für Messungen in elektrischen Anlagen gilt die VDE 0100-600, die in jedem Elektroinstallateur-Auswahlordner zu finden ist. Diese besagt eindeutig: "Die Wirksamkeit der Schutzmaßnahme ist nachgewiesen, wenn die Abschaltung spätestens beim Bemessungsdifferenzstrom I_{AN} erfolgt."

Auch die DIN EN 61557-6 (VDE 0413-6), als die Vorgabe für den Messgerätehersteller, sagt dazu unmissverständlich:

"Mit dem Messgerät muss nachweisbar sein, dass der Auslösefehlerstrom der Fehlerstrom-Schutzeinrichtung (RCD) kleiner oder gleich dem Bemessungsfehlerstrom ist."

Kommentar

Das bedeutet für jeden Elektro-Installateur bei den fälligen Schutzmaßnahmen-Prüfungen nach Anlagenänderungen oder Anlagenergänzungen, nach Reparaturen oder beim E-CHECK nach der Berührungsspannungsmessung, dass der Auslösetest je nach RCD spätestens beim Erreichen von 10 mA, 30 mA, 100 mA, 300 mA bzw. 500 mA erfolgt sein muss.

Wie reagiert der Elektro-Installateur, wenn diese Werte überschritten werden? Der RCD fliegt raus !

Wenn er relativ neu war, wird er beim Hersteller reklamiert. Und der stellt in seinem Labor fest: der RCD entspricht der Herstellernorm und ist in Ordnung.

Ein Blick in die Herstellernorm VDE 0664-10/-20/-100/-200 zeigt warum:

Art des Fehlerstroms	Form des Fehlerstroms	Zulässiger Auslösestrombereich
Sinusförmiger Wechselstrom	\sim	0,5 1 I _{ΔN}
Pulsierender Gleichstrom (positive oder negative Halbwellen)	\mathfrak{K}	0,35 1,4 Ι _{ΔΝ}
Phasenwinkelgesteuerte Halbwellenströme Phasenwinkel von 90° el Phasenwinkel von 135° el		0,25 1,4 Ι _{ΔΝ} 0,11 1,4 Ι _{ΔΝ}
Pulsierender Gleichstrom überlagert mit glattem Gleichfehlerstrom von 6 mA	$\mathbf{\overline{\mathbf{M}}}$	max. 1,4 $I_{\Delta N}$ + 6 mA
Glatter Gleichstrom		0,5 2 I _{ΔN}

Da die Stromform eine bedeutende Rolle spielt, ist es wichtig zu wissen, welche Stromform das eigene Prüfgerät nutzt.

Art bzw. Form des Fehlerstroms am Prüfgerät einstellen:

Es ist wichtig, bei seinem Prüfgerät die entsprechende Einstellung vorzunehmen und zu nutzen.

Ähnlich verhält es sich mit den Abschaltzeiten. Die neue VDE 0100-410, müsste auch im Auswahlordner vorhanden sein. Sie gibt Abschaltzeiten, je nach Netzform und Netzspannung, zwischen 0,1 s und 5 s an.

System 50 V < $U_0 \le 12$		$_0 \le 120 \text{ V}$	120 V < U_0 \le 230 V		230 V < U_0 \le 400 V		$U_0 > 400 V$	
System	AC	DC	AC	DC	AC	DC	AC	DC
TN	0,8 s		0,4 s	5 s	0,2 s	0,4 s	0,1 s	0,1 s
TT	0,3 s		0,2 s	0,4 s	0,07 s	0,2 s	0,04 s	0,1 s

Normalerweise schalten RCDs schneller ab, aber ... es kann ja passieren, dass ein RCD einmal etwas länger braucht. Und dann ist wieder der Hersteller gefragt.

Bei einem erneuten Blick in die VDE 0664 entdeckt man die folgende Tabelle:

Ausführung	Fehler- stromart	Abschaltzeiten bei			
	Wechselfehler- ströme	$1 \times I_{\Delta N}$	$2 \times I_{\Delta N}$	$5 imes I_{\Delta N}$	500 A
	pulsierende Gleichfehler- ströme	$1,4\times I_{\Delta N}$	$2 \times 1,4 \times I_{\Delta N}$	$5 \times 1,4 \times I_{\Delta N}$	500 A
	glatte Gleich- fehlerströme	$2 \times I_{\Delta N}$	$2\times 2\times I_{\Delta N}$	$5\times 2\times I_{\Delta N}$	500 A
Standard (un- verzögert) bzw. kurzzeit- verzögert		300 ms	max. 0,15 s	max. 0,04 s	max. 0,04 s
selektiv		0,13 0,5 s	0,06 0,2 s	0,05 0,15 s	0,04 0,15 s

Hier stechen zwei Grenzwerte ins Auge:

Standard	max. 0,3 s
Selektiv	max. 0,5 s

Ein richtiges Prüfgerät hat alle Grenzwerte vorbereitet bzw. ermöglicht die direkte Eingabe gewünschter Werte und zeigt diese auch an! Grenzwerte am Prüfgerät auswählen oder einstellen:

Prüfungen elektrischer Anlagen bestehen aus "Besichtigen", "Erproben" und "Messen" und sind deshalb Fachleuten mit entsprechender Berufserfahrung vorbehalten.

Technisch sind im Endeffekt zunächst die Werte aus der VDE 0664 verbindlich.

27.3 Prüfen von elektrischen Maschinen nach DIN EN 60204 – Anwendungen, Grenzwerte

Für die Prüfungen von elektrischen Maschinen und Steuerungen wurde das Prüfgerät PROFITEST PRIME AC oder entwickelt. Nach der Normänderung ist zusätzlich die Messung der Schleifenimpedanz erforderlich. Die Messung des Schleifenwiderstands sowie weitere erforderliche Messungen für Prüfungen von elektrischen Maschinen können Sie auch mit den Prüfgeräten der Serie PROFITEST MF durchführen.

Vergleich der vorgeschriebenen Prüfungen zwischen den Normen

Prüfung nach DIN EN 60204-1 (Maschinen)	Prüfung nach DIN EN 61557 (Anlagen)	Mess- funktion
Durchgehende Verbindung des Schutzleitersystems	Teil 4: Widerstand von: – Erdungsleiter – Schutzleiter – Potenzialausgleichsleiter	RLO
Schleifenimpedanz	Teil 3: Schleifenimpedanz	ZL-PE
Isolationswiderstand	Teil 2: Isolationswiderstand	RISO
Prüfen auf Spannungsfestigkeit	Teil 14: Geräte zum Prüfen der Si- cherheit der elektrischen Ausrüstung von Maschinen	-
Schutz gegen Restspannungen	Teil 14: Geräte zum Prüfen der Si- cherheit der elektrischen Ausrüstung von Maschinen	Ures
Funktionsprüfung	—	_

Durchgehende Verbindung des Schutzleitersystems

Hier wird die durchgehende Verbindung eines Schutzleitersystems durch Einspeisen eines Wechselstroms zwischen 0,20 A und 10 A bei einer Netzfrequenz von 50 Hz überprüft (= Niederohmmessung). Die Prüfung muss zwischen der PE-Klemme und verschiedenen Punkten des Schutzleitersystems durchgeführt werden.

Schleifenimpedanzmessung

Die Schleifenimpedanz $Z_{\rm L-PE}$ wird gemessen und der Kurzschlussstrom I_K wird ermittelt, um zu prüfen, ob die Abschaltbedingungen der Schutzeinrichtungen eingehalten werden, siehe Kap. 13.

Isolationswiderstandsmessung

Hierbei werden bei der Maschine alle aktiven Leiter der Hauptstromkreise (L und N bzw. L1, L2, L3 und N) kurzgeschlossen

und gegen PE (Schutzleiter) gemessen. Steuerungen, oder Teile der Maschine, die für diese Spannungen (500 V DC) nicht ausgelegt sind, dürfen für die Dauer der Messung vom Messkreis getrennt werden. Der Messwert darf nicht kleiner als 1 M Ω sein. Die Prüfung darf in einzelne Abschnitte aufgeteilt werden.

Spannungsprüfungen (nur mit PROFITEST PRIME AC)

Die elektrische Ausrüstung einer Maschine muss zwischen den Leitern aller Stromkreise und dem Schutzleitersystem mindestens 1 s lang einer Prüfspannung standhalten, die das 2-fache der Bemessungsspannung der Ausrüstung oder 1000 V~ beträgt, je nachdem, welcher Wert der jeweils Größere ist. Die Prüfspannung muss eine Frequenz von 50 Hz haben und von einem Transformator mit einer Mindest-Bemessungsleistung von 500 VA erzeugt werden.

(Rest-)Spannungsmessungen

Die Vorschrift EN 60204 fordert, dass an jedem berührbaren aktiven Teil einer Maschine, an welchem während des Betriebs eine Spannung von mehr als 60 V anliegt, nach dem Abschalten der Versorgungsspannung die Restspannung innerhalb von 5 s auf einen Wert von 60 V oder weniger abgesunken sein muss. Bei Freilegung von Leitern muss die Restspannung innerhalb von 1 s auf einen Wert kleiner oder gleich 60 V abgesunken sein.

Funktionsprüfung

Die Maschine wird mit Nennspannung betrieben und auf Funktion, insbesondere auf Sicherheitsfunktionen geprüft.

Spezielle Prüfungen

- Puls-Brennbetrieb zur Fehlersuche (nur mit PROFITEST PRIME AC)
- Schutzleiterprüfung mit 25 A-Prüfstrom (nur mit PROFITEST PRIME AC)

Grenzwerte nach DIN EN 60204-1

Messung	Parameter	Querschnitt	Normwert	
	Prüfdauer		10 s	
Schutzleiter- messung	Grenzwert Schutzleiterwiderstand gemäß Leitungsquer- schnitt (Außenleiter L) und Charakteristik der Über- stromschutzeinrichtung (berechneter Wert)	1,5 mm ² 2,5 mm ² 4,0 mm ² 6,0 mm ² 10 mm ² 25 mm ² L (16 mm ² PE) 35 mm ² L (16 mm ² PE) 50 mm ² L (25 mm ² PE) 70 mm ² L (35 mm ² PE) 95 mm ² L (50 mm ² PE) 120 mm ² L (70 mm ² PE)	500 mΩ 500 mΩ 500 mΩ 400 mΩ 300 mΩ 200 mΩ 100 mΩ 100 mΩ 100 mΩ 050 mΩ	
Isolationswider-	Nennspannung		500 V DC	
standsmessung	Widerstandsgrenzwert		$\geq 1 \ \text{M}\Omega$	
Ableitstrommes- sung	Ableitstrom		2,0 mA	
Schutz gegen Rest-	Entladezeit nach Ausschalten der Versor- gungsspannung		5 s	
spannungen	Entladezeit bei Freilegung v	1 s		
5	Prüfspannung		$2 \times U_N$ oder 1 kV	
Pruten aut Span-	Frequenz der Prüfspannung	Frequenz der Prüfspannung		
Turigaloaligheit	Prüfdauer		1 s	

Charakteristik der Überstromschutzeinrichtungen zur Grenzwertauswahl bei Schutzleiterprüfung

Abschaltzeiten, Charakteristika	Verfügbar bei Querschnitt
Sicherung Abschaltzeit 5 s	alle Querschnitte
Sicherung Abschaltzeit 0,4 s	1,5 mm ² bis einschl. 16 mm ²
Leitungsschutzschalter Charakteristik B la = $5 \times I_n$ - Abschaltzeit 0,1s	1,5 mm ² bis einschl. 16 mm ²
Leitungsschutzschalter Charakteristik C la = $10 \times I_n$ - Abschaltzeit 0,1s	1,5 mm ² bis einschl. 16 mm ²
Einstellbarer Leistungsschalter la = $8 \times I_n$ - Abschaltzeit 0,1s	alle Querschnitte

27.4 Wiederholungsprüfungen nach DGUV V 3 (bisher BGV A3) – Grenzwerte für elektrische Anlagen und Betriebsmittel

Grenzwerte nach DIN VDE 0701-0702

Maximal zulässige Grenzwerte des Schutzleiterwiderstands bei Anschlussleitungen bis 5 m Länge

Prüfnorm	Prüfstrom	Leerlauf- spannung	R _{SL} Gehäuse – Netzstecker
VDE 0701-0702	> 200 mA	4 V < U _L < 24 V	$0,3 \Omega^{(1)}$ + 0,1 $\Omega^{(2)}$ je weitere 7,5 m

 $^{1)}$ Für Festanschluss bei Datenverarbeitungsanlagen darf dieser Wert maximal 1 Ω sein (DIN VDE 0701-0702).

 $^{2)}$ Gesamter Schutzleiterwiderstand maximal 1 Ω

Minimal zulässige Grenzwerte des Isolationswiderstands

Prüfnorm	Prüf-	R _{ISO}				
Tumorin	spannung	annung SK I SK II		SK III	Heizung	
VDE 0701-0702	500 V	1 MΩ	2 MΩ	$0,25~\text{M}\Omega$	0,3 MΩ *	

 * mit eingeschalteten Heizelementen (wenn Heizleistung > 3,5 kW und $\rm R_{\rm ISO} < 0,3~M\Omega$: Ableitstrommessung erforderlich)

Maximal zulässige Grenzwerte der Ableitströme in mA

Prüfnorm	I _{SL}	I _B	I _{DI}
VDE 0701-0702	SK I: 3,5 1 mA/kW *	0,5	SK I: 3,5 1 mA/kW * SK II: 0,5

* bei Geräten mit einer Heizleistung > 3,5 kW

Anmerkung 1: Geräte, die nicht mit schutzleiterverbundenen berührbaren Teilen ausgestattet sind und die mit den Anforderungen für den Gehäuseableitstrom und, falls zutreffend, für den Patientenableitstrom übereinstimmen, z. B. EDV-Geräte mit abgeschirmtem Netzteil

Anmerkung 2: Fest angeschlossene Geräte mit Schutzleiter

- Anmerkung 3: Fahrbare Röntgengeräte und Geräte mit mineralischer Isolierung
- IB Gehäuse-Ableitstrom (Sonden- oder Berührungsstrom)
- IDI Differenzstrom
- I_{SL} Schutzleiterstrom

Maximal zulässige Grenzwerte der Ersatz-Ableitströme in mA

Prüfnorm	I _{EA}
VDE 0701-0702	SK I: 3,5 1 mA/kW ¹⁾ SK II: 0,5

¹⁾ bei Geräten mit einer Heizleistung \geq 3,5 kW

27.5 Literaturliste

Rechtsgrundlagen					
Betriebs Sicherheits Verordnung (BetrSichV) Vorschriften der Unfallversicherungsträger UVVs					
Titel	Information Regel / Vorschrift	Herausgeber			
Betriebssicherheitsverordnung (BetrSichV)	BetrSichV				
Elektrische Anlagen und Betriebsmittel	DGUV Vorschrift 3 (bisher BGV A3)	DGUV (bisher HVBG)			

VDE-Normen				
Deutsche Norm	Titel	Ausgabe Datum	Verlag	
DIN VDE 0100-410	Schutz gegen elektrischen Schlag	2018-10	Beuth-Verlag GmbH	
DIN VDE 0100-530	Errichten von Niederspan- nungsanlagen Teil 530: Auswahl und Er- richtung elektrischer Be- triebsmittel-, Schalt- und Steuergeräte	2018-06	Beuth-Verlag GmbH	
DIN VDE 0100-600	Errichten von Niederspan- nungsanlagen Teil 6: Prüfungen	2017-06	Beuth-Verlag GmbH	
Normenreihe DIN EN 61557	Geräte zum Prüfen, Messen oder Überwachen von Schutzmaßnahmen		Beuth-Verlag GmbH	
DIN VDE 0105-100	Betrieb von elektrischen An- lagen, Teil 100: Allgemeine Festlegungen	2015-10	Beuth-Verlag GmbH	
VDE 0122-1 DIN EN 61851-1	Elektrische Ausrüstung von Elektro-Straßenfahrzeugen - Konduktive Ladesysteme für Elektrofahrzeuge – Teil 1: Allgemeine Anforderungen	2019-12 (Beiblatt 2021-06)	Beuth-Verlag GmbH	

27.6 Internetadressen für weiterführende Informationen

Internetadresse	
www.dguv.de	DGUV-Informationen, -Regeln und -Vorschriften durch die Deutsche Gesetzliche Unfallversicherung e.V.
www.beuth.de	VDE-Bestimmungen, DIN-Normen, VDI-Richtlinien durch den Beuth-Verlag GmbH
www.bgetem.de	BG-Informationen, -Regeln und -Vorschriften durch die gewerblichen Berufsgenossenschaften z. B. BG ETEM (Berufsgenossenschaft der Energie Textil Elektro Medienerzeugnisse)

Gossen Metrawatt GmbH Erstellt in Deutschland • Änderungen / Irrtümer vorbehalten • Eine PDF-Version finden Sie im Internet

Alle Handelsmarken, eingetragenen Handelsmarken, Logos, Produktbezeichnungen und Firmennamen sind das Eigentum ihrer jeweiligen Besitzer. All trademarks, registered trademarks, logos, product names, and company names are property of their respective owners.

90449 Nürnberg • Germany

Telefon +49 911 8602-111 Telefax +49 911 8602-777 E-Mail info@gossenmetrawatt.com www.gossenmetrawatt.com